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Abstract: We develop and test a nonlinear optimization algorithm
for solving the problem of phase retrieval with transverse translation
diversity, where the diverse far-field intensity measurements are taken after
translating the object relative to a known illumination pattern. Analytical
expressions for the gradient of a squared-error metric with respect to the
object, illumination and translations allow joint optimization of the object
and system parameters. This approach achieves superior reconstructions,
with respect to a previously reported technique [H. M. L. Faulkner and
J. M. Rodenburg, Phys. Rev. Lett. 93, 023903 (2004)], when the system
parameters are inaccurately known or in the presence of noise. Applicability
of this method for samples that are smaller than the illumination pattern is
explored.
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1. Introduction

Image reconstruction by phase retrieval, also referred to as coherent diffraction (or diffractive)
imaging (CDI), is a lensless imaging technique in which conventional image forming optics
(e.g. lenses, mirrors or holographic optical elements) are substituted by computational image
reconstruction [1–9]. In this approach a coherent optical beam is incident on a reflective or
transmissive object and the intensity of the field diffracted by the object is collected with an
intensity detector array at some distance (usually in the far field). For this approach to work, we
need an illuminating beam with a transverse coherence that is at least as large as the object is
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wide and the pixel pitch of the detector array should be fine enough that the measured intensity
is Nyquist sampled. These requirements place an upper bound on the maximum object extent
(field of view) that can be imaged with this technique.

In this configuration the measured far-field intensity is used, along with some a priori infor-
mation about the object (object support constraint and/or nonnegativity constraint), to compu-
tationally retrieve the phase of the field at the detector plane by using an iterative phase retrieval
algorithm [1].

Due to the difficulty in fabricating diffractive optical elements (for conventional imaging) or
unresolved point sources (for Fourier transform holographic reconstruction [10–12]) with suf-
ficient precision for the x-ray regime, there has been an increasing interest in the development
and application of phase retrieval to coherent x-ray imaging [5, 6, 8]. For CDI the final image
resolution depends on the largest scattered angle collected with a moderately good signal-to-
noise ratio (SNR) and the wavelength of the illuminating beam. Furthermore, the sampling
and transverse coherence requirement for CDI is half of that required for holographic recon-
structions, either with a point-source reference or a boundary-wave reference from an extended
object [13, 14], because these techniques require measurement of the interference of the field
diffracted from the object with that originating from a reference point source or sharp feature
that is adequately separated from the object (holographic separation condition [11, 14]).

Although algorithms that are robust and capable of escaping local minima have been pro-
posed and successfully used [1–9,15–18], image reconstruction by phase retrieval still may suf-
fer from stagnation modes that can be very persistent. The reconstruction becomes even more
difficult when the image is complex-valued [2, 7] (as occurs in many important applications
of coherent x-ray and optical imaging, and wavefront sensing), in which case a nonnegativity
constraint cannot be used.

The use of multiple diverse measurements can make phase retrieval more robust. A very prac-
tical form of diversity for CDI, along with a robust reconstruction algorithm, was introduced
by Faulkner and Rodenburg [19, 20] and was experimentally demonstrated for the optical and
x-ray regime [21, 22]. This form of diversity, applicable when the sample can be illuminated
repeatedly without significant change or damage, consists of taking a sequence of far-field in-
tensity patterns, for which the object is displaced transversely relative to an illumination pattern
that is known a priori. It was shown that an iterative phase retrieval technique, named ptycho-
graphical iterative engine (PIE), could be used in this case to increase the field of view (FOV)
of the reconstruction, make the algorithms more robust, and achieve superior reconstructions.
The success of this technique relies, however, on an accurate knowledge of the illumination
pattern and the transverse displacements of the object. In practice, these parameters might be
inaccurately known due, for example, to the limited precision of the translating stages and in-
accurate or incomplete knowledge of features of the aperture (or focusing optics) that generates
the illuminating beam [23].

In this paper we develop and test a nonlinear optimization routine to solve the phase retrieval
problem with transverse translation diversity. By using a gradient-descent-based algorithm, we
jointly optimize over the object, the illumination beam and the translation parameters, so that
not only is the object estimation improved but also our initial estimate of the illumination pattern
and the translations are refined. We provide analytic expressions for the gradients of a squared-
error metric with respect to the object, illumination and translation parameters, that are crucial
for efficient implementation of the algorithm.

The nonlinear optimization approach produces results superior to those of the PIE when
the illumination pattern and translations are known inaccurately. Furthermore, in contrast to
the PIE, which uses the measured intensity patterns sequentially, our technique uses all the
measurements simultaneously when refining the object estimate, thus achieving reconstructions
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with reduced noise artifacts.
Whereas PIE was only shown to work for objects larger than the diameter of the illumination

pattern, we show that this form of diversity also provides very robust reconstructions (com-
pared with single-measurement phase retrieval) when the object of interest is smaller than the
illumination pattern. In this case the diverse measurements are obtained by moving the object
within the transverse extent of the illumination pattern.

2. Object translation diversity

Algorithms that overcome some of the common stagnation problems and ambiguities of phase
retrieval by introducing diversity have been developed for optical metrology applications and
telescope alignment. They rely on measuring different intensity patterns, after introducing a
known modification to the optical setup. A known amount of defocus is typically introduced
by moving the detector along the optical axis [24–29]. Other forms of diversity that have been
successfully used are sub-aperture piston diversity [30] and wavelength diversity [24,25,28,31,
32].

The set of measurements, along with the knowledge of the diversity function, are used to find
a field that agrees with all the measurements by using some form of iterative algorithm. Stag-
nation problems are overcome by providing a set of measurements that more robustly constrain
the phase retrieval problem.

In x-ray CDI, the intensity measurement is typically taken in the far-field regime, so that
the field intensity is proportional to the squared-magnitude of the Fourier transform of the
object [11]. In the far-field regime, a longitudinal shift of the detector (an increased propagation
distance) will only change the measured data by a multiplicative constant and a transverse
magnification; this will not provide suitably diverse measurements.

For CDI, the intensity measurements are taken at a prescribed distance along the optical axis,
and are sampled in the transverse coordinates (u,v). The phase retrieval problem then reduces to
finding the object field, f (x,y), given a sampled measurement of the Fourier intensity, I(u,v) =
|F(u,v)|2. We approximate the continuous Fourier transform by the discrete Fourier transform,

F(u,v) = |F(u,v)|exp [iθ (u,v)] = DFT{ f (x,y)} =
1√
MN

∑
x,y

f (x,y)exp
[
−i2π

(ux
M

+
vy
N

)]
,

(1)
computed using the fast Fourier transform (FFT) algorithm, where N and M are the array dimen-
sions, (x,y) and (u,v) are integer pixel coordinates in object and Fourier domain respectively,
and we have dropped unimportant multiplicative scaling factors. Throughout the remainder of
this manuscript, upper-case letters will refer to the discrete Fourier transforms of their lower-
case counterparts as given by Eq. (1).

Introducing a known transverse translation of the object with respect to a known illumi-
nation pattern is a practical way of introducing diversity into the phase retrieval problem for
x-ray CDI. An early form of this approach, developed originally for scanning transmission
electron microscopy [33] and referred to as ptychography, required shifting the specimen by
small amounts to many positions along a Cartesian grid. Although a non-iterative reconstruc-
tion procedure can be performed, this approach required obtaining and processing of very large
four-dimensional data sets because the translation shift spacing is required to be of the same
scale as the final spatial resolution of the reconstruction [34].

Nakajima proposed a reconstruction method that requires three far-field intensity measure-
ments taken with the object translated with respect to a Gaussian illumination pattern [35], thus
dramatically reducing the amount of data that needs to be collected and processed. For this
approach the translations do not need to be on the scale of the final image resolution. However,
the method suffers from severe disadvantages for x-ray CDI. Although for optical wavelengths
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Gaussian beams appear naturally as optical resonator modes, this is not the case for coherent
x-ray beams, where the beam must go through gratings and small apertures to achieve temporal
and spatial coherence, and significantly departs from the Gaussian form. Furthermore, since the
reconstruction method is based on the solution of simultaneous equations and is performed on
a row-by-row basis, the results are found to be very sensitive to noise in the measured data.

Phase retrieval with translation diversity was brought to fruition by Faulkner and Rodenburg
with the introduction of a robust iterative algorithm [19–22]. Their technique is capable of
reconstructing a complex-valued image using an arbitrary illumination pattern and any number
of translation-diverse far-field measurements, with a resolution that is only limited by the largest
scattered angle collected with a moderately good SNR and the wavelength of the illuminating
beam.

Following the work by Faulkner and Rodenburg, we can state the translation-diverse phase
retrieval problem as follows. If we denote o(x,y) and p(x,y) as the object transmittance and
illumination fields, respectively, the n-th resultant field is then given by

fn(x,y) = o(x− xn,y− yn)p(x,y), (2)

provided that the specimen is thin. Within the paraxial approximation, the collected measure-
ments in the far field are

In(u,v) = |Fn(u,v)|2 . (3)

The problem solved by Faulkner and Rodenburg is then to find a single object field o(x,y) that
generates the fields fn(x,y) that agree with all the intensity measurements In(u,v), where the
illumination p(x,y) and the coordinate translations (xn,yn) are assumed known a priori.

It is important to note that although we refer to p(x,y) as an illumination function, this
formulation does not put any constraints on the form or nature of p(x,y) so that it may be given
by either a complex-valued field that originates from the diffraction of an aperture, a focusing
lens, or be the transmittance of an aperture itself.

As was already discussed in [19], if the fields, fn(x,y), have no overlap with one another,
the task is reduced to solving the conventional phase retrieval problem several times with no
diversity. It is then important to have a substantial amount of overlap between the different field
realizations. This constrains the problem very robustly and dramatically increases the success of
phase retrieval. It is also worth noting that because a translation in all fields will produce a linear
phase in the Fourier domain that cannot be detected, the technique is not sensitive to the absolute
position of either the object or the illumination function. This implies that only the relative
displacements of the object and illumination are important, and the technique is insensitive to
whether it is the object or the illumination that moves [23]. An additional advantage is that a
reconstruction of an extended FOV can be recovered with this technique.

Having translation diverse measurements can be shown to overcome two of the ambiguity
problems commonly associated with phase retrieval: defocus and twin image.

The defocus ambiguity is exclusive of complex-valued image reconstruction (when a non-
negativity constraint cannot be used). If only a support constraint is available for reconstruction,
and the estimation of the support is larger than the object support, then a reconstruction of the
object or a slightly out of focus image could fit inside the support and satisfy the far-field in-
tensity constraint [8]. This results in a blurred image of the original object. This ambiguity is
removed if translation diversity is used because there is only one plane where the translating
object and illumination fields can be expressed as a product of one another.

The twin-image problem [15] is a well-known inherent ambiguity in CDI: both f (x,y) and
f ∗(−x,−y) [where (∗) denotes complex conjugation] have the same Fourier intensity pattern
since

F∗(u,v) = |F(u,v)|exp [−iθ (u,v)] = DFT{ f ∗(−x,−y)} , (4)
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(a) (b) (c)

Fig. 1. Reconstruction examples using single-measurement phase retrieval with a support
constraint. (a) Amplitude of object-space field, f (x,y). The amplitude of two reconstruc-
tions that exhibit the twin-image problem, to different extents, are shown in (b) and (c), their
final support errors are ES = 0.0162 and ES = 0.0092, respectively. A 172×210 portion of
the 256×256 array is shown in (a)-(c).

so if the support constraint is symmetric about the origin, either one is a valid solution, or in
other words, either the far-field phase or its negative could be retrieved. This inherent ambiguity
can lead to a very persistent stagnation problem that commonly appears when reconstructing
objects with a centrosymmetric support. The problem is characterized by the simultaneous
appearance of features from both f (x,y) and f ∗(−x,−y) inside the support. The fact that this
stagnation mode has more energy outside the support than the actual solution identifies it as a
local minima stagnation mode.

Figures 1(b) and 1(c) show reconstruction examples that exhibit the aforementioned twin-
image problem to different extents. The 256× 256 complex-valued field f (x,y), amplitude
shown in Fig. 1(a), was obtained by multiplying an extended object [amplitude and phase shown
in Figs. 2(a) and 2(b), respectively] by a real-valued circular aperture of 50 pixel radius, shown
in Fig. 2(c). The simulated Fourier intensity data, I(u,v), was obtained by Fourier transforming
the field, f (x,y), and taking the squared modulus of the result. Making the extent of the field,
f (x,y), less than half of the entire array ensures that the intensity will be Nyquist sampled. The
square-root of the Fourier intensity was then used along with the object support (support con-
straint) as constraints for the phase retrieval algorithm. Because the image is complex-valued, a
nonnegativity constraint cannot be used. A sequence of 45 iterations of the hybrid input-output
algorithm (HIO) [1], with a feedback parameter of β = 0.7, followed by 5 of the error-reduction
algorithm were used, totaling 1000 iterations (20 sets of 50 iterations each). Because the sup-
port is centrosymmetric and the image is complex-valued, this reconstruction is particularly
difficult for single-measurement phase retrieval.

This procedure was repeated for 10 different random starting guesses, thus obtaining 10 in-
dependent reconstructions. Three of the 10 reconstructions exhibited a very pronounced twin-
image problem, one of which is shown in Fig. 1(b), where the reconstruction shows a high
symmetry through the origin that is not present in f (x,y). Five of the 10 reconstructions exhib-
ited a mild twin-image problem, such as that shown in Fig. 1(c). Notice that although the twin
image dominates the reconstruction shown in Fig. 1(c), and the image is recognizable, faint
features of the upright image are also discernable, for example the three coral branches on the
upper-right part of the image. For the remaining two reconstructions, a faithful image of the
object shown in Fig. 1(a) was obtained, with no discernable twin-image problem.

Convergence of the iterative transform algorithm with a support constraint is typically mon-
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itored by computing the support error, given by

E2
S =

∑(x,y)/∈S

∣∣ f̂ (x,y)
∣∣2

∑x,y

∣∣ f̂ (x,y)
∣∣2 , (5)

where S is the set of points where the reconstruction, f̂ (x,y), satisfies the support constraint.
The two aforementioned reconstructions with no visually discernable twin-image problem had
a final support error of ES = 0.0026 and ES = 0.0060, respectively. For the five reconstructions
exhibiting a mild twin-image problem, ES = 0.0034, 0.0074, 0.0076, 0.0092, 0.0105, respec-
tively. Notice that on average ES is an indicator of a mild twin-image stagnation problem.
Finally, for the three reconstructions with a pronounced twin-image problem, the final support
error was ES = 0.0150, 0.0162, and 0.0192, respectively. A severe twin-image problem will
have large value of ES, which identifies it as a stagnated partially-reconstructed image. If the
final value of ES for a given reconstruction is high, then the reconstruction should be started
again with a different starting guess. Alternatively there are techniques that can be used to es-
cape stagnation or combine different reconstructions to arrive at an improved composite that
can be used for further iterations [15], these techniques are, however, outside of the scope of
this paper.

This twin-image problem is removed by translation diversity by the knowledge of the trans-
verse shifts that were imposed on the object. Although f n(x,y) = o(x− xn,y− yn)p(x,y) and
f ∗n (−x,−y) = o∗(−x− xn,−y− yn)p∗(−x,−y) have the same Fourier magnitude, we can dif-
ferentiate them from the sign of the object shift, (xn,yn), between two diversity images if the
two fields overlap. Thus translation diversity eliminates the ambiguity between the image and
its twin, making the simultaneous appearance of features of the regular and twin image in the
reconstruction much less likely.

3. Ptychographical iterative engine

The PIE approach [19–21], is to iteratively correct the object field function o(x,y) to sequen-
tially match all of the Fourier intensity measurements. For a single iteration, the current object
estimate, ôn(x,y), is multiplied by a translated version of the known illumination function, to
obtain an estimate of the n-th diversity field,

ĥn(x,y) = ôn(x,y)p(x+ xn,y+ yn) = f̂n(x+ xn,y+ yn), (6)

then the Fourier transform of ĥn(x,y) is computed:

Ĥn(u,v) =
∣∣Ĥn(u,v)

∣∣exp
[
iφ̂n(u,v)

]
= DFT

{
ĥn(x,y)

}
, (7)

then the measured Fourier amplitude (the square root of the measured intensity for the n-th
diversity position) is imposed while preserving the phase

Gn(u,v) =
√

In(u,v)exp
[
iφ̂n(u,v)

]
. (8)

The inverse Fourier transform of Gn(u,v) is used to update the object estimate by

ôn+1(x,y) = ôn(x,y)+
|p(x+ xn,y+ yn)|

max
x,y

|p(x,y)|
p∗(x+ xn,y+ yn)

|p(x+ xn,y+ yn)|2 + α
β

[
gn(x,y)− ĥn(x,y)

]
, (9)

where β is a parameter that will be shown to be related to the step size of a steepest descent
search and α is a constant that prevents numerical problems in dividing out the aperture function
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when p(x,y) � 0. A single iteration of this algorithm is achieved by repeating the outlined
procedure until all of the diversity measurements, In(u,v), have been used to update the object
estimate, i.e. n = 1,2, ...,q, for q diversity images. An important feature of this procedure is
that it sequentially uses the diversity images to update the current estimate for the object field.
Notice that in this definition a single iteration requires using all q measurements.

The relation of the PIE algorithm and a steepest descent search can be more readily seen by
multiplying Eq. (9) by p(x+ xn,y+ yn),

f̂n+1(x+ xn,y+ yn)− f̂n(x+ xn,y+ yn)

=
|p(x+ xn,y+ yn)|

max
x,y

|p(x,y)| β
[
gn(x,y)− f̂n(x+ xn,y+ yn)

]
, (10)

where we used Eq. (6) and
|p(x+ xn,y+ yn)|2

|p(x+ xn,y+ yn)|2 + α
� 1. (11)

Following a procedure analogous to that outlined in [1], we can compute the direction of steep-
est descent for a squared-error metric for

√
In(u,v) with respect to f̂ (x+ xn,y+ yn), given by

−
[

∂
∂ f̂ R

n (x+ xn,y+ yn)
+ i

∂
∂ f̂ I

n(x+ xn,y+ yn)

]{
∑
u,v

[∣∣F̂n(u,v)
∣∣−

√
In(u,v)

]2
}

= 2
[
gn(x,y)− f̂n(x+ xn,y+ yn)

]
, (12)

where the superscripts R and I indicate the real and imaginary part respectively ( f̂ = f̂ R + i f̂ I).
Upon comparing the right hand side of Eq. (10) with the direction of steepest descent, given

by Eq. (12), it becomes evident that the update step of the PIE algorithm, Eq. (9), can be
interpreted as a steepest descent algorithm with a spatially variant step size given by

|p(x+ xn,y+ yn)|
max

x,y
|p(x,y)| β . (13)

Notice that the step is proportional to the (normalized) illumination function, thus providing
a longer step where the beam amplitude was higher and reducing the step size on pixels that
were poorly illuminated and might then have a lower SNR, or not illuminated at all. Since other
gradient search algorithms, e.g. conjugate gradient, are superior to steepest descent, this result
indicates that it should be possible to improve on the PIE.

Figure 2 shows a reconstruction using the PIE algorithm. A 256× 256 complex-valued ob-
ject, whose amplitude and phase are shown in Figs. 2(a) and 2(b) respectively, was multiplied
by a real-valued aperture p(x,y) with a 50 pixel radius, shown in Fig. 2(c). The resulting field
was then Fourier transformed and the squared-magnitude of the result was used as the measured
data. This procedure was repeated for 12 different positions of the aperture, (x n,yn), indicated
by circles in Fig. 2(d), thus obtaining twelve two-dimensional far-field intensity measurements,
In(u,v). The aperture was shifted in intervals of 14 and 35 pixels in the x and y directions,
respectively.

The PIE algorithm, with β = 1 and α = 0.01, was used for reconstruction of o(x,y) assuming
perfect knowledge of p(x,y) and (xn,yn). The algorithm was initialized with ô(x,y) as a real-
valued, uniform function. The amplitude and phase of the reconstruction after 200 iterations
are shown in Figs. 2(e) and 2(f), respectively. Notice that a very good estimation of the original
object is obtained within the support sampled by p(x,y).
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Object, o(x,y), (a) amplitude and (b) phase. (c) Amplitude of p(x,y). (d) Circles
indicate the twelve positions of p(x,y) that were used for the reconstruction. (e) Amplitude
and (f) phase of the reconstruction using the PIE. Phase is shown from −0.4 to 0.4 radians
in (b) and (f). A 172×210 portion of the 256×256 array is shown in (a)-(f).

In agreement with Faulkner and Rodenburg, we have found this approach to be superior to
single-measurement phase retrieval in terms of robustness and convergence speed. Neverthe-
less it still relies on accurate knowledge of the object displacements (xn,yn) and the aperture
function p(x,y).

To illustrate the effect of errors in the knowledge of system parameters, an additional numer-
ical simulation was performed where we introduced errors in the a priori known information,
i.e. p(x,y) and (xn,yn). The error in the translation parameters can be characterized by the
global-shift-invariant root-mean-squared error (RMSE) of the translations, Δr, defined by

(Δr)2 = min
a,b

1
q

q

∑
n=1

(xn − x̂n−a)2 +(yn − ŷn−b)2 , (14)

where (xn,yn) and (x̂n, ŷn) are the true and estimated object translations, respectively, for the
n-th diversity image. We introduced minimization with respect to global additive constants (a
and b) to account for the fact that the reconstruction is unaffected by a global displacement
of all the fields. In other words, since the reconstruction procedure is not affected by the ab-
solute position of the object (only the translations are important), then addition of a constant to
every displacement (in either x or y) should not increase our measure of the shift error. Upon
minimizing Δr with respect to a and b we find

(Δr)2 = 〈(xn − x̂n)2〉− (〈xn − x̂n〉)2 + 〈(yn − ŷn)2〉− (〈yn − ŷn〉)2 , (15)

where

〈xn〉 =
1
q

q

∑
n=1

xn. (16)
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Fig. 3. Reconstruction results. Amplitude and phase after 500 iterations are shown in (a)
and (b) for the PIE and (d) and (e) for the nonlinear optimization approach. (c) and (f) show
the amplitude of the initial estimate of p(x,y) and the result after nonlinear optimization
respectively. (g) Normalized invariant error metric, E, vs. iteration number. (h) Shift error,
Δr vs. iteration number for the nonlinear optimization algorithm. Phase is shown from −0.4
to 0.4 radians in (b) and (e). A 172×210 portion of the 256×256 array is shown in (a)-(f).

During the reconstruction the aperture was assumed to have a radius of 52 pixels (instead
of 50), as shown in Fig. 3(c). Notice that an error of this nature would occur not only from an
inaccurate measurement of the aperture, but also from an inaccurate knowledge of the distance
from the sample to the detector, since the sampling in object domain scales proportionally to
the propagation distance. Additionally, zero-mean Gaussian-distributed noise was added to the
actual translations of the object, thus yielding a shift error of Δr = 0.8 pixel. The amplitude and
phase of the reconstruction with 500 iterations of the PIE algorithm is shown in Figs. 3(a) and
3(b), respectively. Notice that the quality of the image has degraded significantly.

4. Nonlinear optimization approach

For phase retrieval techniques that use diversity, where the problem is robustly constrained,
nonlinear optimization algorithms have been shown to be a valuable tool for reconstruction.
The principal benefit of this approach is that we can straightforwardly include any form of non-
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ideality that may affect the measurements in our forward model [36] (inaccurate knowledge
of a priori information, finite pixel size, transverse coherence, detector misalignments) and
optimize over inaccurately known parameters as well, provided that the gradients of the error
metric with respect to the unknown parameters can be computed efficiently.

For the problem at hand we define the squared-error metric

ε =
q

∑
n=1

∑
u,v

Wn(u,v)
{[

|F̂n(u,v)|2 + δ
]γ −

[
In(u,v)+ δ

]γ}2
, (17)

where
F̂n = DFT

{
f̂n(x,y)

}
= DFT{ô(x− x̂n,y− ŷn)p̂(x,y)} , (18)

δ is a small constant that prevents problems in the gradient computation where I n is close
to zero, γ is a real-valued constant, and Wn(u,v) is a weighting function that can be used to
emphasize regions with high SNR or set to zero for regions with poor SNR or where no signal
was measured. This can be used, for example, to eliminate the effects of a beam stop or dead
detector pixels by setting Wn(u,v) = 0 for those pixels. For the simulation results shown in this
paper we used a uniform unity weighting function for all pixels.

The gradient of ε with respect to the real and imaginary parts of the object, ô(x,y) =
ôR(x,y)+ iôI(x,y), is obtained by computing the expression

∂ε
∂ ôR(x,y)

+ i
∂ε

∂ ôI(x,y)
= 4

q

∑
n=1

p̂∗(x+ x̂n,y+ ŷn)IDFT

{
Wn

[(
|F̂n|2 + δ

)γ −
(

In + δ
)γ]

× γ
(
|F̂n|2 + δ

)γ−1
F̂n exp

[
i2π

(
ux̂n

M
+

vŷn

N

)]}
, (19)

where IDFT{·} is the inverse discrete Fourier transform.
The gradient with respect to the real and imaginary parts of p̂(x,y) can be computed in a

similar fashion

∂ε
∂ p̂R(x,y)

+ i
∂ε

∂ p̂I(x,y)
= 4

q

∑
n=1

ô∗(x− x̂n,y− ŷn)IDFT

{
Wn

[(
|F̂n|2 + δ

)γ −
(

In + δ
)γ]

× γ
(
|F̂n|2 + δ

)γ−1
F̂n

}
. (20)

Finally, the gradient with respect to the translation shifts (x̂ n, ŷn) is given by

∂ε
∂ x̂n

=
8π
M ∑

u,v
Wn

[(
|F̂n|2 + δ

)γ −
(

In + δ
)γ]

γ
(
|F̂n|2 + δ

)γ−1

× Im

[
F̂∗

n DFT

(
p̂(x,y) IDFT

{
u′Ô(u′,v′)exp

[
−i2π

(
u′x̂n

M
+

v′ŷn

N

)]})]
(21a)

∂ε
∂ ŷn

=
8π
N ∑

u,v
Wn

[(
|F̂n|2 + δ

)γ −
(

In + δ
)γ]

γ
(
|F̂n|2 + δ

)γ−1

× Im

[
F̂∗

n DFT

(
p̂(x,y) IDFT

{
v′Ô(u′,v′)exp

[
−i2π

(
u′x̂n

M
+

v′ŷn

N

)]})]
. (21b)
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The same data used for the reconstruction with the PIE algorithm [with results shown in
Figs. 3(a) and 3(b)] was fed to a conjugate-gradient routine that utilizes the expressions for the
gradients as given by Eqs. (19)-(21). Better results were obtained by starting with a few itera-
tions where we only optimized over ô(x,y) (25 iterations for this reconstruction) and following
with joint estimation of ô(x,y), p̂(x,y) and (x̂n, ŷn) in subsequent iterations. We define one iter-
ation of the algorithm to be every time the gradient needs to be computed. The amplitude and
phase of the object reconstruction after 500 iterations (with γ = 0.5) are shown in Figs. 3(d)
and 3(e) respectively, where a substantial improvement over the PIE reconstruction is evident.
The amplitude of the final estimate of p̂(x,y) is shown in Fig. 3(f). Although for estimation of
the object (and for the PIE), as few as 3 or 4 diversity measurements are typically sufficient
for proper convergence of the algorithm, we observed that as many as 10 measurements are
sometimes necessary to refine an inaccurate initial estimate for the illumination pattern and the
translations. This is to be expected because the illumination pattern is optimized on a point-by-
point basis and the number of free parameters is significantly increased.

Although the error metric given in Eq. (17) is a good measure of convergence to a solution
(for both algorithms) it only measures how good our estimate matches the measured data by
comparing the Fourier intensities. Thus this metric is insensitive to errors in the estimated phase
of the far-field, which is the quantity we attempt to retrieve. In numerical simulations (where
we know the correct far-field phase) we can define a metric which will not only measure the
agreement with the measured data but also indicate convergence to the correct solution. We
define the normalized invariant field RMSE as [37]

E2 =
1
q

q

∑
n=1

[
min

ρn,x′,y′
∑x,y

∣∣ρn f̂n(x− x′,y− y′)− fn(x,y)
∣∣2

∑x,y | fn(x,y)|2
]

. (22)

Notice that this error metric compares the estimated and true complex-valued fields, while
individually minimizing the error over a translation (x ′,y′) and a complex-valued constant ρn

for each diversity field. Because a reconstruction that is translated and multiplied by a constant
is still considered successful, this minimization procedure is important to make E invariant to
these operations.

Computation of E, as given in Eq. (22), requires finding the peak of the cross-correlation of
f̂n and fn to within a small fraction of a pixel [37, 38]. For the results shown in this paper this
fraction was 1/25 of a pixel, computed by means of an efficient algorithm for subpixel image
registration by cross-correlation [38].

Figure 3(g) shows E versus iteration number for the reconstruction with PIE and nonlinear
optimization for the case of inaccurate knowledge of both p̂(x,y) and (x̂ n, ŷn). Notice that while
the PIE stagnates after a few iterations, the nonlinear optimization approach continues making
progress in the reconstruction while refining the estimation of ô(x,y), p̂(x,y) and (x̂ n, ŷn). The
shift error, Δr, is shown versus iteration number in Fig. 3(h). During the first 25 iterations this
error remains constant because we optimize only over ô(x,y), subsequent iterations show a
gradual improvement of the estimation of (x̂ n, ŷn).

An additional advantage of the nonlinear optimization algorithm over the PIE is that in the
latter the measured intensities are imposed sequentially, so that every time the object field esti-
mate ôn(x,y) is updated, noise artifacts are introduced by the n-th diversity image. In contrast,
nonlinear optimization improves the object estimation on every iteration by using all of the
intensity measurements simultaneously, which makes it more robust to noise in the detected
intensity patterns. To demonstrate that effect, we performed a computer simulation with noisy
data, but with perfectly known p(x,y) and (xn,yn).

After normalizing the simulated intensity patterns (used for the reconstruction shown in
Fig. 2) to have about 104 photons on their brightest pixel, we applied poisson distributed noise.
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Fig. 4. Reconstructions from noisy data. Recovered amplitude and phase with the PIE, (a)
and (b) respectively, and the nonlinear optimization algorithm, (c) and (d). (e) Cut through
a measured Fourier intensity pattern (before and after applying noise). (f) Normalized in-
variant error metric, E, vs. iteration number for reconstructions from noisy data. Phase is
shown from −0.4 to 0.4 radians in (b) and (d). A 172×210 portion of the 256×256 array
is shown in (a)-(d).

Figure 4(e) shows a cut through a sample intensity pattern before and after noise was applied.
Notice that after about 20 pixels from the brightest pixel, the intensity falls below an average
of 1 photon/pixel; this results in the loss of high frequency components and we thus expect the
reconstruction to have a reduced resolution.

The amplitude and phase of the reconstructions after 100 iterations are shown in Figs. 4(a)
and 4(b) for the PIE, and Figs. 4(c) and 4(d) for the nonlinear optimization algorithm. Notice
that the artifacts of sequentially imposing the far-field intensity measurements, that are notice-
able in Fig. 4(a), are substantially reduced by the use of nonlinear optimization, as shown in
Fig. 4(c). Figure 4(f) shows that a smaller normalized invariant error metric, E, is obtained with
the nonlinear optimization approach over the PIE.

Although we achieved a reconstruction with reduced noise artifacts with the nonlinear op-
timization algorithm, we found both approaches to be very robust in the presence of noise.
A large amount of noise needed to be introduced before these artifacts were visible in either
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(a) (b)

(c) (d)

Fig. 5. (a) Object o(x,y). (b) Circles indicate the five positions of p(x,y) that were used
for the nonlinear optimization reconstruction. (c) Reconstruction after 100 iterations of
the nonlinear optimization algorithm. (d) Example reconstruction from a single intensity
measurement using phase retrieval with support [dashed line in (b)] and nonnegativity con-
straints. A 165×165 portion of the 256×256 array is shown in (a)-(d).

reconstruction.

5. Object contained within the illumination pattern

Since an important application of x-ray CDI is imaging small specimens, we can encounter
the situation where the aperture or illumination function overfills the entire extent of the ob-
ject. In this situation, no new information lies outside of the support of p(x,y) and diversity
is introduced by translating the object within the extent of p(x,y) and measuring the resulting
far-field intensity patterns. It is then important to investigate whether in this situation translation
diversity would work as well as it does with objects that are larger than the aperture.

Five far-field intensity measurements were simulated by translating the 256× 256 object
(an image of a group of cells [39]), shown in Fig. 5(a), multiplying by the aperture shown in
Fig. 2(c) and computing the intensity of the Fourier transform of the resulting function. The
circles in Fig. 5(b) show the support of p(x,y) for each of the five positions that were used for
reconstruction.

Figure 5(c) shows the reconstructed object after 100 iterations of the nonlinear optimization
algorithm, it is clear that a faithful reconstruction of the original object was achieved. Similar
results were obtained with the PIE algorithm. Through this and other numerical simulations,
we have found that the advantages of using translation diversity (robustness and convergence
speed) are maintained even when the object is small and can be contained within the aperture
(or illumination pattern). This approach, however, requires the illumination beam to be coherent
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over the extent of p(x,y) and not just the object width as would be for a single-measurement
image reconstruction. Faster convergence was observed by translating the object close to the
edge of the aperture.

Figure 5(d) shows an example reconstruction after 1000 iterations of the single-measurement
phase retrieval iterative transform algorithm as outlined for the reconstructions shown in Fig. 1.
Only the far-field intensity produced by the leftmost position of p(x,y), indicated by a dashed
line in Fig. 5(b), was used for this reconstruction. Additional to the support constraint we used
a nonnegativity constraint during the algorithm iterations. In this reconstruction the twin image
dominates, but because the support is centrosymmetric, the reconstruction is susceptible to the
twin-image problem and faint features of the upright image can also be observed.

6. Conclusion

Transverse translation diversity provides a very practical solution to many of the difficulties
that can be encountered with image reconstruction by phase retrieval that is easy to implement
experimentally. In this approach the diversity images are collected by translating the object of
interest with respect to a known illumination pattern. In agreement with previously reported
results [19, 20], we have found that this form of diversity very robustly constrains the image
reconstruction problem and leads to superior reconstructions and a significant increase in con-
vergence speed over phase retrieval using a single intensity measurement.

We have shown that the PIE algorithm is closely related to a steepest descent search with a
spatially variable step length. This algorithm, developed by Faulkner and Rodenburg [19, 20],
leads to very good reconstructions if the illumination, p(x,y), and the translations, (x n,yn), are
accurately known a priori. However, an experimental setup is bound to have some degree of
uncertainty on the characterization of these parameters. It is shown that the reconstruction with
the PIE suffers from severe artifacts when the system parameters are inaccurately known.

We have developed and tested a nonlinear optimization approach to solve the phase retrieval
problem with translation diversity. Using analytical expressions for the gradient of a squared-
error metric, we enable joint optimization over the object, illumination, and translations [ô(x,y),
p̂(x,y) and (x̂n, ŷn) respectively], so that the initial estimate of the parameters is refined as the
reconstruction progresses. We have shown that this optimization approach leads to better recon-
structions when the system is inaccurately characterized. In particular, the ability to optimize
over the object translations, relaxes the required setup stability and accuracy of calibration for
the translating stages in an experimental setup.

Although a single iteration of the nonlinear optimization approach is about 4.5× longer than
an iteration of the PIE [∼ 6× if optimizing over ô(x,y), p̂(x,y) and (x̂ n, ŷn)], the nonlinear op-
timization approach is more robust in the presence of inaccurate system parameters and yields
reduced noise artifacts. For imaging simulations we have observed comparable convergence for
the PIE and nonlinear optimization if the illumination and translations are known accurately.
Furthermore, the number of diversity images required for proper convergence was found to be
increased when the system parameters are known inaccurately and we jointly optimize over
ô(x,y), p̂(x,y) and (x̂n, ŷn).

We have additionally shown that translation diversity also yields very robust reconstructions
when the illumination pattern is larger than the object of interest. In this case the object is trans-
lated within the support of p(x,y) and no additional information about the object is introduced
by the translation.
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