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Efficient subpixel image registration algorithms
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Three new algorithms for 2D translation image registration to within a small fraction of a pixel that use
nonlinear optimization and matrix-multiply discrete Fourier transforms are compared. These algorithms
can achieve registration with an accuracy equivalent to that of the conventional fast Fourier transform up-
sampling approach in a small fraction of the computation time and with greatly reduced memory require-
ments. Their accuracy and computation time are compared for the purpose of evaluating a translation-

invariant error metric. © 2008 Optical Society of America
OCIS codes: 100.2000, 100.3020, 100.5070, 100.5010.

In a wide variety of applications it is often desired to
register two images to within a small fraction of a
pixel for image processing tasks or assessment. In
this work we are primarily concerned with evalua-
tion of reconstructed images by phase retrieval [1,2],
for which a 2D rigid translation is sufficient. Other
applications can also be found, though a more gen-
eral transformation is often required, in processing of
remotely sensed data, biological and medical imag-
ing, and computer vision, with associated tasks rang-
ing from superresolution [3], speckle and noise reduc-
tion [4], motion and change tracking, and
stereoscopic vision [5], among others [6-8].

For the case of just a translation between two im-
ages, the usual technique to address this problem is
to compute an upsampled cross correlation between
the image to register and a reference image, by
means of a fast Fourier transform (FFT), and locat-
ing its peak. The computational burden associated
with such an approach increases as the required ac-
curacy of the registration increases, especially in
terms of memory. For example, registration to within
1/20 of a pixel for 1024 X 1024 images requires com-
putation and storage of a 20,480 X% 20,480 inverse
FFT, which cannot be done currently on most per-
sonal computers.

In this Letter we present three efficient registra-
tion algorithms based on nonlinear optimization and
discrete Fourier transforms (DFTs) that allow accu-
rate registration of two images with large upsam-
pling factors. We test the performance of these algo-
rithms, in terms of accuracy and computational
speed, when used in the computation of a
translation-invariant error metric for image quality.
When compared with the usual FFT approach, these
algorithms have much shorter computation times
and greatly reduced memory requirements.

For the problem of image reconstruction by phase
retrieval, an image g(x,y) of an object f(x,y), can be
reconstructed numerically from measurements of the
magnitude of the Fourier transform of f(x,y) [1,2]. In
this context, a reconstruction g(x,y) is considered
successful even if it has a global coordinate transla-
tion (xg,y,) or is multiplied by an arbitrary constant
a. The quality of the reconstruction must then be as-
sessed through an error metric that is invariant to
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these operations. One such metric is the normalized
root-mean-square error (NRMSE) E between f(x,y)
and g(x,y), defined by [9]
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is the cross correlation of f(x,y) and g(x,y); N and M
are the image dimensions; (*) denotes complex conju-
gation; uppercase letters represent the DFT of their
lowercase counterparts, as given by the relation
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and E? is minimized with respect to « [9].

Thus, evaluation of the NRMSE by Eq. (1) requires
solving the more general problem of subpixel image
registration by locating the peak of the cross correla-
tion rp,(x,y).

The usual FFT approach to finding the cross-
correlation peak to within a fraction, 1/«, of a pixel is
(i) compute F(u,v) and G(u,v), (i) embed the product
F(u,v)G"(u,v) in a larger array of zeros of dimen-
sions («M,«kN), (iii) compute an inverse FFT to ob-
tain an upsampled cross correlation, and (iv) locate
its peak. The computational complexity of the inverse
FFT in this case is O{MN«[logs(«kM) + xlogs(«N) ]} for
N=<M.
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As efficient alternatives to this approach, we devel-
oped three different algorithms that significantly im-
prove performance without sacrificing accuracy. All
three algorithms start with an initial estimate of the
location of the cross-correlation peak obtained by the
FFT method with an upsampling factor of xy=2. This
initial upsampling is used in an effort to select an ap-
propriate starting point for cross correlations that
might have more than one peak of similar magni-
tude.

The first algorithm, first suggested in [9] but not
implemented, refines the initial estimate using a
nonlinear-optimization conjugate-gradient routine
[10] to maximize |rg,(xg,yo)|%. Its partial derivative
with respect to x is
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with a similar expression for the partial derivative
with respect to yo. This algorithm iteratively
searches for the image displacement (x,,y,) that
maximizes rg(xg,yo) and can achieve registration
precision to within an arbitrary fraction of a pixel.

The second algorithm, which we will refer to as the
single-step DFT approach, uses a matrix multiplica-
tion implementation of the 2D DFT [11,12], Eq. (3), to
refine the initial peak location estimate. A 2D FFT is
the most efficient approach when computation of all
points of the upsampled cross correlation is required.
Unfortunately the FFT is restricted to computing the
entire upsampled array, of dimensions (kM , kN), re-
sulting in an enormous waste of resources if we are
interested only in computing an upsampled version
of r4(xg,y0) in a very small neighborhood about the
initial estimate of the peak location. The advantage
of a matrix-multiply DFT results from the fact that
an upsampled version of rg(x,y¢) can be computed
within just such a neighborhood without the need to
zero-pad F(u,v)G (u,v). In the single-step DFT algo-
rithm, an upsampled cross correlation (by a factor )
is computed in a 1.5X1.5 pixel neighborhood (in
units of the original pixels) about the initial estimate.
This operation is implemented by the product of
three matrices with dimensions (1.5«,N), (N,M), and
(M,1.5«). Subpixel registration is achieved by
searching for the peak in the output (1.5«,1.5«) ar-
ray (in units of upsampled pixels). Assuming that for
cases of interest « is smaller than M and N, the algo-
rithm complexity for this upsampling is O(MNk); a
substantial improvement over the FFT upsampling
approach.

As the required registration accuracy is increased,
it proves useful to further reduce the amount of com-
puted samples by taking a two-step matrix-multiply
DFT approach when refining the initial (xq=2)
translation estimate. The two-step DFT algorithm
initially upsamples a 1.5 X 1.5 pixel region by a factor
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k1=kY? about the initial estimate and finds the
cross-correlation peak in that array. In the second
step the peak location is further refined by upsam-
pling a 3/« X 3/ k; smaller region of the original pixel
grid around the new estimate by a full factor of . In
this manner the complexity of the refinement algo-
rithm is reduced to O(MN«2). The precision, 1, for
this translation estimation is the same for the FFT,
single- and two-step DFT approaches.

To assess and compare the performance of each al-
gorithm, a 256 X256 complex-valued image f(x,y)
was corrupted by additive zero-mean circular com-
plex Gaussian noise n(x,y) and translated by (xg,y0)
=(502/21,52/15) pixels to create g(x,y). Results of

the estimation of the invariant NRMSE, E, in this
case are shown in Fig. 1(a) with respect to the true
NRMSE E, where E?=3, |n(x,y)[*/3, |f(x,y)]%. As
the NRMSE approaches zero, the use of high upsam-
pling factors « or the nonlinear optimization routine
becomes crucial to avoid overestimation of E. The ac-
curacy of the estimated translations (x,,y,) was de-
termined by calculating the shift error Ar=[(xy—%)>
+(yo—50)1"2, shown versus « in Fig. 1(b) for E=0.25.
For comparison purposes, Ar obtained with the non-
linear optimization routine, which does not require
specification of k, is shown as well. For this large

value of E=0.25, the estimation £ had diminishing
returns from using upsampling factors higher than
k=10 [Fig. 1(a)], but it is clear from Fig. 1(b) that the
registration accuracy benefits significantly from
larger values of « and even more from the use of the
nonlinear optimization algorithm. Ultimately the
registration accuracy will be limited by noise.
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Fig. 1. (Color online) (a) Invariant NRMSE estimation E

versus E. (b) Error in estimated image shift Ar versus up-
sampling factor « for E=0.25. The dotted curve shows the
noiseless maximum error, 1/(y2«). For the optimization al-
gorithm, Ar=0.0029 pixels (dashed curve).
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A comparison of the computation time required for
each of the three algorithms as obtained on a desktop
computer (AMD Athlon X2 dual core processor
2.21 GHz, 64-bit operating system, 4 Gbytes RAM) is
shown in Fig. 2. The time required to obtain the ini-
tial estimate by the 2X upsampled FFT approach
was included in the time measurement and explicitly
shown for comparison purposes. The initial estimate
was found to dominate the total computation time.
Figure 2(a) shows the computation time for the reg-
istration algorithms with respect to image size for
E=0.22 (and «=25 for the DFT algorithms). The com-
putation time as a function of « for 512X 512 images
with the same amount of noise is shown in Fig. 2(b).
The computation time of the nonlinear optimization
algorithm is shown for comparison; it is independent
of k. The largest array size for which an FFT could be
performed on the same computer is 11,585 % 11,585,
assuming two double-precision complex-valued ar-
rays. This corresponds to a maximum image size of
463 X 463 with k=25 for the traditional FFT upsam-
pling approach, which took 235 s, as compared to
0.78 s with the single-step DFT algorithm. Notice
that attempting registration of 2048 X 2048 images
with k=25 with the FFT upsampling approach would
require over 78 Gbytes of RAM.

The amount of upsampling at which a decrease in
computational time was observed for the two-step
over the single-step DFT approach was found to be
dependent on image size. The intersection occurs ap-
proximately at «=20, 30, and 45 for image sizes of
64 X 64, 256 X256, and 512X512, respectively. Al-
though the nonlinear optimization approach proved
to be the most time consuming in every case, it yields
the highest accuracy, as it is not limited by an up-
sampling factor and can retrieve arbitrary fractional
translation values.
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Fig. 2. (Color online) Computation time with respect to (a)
image size (k=25 for DFT algorithms) and (b) upsampling
factor for 512X 512 images.
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Subpixel image registration by cross correlation is
particularly well-suited for comparison of images re-
constructed by phase retrieval, where a translated
version of the solution that is multiplied by a global
complex factor is considered a successful reconstruc-
tion. Use of the nonlinear optimization or high up-
sampling factors is especially important for accurate
computation of £ in low-noise situations. The accu-
racy of the translation estimation greatly benefits
from large upsampling factors, even in the presence
of a moderate amount of noise. The three algorithms
can be straightforwardly extended to include varia-
tions of the cross-correlation method, such as phase
correlation, and to include window functions to ac-
count for edge effects [13].

Although other methods (e.g., curve fitting the
cross-correlation peak [4] or stochastic sampling ap-
proach [8]) can achieve subpixel image registration
significantly faster, they sacrifice accuracy in the reg-
istration. Our algorithms, as in the FFT upsampling
approach, always use all the information available in
the images to compute the initial estimate and each
point in the upsampled cross-correlation grid, thus
rendering them very robust to noise.

The three new registration refinement algorithms
were shown to achieve subpixel image registration
with the same accuracy as traditional FFT upsam-
pling or better (for the nonlinear optimization algo-
rithm) but with greatly reduced computational time
and memory requirements. Use of these algorithms
makes accurate registration of large images, even to
within a hundredth of a pixel if required, computa-
tionally manageable on a regular desktop computer
and will prove to be a substantial advantage for any
application that requires subpixel image registration.

Portions of this work were presented in [14].
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