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Phase retrieval with Fourier-weighted projections
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In coherent lensless imaging, the presence of image sidelobes, which arise as a natural consequence of the
finite nature of the detector array, was early recognized as a convergence issue for phase retrieval algorithms
that rely on an object support constraint. To mitigate the problem of truncated far-field measurement, a con-
trolled analytic continuation by means of an iterative transform algorithm with weighted projections is pro-
posed and tested. This approach avoids the use of sidelobe reduction windows and achieves full-resolution
reconstructions. © 2008 Optical Society of America
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. INTRODUCTION
oherent lensless imaging by phase retrieval, sometimes
eferred to as coherent diffractive imaging (CDI), is an ac-
ive imaging approach in which an image of a target can
e formed without the use of any imaging optics [1–4].
he object of interest is illuminated by a coherent beam,
nd the backscattered radiation or, alternatively, the ra-
iation transmitted by a semitransparent object, propa-
ates and is collected by an ordinary intensity detector ar-
ay. The measured far-field intensity pattern �F�u��2,
hich is a speckle pattern for the case of a random-phase
bject, can then be processed to yield an image of the tar-
et f�x�, where a phase retrieval algorithm substitutes for
ptics in the image formation process, as illustrated in
ig. 1.
Hardware implementation of CDI is substantially sim-

ler than other lensless imaging techniques, such as digi-
al holography. It does not require a retro-reflector or glint
hat is well separated from the object nor a sharp corner
r slit as required by reconstruction with a boundary-
ave reference [5,6], nor are a mirror and a beam splitter
eeded as for a holographic reconstruction [7], nor is a
requency-stabilized local oscillator like that required for
eterodyne detection needed. Furthermore, the illumina-
ion beam needs to be spatially coherent only over the
idth of the object.
In the proposed configuration, a diffraction-limited im-

ge can be formed with a resolution equivalent to what
ould be obtained by an optical system with an entrance
upil of the same size and shape as the detector array. For
onventional imaging with a lens or mirror, to achieve
ner resolution, both the diameter of the aperture and the
xial length of the system must increase, and the cost and
ifficulty of creating a low-aberration system increases as
ell. CDI offers an alternative that can lead to high-

esolution images with a thin, lightweight measurement
ystem, the axial thickness of which need not increase
ith increasing diameter. Alternatively, this approach can
1084-7529/08/030701-9/$15.00 © 2
e used to reconstruct images when aberration-
ompensated optical elements are not available for the de-
ired wavelength, as is the case of x-ray diffraction imag-
ng [8].

The detected, nonimaged intensity pattern should ide-
lly be Nyquist sampled for intensity. This lateral sam-
ling requirement is only half of that needed for an off-
xis holographic reconstruction, for which one wishes to
void the overlap of the reconstructed image with the au-
ocorrelation term. For this imaging approach to work in
eflection, the coherence length of the illuminating beam
hould be at least twice as long as the object is deep.

The Fourier transform relation is

F�u� = �F�u��exp�i��u�� =� f�x�exp�− i2�u · x�dx, �1�

here x and u are the coordinates in object and Fourier
omains, respectively. The phase retrieval problem con-
idered here is the reconstruction of a complex-valued im-
ge f�x� [or, equivalently, the retrieval of the phase distri-
ution ��u� in Fourier space], given the magnitude �F�u��
f its Fourier transform and some knowledge of the object
upport S, where S represents a set of points outside of
hich the object is known to be zero. Throughout this pa-
er, uppercase letters represent the Fourier transforms of
heir lowercase counterparts. Because the inverse Fourier
ransform of the intensity �F�u��2 is the image autocorre-
ation, this problem can be alternatively stated as recon-
tructing the image from its autocorrelation.

A common technique to solve the image-reconstruction
hase retrieval problem is the use of iterative transform
lgorithms (ITAs), which involve transforming back and
orth between object and Fourier spaces to find a Fourier
air in agreement with both the measured Fourier mag-
itude (the square root of the measured intensity) and the
upport in the object domain.
008 Optical Society of America
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It is important to note that, because in CDI the object is
oherently illuminated, the desired image f�x� is often
omplex valued and a nonnegativity constraint cannot be
sed. Thus the phase retrieval problem becomes much
ore difficult [1,2,9–11], and the use of a technique that is

obust and capable of escaping local minima, e.g., the hy-
rid input–output (HIO) algorithm [12], becomes crucial.
When developing or extending phase retrieval algo-

ithms, it is a common practice to perform numerical tests
o asses their performance. These numerical simulations
f far-field diffraction patterns provide a controlled envi-
onment in which the actual solution is known and the ef-
ects of noise, loose support, or other issues can be studied
n detail. The forward model to simulate the measured
ata may involve taking an image with random phase
tatistics, setting all the values outside of a given object
upport to zero, computing the fast Fourier transform
FFT), taking the square modulus, and using this as the
ar-field measured intensity pattern [1]. A problem that
rises from this numerical simulation is that the Fourier
ata directly computed from an FFT of the finite-support
bject is aliased and presents nonphysical continuous
rap-around effects across the edge of the computational
indow. Because of this, using the entire Fourier array

or reconstruction can yield an image that does not have
ny sidelobes.
In the real world, a coherently illuminated object will

aturally backscatter energy that falls outside the detec-
or array, thus making the field at the detector discon-
inuous at the edge of the computational window. For the
ase of an object with a strong phase, such as a diffusely
cattering random-phase object, the field at the edge of
he detector array is on average as bright as in the center
f the detector, causing the discontinuity to be large. In
ontrast, the object in the numerical simulation is
ampled, so the energy that would fall out of the detector
raps around because of aliasing and reappears inside

he computational window. The values at one edge of the
FT are then continuous with the values at the opposite
dge. The use of this simulated wrap-around intensity
attern for image reconstruction is advantageous for
hase retrieval algorithms, because this far-field data is
ontinuous in wrap-around space and is perfectly consis-
ent with a finite support. This is, however, a nonphysical
ffect that might lead us to think that algorithms perform
etter than they would in a real application.
In the real world, even if the object of interest has a

ard-edge support, any image of it will have sidelobes
hat extend beyond this support due to the finite aperture

ig. 1. (Color online) Setup for coherent lensless imaging by
hase retrieval.
f the optical system. This applies to CDI since it recon-
tructs an image from a truncated measurement of back-
cattered radiation intensity. It should be pointed out that
here is a subtle difference between the images that are
omputationally formed by phase retrieval and the
quivalent physical optical system: while the image that
s formed optically has sidelobes that extend indefinitely,
he reconstructed image sidelobes wrap around due to
ampling in the Fourier domain, thereby causing aliasing
f the sidelobes in the image.

Because any image with a finite object support neces-
arily has a spectrum that extends indefinitely, the ITA is
resented with an ill-posed (inconsistent) problem as it
ttempts to reconstruct an image of an object with a finite
upport from a truncated (finite) Fourier-domain mea-
urement. Moreover, image sidelobes affect the algorithm
erformance because the ITA tries to set to zero the en-
rgy outside the support while the actual solution has
ome energy in that region due to the sidelobes. So the al-
orithms can drift away from the ideal reconstruction
ven if the true solution is used as starting guess.

For a realistic simulation of measured data, it is impor-
ant to extract a portion (e.g., a square of half the size of
he total array in each dimension) of the computed far-
eld intensity after the support constraint has been ap-
lied in object space and use only this portion for phase
etrieval. This makes the simulated data more realistic
y giving Fourier data without wrap around at the edges
nd including image sidelobes. It also substantially re-
uces the success rate of phase retrieval algorithms.
The presence of these image sidelobes was recognized

arly as a source of convergence problems for phase re-
rieval algorithms [4,10,11,13]. A technique used to cir-
umvent this problem is to apply an apodization filter in
he Fourier domain, e.g., multiply by a separable Han-
ing weighting function, to reduce the image sidelobes
nd allow successful reconstructions. This is accom-
lished, however, at the cost of reduced resolution in the
esulting image.

In this paper, we propose a controlled analytic continu-
tion in Fourier space to mitigate the problem of trun-
ated measurement arising from the finite diameter of the
etector array in CDI. By applying a weighted projection
n the Fourier domain, we slightly extrapolate the mea-
ured data outside of the computational window. In this
ay we allow sidelobes to form around our far-field mea-

ured data and alleviate the inconsistency of trying to
ave hard edges in both domains. This is done without
acrificing resolution as when using Fourier apodization
ltering. Use of a weighting function outside of the mea-
urement area that varies smoothly has shown perfor-
ance superior to a previously reported iterative extrapo-

ation technique [14].
It should be stressed that, although this discussion is

entered on hard-edge objects, for which these effects are
ost noticeable, the matter of concern is the nonphysical

ontinuity at the edge of the Fourier computational win-
ow. So to achieve optimal results, it is important to in-
lude the effects of truncated measurement even when
he object has smooth or tapered edges, as occurs, for ex-
mple, in the case of an extended object with an illumina-
ion pattern constraint [4].
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. PHASE RETRIEVAL FOR COMPLEX-
ALUED IMAGES
far-field measured speckle intensity pattern was nu-
erically simulated to test the proposed phase retrieval

lgorithm. A 256�256 complex-valued synthetic-aperture
adar image of Michigan Stadium [15], shown in Fig. 2(a),
as multiplied by the triangular binary object support

hown in Fig. 2(b) to yield the finite-support object shown
n Fig. 2(c). Making the support less than half the width
nd height of the complete array ensures that the Fourier
ntensity pattern will be Nyquist sampled. The shape of
he support was chosen to be noncentrosymmetric to
void the twin image problem and make the reconstruc-
ion easier [13]. The finite-support object was then Fou-
ier transformed, as shown in Fig. 2(d), and the 128
128 central portion of the magnitude, shown in Fig.

(e), was used for the simulated data collected by the de-
ector array.

A diffraction-limited image computed from the 128
128 F�u�, the ideal solution to the phase retrieval prob-

em, is shown in Fig. 2(f). Notice that this image has side-
obes that extend outside of the object support. Due to the
arge dynamic range of the image, the square root of the
mage magnitude is shown throughout this paper. For
etter detail visualization, the 128�128 images are up-
ampled by 2� by embedding the 128�128 complex Fou-
ier transform in a 256�256 array of zeros and comput-
ng the inverse Fourier transform. Only a 160�160
ortion of the upsampled image is displayed.
A hard-edge support can be obtained by flood illuminat-

ng an object that is spatially finite and defines its own
upport. This is consistent with the problem of x-ray im-
ging of small structures or the observation of an airborne
r spaceborne target. A hard-edge support can also be ob-
ained by inserting an aperture mask in the plane of the
bject. The support can be estimated by using a low-
esolution image of the object, for example by means of ei-
her an electronic microscope or a small telescope [10]. Al-
ernatively, an upper bound on the support can be
btained directly from the support of the image autocor-
elation [16]. In this approach a set that includes all pos-
ible object supports that can give rise to the autocorrela-
ion support (excluding their reflections through the
rigin) can be obtained. This results in a support con-
traint that may be too loose to achieve a successful re-
onstruction of a complex-valued image. Algorithms that
daptively improve the support constraint as the itera-
ions progress have been proposed [17]. Throughout this
aper we will use an a priori known tight support con-
traint unless otherwise indicated.

Figure 3 shows a block diagram of the conventional
TA. A starting guess for the object was created by assign-
ng a constant amplitude and random phase distribution
nside the object support. For the kth iteration, the object-
omain function gk�x� is Fourier transformed, giving

Gk�u� = �Gk�u��exp�i�k�u��. �2�

his result is projected onto the measured magnitude
onstraint by imposing the measured magnitude while
eeping the phase unchanged,
Gk��u� = �F�u��exp�i�k�u��, �3�

here �k�u� is the far-field phase estimation for the kth
teration. Then an inverse Fourier transform is per-
ormed, giving gk��x�, and the object support constraint is
sed to form the new gk+1�x�, as described later. The al-
orithm iterates over this cycle until an output that sat-
sfies both sets of constraints is found or the algorithm

ig. 2. (Color online) (a) Original SAR image. (b) Hard-edge ob-
ect support. (c) 256�256 finite-support object and (d) its Fourier

agnitude. Nonphysical wrap-around effects are present in (d)
t the edge of the computational window. (e) 128�128 central
ortion of (d), which is used by the phase retrieval algorithms. (f)
iffraction-limited image magnitude; the 128�128 image was
psampled by 2�, and only a 160�160 pixel inset is displayed.
ue to their large dynamic ranges, the square root of the magni-

ude is displayed in (a), (c), and (f).

Fig. 3. Block diagram of the iterative transform algorithm.
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tagnates, making no further progress. Convergence of
hese algorithms is usually monitored with the object sup-
ort error

E2 =
�
x�S

�g��x��2

�
x

�g��x��2
, �4�

here S is the set of points for which g��x� satisfies the
bject-domain constraints. For the example of Fig. 2(f),
his metric is nonzero for the ideal diffraction-limited im-
ge �E=0.203� due to the presence of sidelobes outside the
upport.

A number of different techniques have been proposed to
se the object constraints; among the most commonly
sed are the HIO [12] and error-reduction versions of the
TA.

The error-reduction algorithm imposes the support con-
traint by setting to zero any output values outside the
upport constraint (for the case of having only a support
onstraint),

gk+1�x� = �gk��x�, if x � S

0 if x � S
, �5�

nd thus represents the projection onto the image con-
traints. It has been proven that this reduces E on every
teration [12], which unfortunately means that escaping
ocal minima is impossible and makes the algorithm
rone to stagnation.
Conversely, the HIO algorithm uses the previous input

o drive the output to zero at points where the support
onstraint is violated,

gk+1�x� = �gk��x�, if x � S

gk�x� − �gk��x�, if x � S
, �6�

here the feedback parameter � is typically assigned a
alue between 0.5 and 0.8. HIO has shown to be success-
ul at escaping local minima and is a valuable tool for re-
onstructing complex-valued images.

The best results are usually obtained by using error re-
uction and HIO in combination, using HIO in most itera-
ions to explore the solution space and periodically per-
orming a few iterations of error reduction to help the
urrent reconstruction settle down. Although this algo-
ithm combination has proven to be robust, it still may
et trapped in stagnation modes that are very persistent
13], especially when applied in its simplest form to
omplex-valued image reconstruction [10].

For this image-reconstruction problem we used an im-
roved version of the ITA that includes an expanding ta-
ering function on the Fourier magnitude [4,10]. In the
rst set of iterations, the measured Fourier magnitude is
ultiplied by a narrow tapering function, so that the

hase retrieval algorithm is reconstructing a low-
esolution image by only retrieving the phase over a small
perture. The tapering over that small aperture helps by
educing the sidelobes in the image. After a solution to
his reduced problem is reached, which occurs many
imes faster than for the fully resolved reconstruction us-
ng the entire aperture, we slightly expand the tapering
unction and continue iterating. This cycle of expanding
nd iterating is continued until the entire computational
indow is included. With this modification, the ITA
radually bootstraps from a solution over a small aper-
ure to successively larger ones, which substantially im-
roves complex-valued image reconstruction [10].
We applied the expanding tapering ITA algorithm to re-

onstruct a fully resolved image from the simulated data
hown in Fig. 2(e). Because the simulation of far-field
ata involves truncating the object FFT, the width of the
mpulse response is increased, and best results were ob-
ained by using a support constraint that was dilated by
ne pixel. Twenty series of 45 HIO iterations with �=0.7
ollowed by 5 of error reduction were used, totaling 1000
TA iterations. The tapering function used was the auto-
orrelation of a circle with diameter equal to a fraction of
he total length of the computational window. For the first
0 iterations this fraction was equal to 0.3, and it was
radually increased by 0.1 after each series of iterations
ntil a value of 1.5 was reached. Subsequent iterations
ere performed without any Fourier tapering function.
Figure 4(a) shows the reconstructed image obtained

rom the steps described above. The reconstruction re-
embles the ideal image shown in Fig. 2(f) but appears
ignificantly noisy due to an imperfect phase estimate.
he far-field phase error, ���u�=�k�u�−��u�, of the re-
onstructed far-field phase distribution, where ��u� is the
rue phase, is shown in Fig. 4(b). Computation of the far-
eld phase error requires knowledge of the true phase
nd is thus available only for numerical simulations. It is
omputed by first registering the reconstruction g�x� to
he diffraction-limited image f�x� to within a small frac-
ion of a pixel [18] (in this case that fraction was 1/200),
emoving the global constant phase between them, and
omputing the difference of their far-field phases.

The fact that the phase error is worst at the edge of the
omputational window is partially explained by the fact
hat the correct far-field phase and amplitude do not wrap
round, which is effectively seen by the FFT as an abrupt
dge in Fourier space, spreading energy throughout im-
ge space. Since we are also imposing a hard-edge sup-
ort constraint on object space, there is no solution that
an satisfy the constraints in both domains. By continu-
lly reinforcing the hard-edge image support constraint,
hich imposes smoothness in the Fourier domain, the

TA smoothes out the phases at the edge of the computa-
ional window even though the measured magnitude is
ot continuous there. Of course this produces an error on
he retrieved image because the phase of the true solution
oes not wrap around and is not smooth across the edge.
his inconsistency significantly reduces the performance
f the reconstruction algorithm. Note, however, that this
s much less of a problem for a real nonnegative object
hose Fourier transform is naturally smaller near the
dge of the computational window.

There are a few techniques that could be used to avoid
his wrapped-around phase problem: (1) The object sup-
ort could be expanded so that it includes a greater frac-
ion of the image sidelobes. Unfortunately, it has been
hown that a tight support constraint is very important
or a successful reconstruction of complex-valued images,
nd expanding the support even by a few pixels greatly
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inders the algorithm performance [9]. Furthermore,
ince the sidelobes extend, at lower amplitudes, through-
ut all of image space, even an expanded support con-
traint will not include all the sidelobes. (2) A hard edge
n Fourier space can be enforced by zero padding the mea-
ured amplitude. This approach was attempted with dis-
ouraging results. Without the opportunity to compensate
he object hard-edge constraint by wrapping around the
hases, the algorithm wandered around in the solution
pace, and the final reconstruction worsened significantly.
3) Perhaps the most effective technique is the application
f a multiplicative weighted low-pass window in Fourier
pace [4,10]. If an appropriate weighting function is cho-
en, the image sidelobes can be greatly reduced without
indering the algorithm performance, but at the cost of a
econstruction having reduced resolution because the re-
onstructed image would be equivalent to that obtained
ith an apodized optical system. This may be understood
s allowing the ITA to wrap around the phase in Fourier
pace while weighting down the areas at the edge of the
omputational window where most of the error will occur.

ig. 4. (Color online) (a) Final reconstruction using the far-field
agnitude shown in Fig. 2(e). (b) Far-field phase error ���u� of

a). (c) Low-pass diffraction-limited image and (d) its Fourier
agnitude. (e) Reconstruction from the low-pass far-field magni-

ude shown in (d). (f) Far-field phase error of (e). Phase is shown
rom −� to � in (b) and (f).
t is emphasized that, since the phases at the edge are in
rror in this reconstruction, boosting up its high spatial
requencies by means of an inverse filter or by replacing
he filtered magnitude with the original one does not fix
he problem of the phase at the edges of the computa-
ional window.

An example using this third technique is shown in Figs.
(c)–4(f). The Fourier transform shown in Fig. 2(e) was
ultiplied by a separable Hanning filter giving the
eighted Fourier transform shown in Fig. 4(d). The cor-

esponding diffraction-limited (low-pass-filtered) image,
hown in Fig. 4(c), has greatly reduced sidelobes, but at
he expense of poorer resolution as compared with the
ully resolved diffraction-limited image [Fig. 2(f)]. Since
he low-pass filtering further increases the size of the im-
ulse response (besides the truncation of the object Fou-
ier transform), the best reconstruction results were ob-
ained by using a support constraint that was dilated by
wo pixels. The reconstruction after 1000 iterations and
ts far-field phase error are shown in Figs. 4(e) and 4(f),
espectively. The phase error is small where the weighted
ourier magnitude is large and is large where the Fourier
eighting is small, so the reconstructed image has mod-
rately high quality.

. IMPROVED PHASE RETRIEVAL WITH
EIGHTED PROJECTIONS

ince an important advantage of the potential application
f CDI, both for x-ray and lensless laser imaging, is the
cquisition of high-resolution images, it would be desir-
ble to use all of the measured far-field intensity without
acrificing resolution with Fourier weighting. To circum-
ent the sidelobe problem, we propose a controlled ex-
rapolation technique based on weighted projections in
ourier space. A weighted projection is achieved by sub-
tituting the Fourier projection step, given in Eq. (3) by
19]

Gk��u� = W�u��F�u��exp�i�k�u�� + �1 − W�u��Gk�u�, �7�

here W�u� is the weighting function. Wherever W�u�
1, the Fourier magnitude constraint is enforced, while a
alue of W�u�=0 leaves both the magnitude and the
hase of Gk�u� unchanged, and intermediate values yield
omething in between. Equation (7) represents a relaxed
rojection onto the Fourier magnitude constraint [20] but
here the relaxation parameter is a function of the spa-

ial frequency coordinates u. Setting the weighting func-
ion to zero has been used as an interpolation technique
or areas where there is no confidence in the measured
ata due to bad or saturated pixels, low signal-to-noise ra-
io (SNR), or where no data were measured [8,19,21].

Chapman et al. successfully reconstructed a three-
imensional image from x-ray diffraction patterns taken
t different sample orientation angles [8]. These diffrac-
ion patterns were processed to yield a Fourier amplitude
ata cube that had small gaps due to large rotation incre-
ents and a large 40° sector of missing data due to a lim-

ted range of sample orientations. In their reconstruction
hey used W�u�=0 to allow the algorithm to interpolate in
he regions of missing data. Upon comparing reconstruc-
ion from several random starting guesses, they observed
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hat the recovered (interpolated) data were inconsistently
econstructed and averaged to zero.

Iterative extrapolation using a support constraint has
een previously described to achieve super-resolution
22]. Gerchberg describes a technique in which a weight

�u�=0 is assigned outside of the measurement area dur-
ng the iteration process, thus allowing the Fourier data
o freely extend outside of the measurement window.
owever, super-resolution is known to be an ill-posed
roblem [23], and it will be more so if we attempt to si-
ultaneously extrapolate to achieve super-resolution and

etrieve the phase distribution.
In general the problem of data extrapolation is less ro-

ust than interpolation, and the computed extrapolation
ecomes less certain as we move farther from the mea-
ured data. Consequently we use a weighting function
hat does not allow the extrapolation to extend freely
cross the entire computational window. Use of a nonbi-
ary weighting function outside of the measurement win-
ow allows the algorithm to slightly extrapolate the mea-
ured data. The purpose is not to achieve true super-
esolution but to extrapolate the Fourier data just enough
o make them consistent with the hard-edge object sup-
ort constraint. This effectively expands the allowed solu-
ion space, so that the diffraction-limited solution is in-
luded without introducing a large number of free
arameters.
For our extrapolation technique, the first step is to em-

ed the measured data (which was previously truncated
n the forward model to avoid the wrap-around edges) in a
arger array of zeros. The weighting function W�u�, shown
n Figs. 5(a) and 6(a), is set to one within the measure-

ent area so that the measured magnitude is enforced. In
he zero-padded region the weight starts at zero at the
dge of the measured magnitude and gradually increases
o unity at the edge of the computational window. This
eighting function allows the algorithm to extend freely
hen close to the measured data and gradually imposes a

ero amplitude when approaching the edge of the compu-
ational window, thus allowing an analytic continuation
f the measured data while preventing wrap-around ef-
ects.

The extrapolation of the measured magnitude allows
he far-field data to be consistent with the hard-edge ob-
ect constraint and improves the reconstruction without
acrificing resolution or hindering the algorithm perfor-
ance. The extent of the zero padding should be chosen

onsidering that, while true sidelobes extend indefinitely,
FTs on a larger array increase both the computation
ime and the memory requirements.

The simulated 128�128 Fourier magnitude data array
as embedded in a 256�256 array of zeros and used to

econstruct the image shown in Fig. 5(c) by using the ITA
ith weighted projections as described by Eq. (7). The
eighting function shown in Fig. 5(a) was used when im-
osing Fourier constraints. A value of W�u�=1 was as-
igned within the 128�128 measurement area, and a
eparable raised-cosine half-period variation was as-
igned in the zero-padded area. A cut through the center
f W�u� is shown in Fig. 6(a). Series of HIO and error re-
uction iterations were implemented with an expanding
ourier taper function as previously described. Again, the
est results were obtained by dilating the object support
y one pixel. Notice that the reconstruction has signifi-
antly reduced sidelobes as compared with the diffraction-
imited image in Fig. 2(f). Figure 5(b) shows the fourth
oot of the magnitude of the extrapolated far field. Notice
hat the extrapolated sidelobes protrude in directions per-
endicular to the edges of the object support. Figure 5(d)
hows the far-field phase error ���u� of the extrapolated
econstruction with respect to the original 256�256 far

ig. 5. (Color online) (a) 256�256 weighting function W�u�. (b)
ourth root of the far-field magnitude of the extrapolated recon-
truction. (c) Reconstruction with the ITA with weighted projec-
ions with the far-field extrapolated data included. (d) 256�256
ar-field phase error ���u� of (c) with respect to object Fourier
ransform [Fig. 2(d)]. (e) 40�80 inset of (d); dashed line shows
he edge of the measurement window. (f) Same as (c) but zeroing
he far-field extrapolated data. (g) Far-field phase error within
he original 128�128 measurement area. Phase is shown from
� to � in (d), (e), and (g).
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eld, the magnitude of which is shown in Fig. 2(d). A
mall subset of the far-field phase error is shown in Fig.
(e). Notice that the retrieved phase is accurate for only a
ew pixels outside of the edge of the measurement window
indicated by a dashed line). This emphasizes the impor-
ance of weighting down the extrapolated amplitude on
he iterative loop as we move farther from the measured
ata. This result also reveals that, although it was not the
ain purpose of this work, the analytic continuation

chieved a small amount of true super-resolution.
For comparison with the diffraction-limited image,

hown in Fig. 2(f), the reconstruction result shown in Fig.
(f) was obtained by using the retrieved phases on the
easurement area and zeroing out the extrapolated data.
he improvement over the reconstruction shown in Fig.

ig. 6. (Color online) (a) Cut through the weighting function
�u� (solid curve) and W	�u� for the weight modulation approach

sed for SNR=5 and 	=0.1 (dashed curve). (b) NRMSE, �, versus
teration number for the fully resolved (with and without use of
xtrapolation by weighted projections) and the low-pass recon-
tructions. (c) Object support error, E, versus iteration number
or the reconstruction with the ITA with extrapolation by
eighted projections. E was computed with and without the far-
eld extrapolated data for the same reconstruction. The support
rror, E=0.139, for the diffraction-limited image is shown for
omparison purposes (horizontal dashed–dotted line).
(a) is evident, and it has significantly higher resolution
han the low-pass reconstruction shown in Fig. 4(e). Fig-
re 5(g) shows the far-field phase error of the reconstruc-
ion within the 128�128 measurement window, which is
ignificantly improved over those shown in Figs. 4(b) and
(f). The retrieved far-field phase error is 0.043 waves
oot mean square (RMS) over the measurement window.

The normalized root mean square error (NRMSE) with
espect to the diffraction-limited image was computed for
very iteration as an objective means of comparison for
he algorithms and to monitor the progress of the recon-
truction. The NRMSE is defined by [24]

�k
2 = min

�,x0 	�
x

�f�x� − �gk�x − x0��2

�
x

�f�x��2 
 , �8�

here � and x0 are a multiplicative constant complex fac-
or and a coordinate translation, respectively. The result
f the minimization procedure described by Eq. (8) can be
omputed by finding the value and location of the peak
alue of the cross correlation of f�x� and gk�x� to within a
mall fraction of a pixel [18,24].

Figure 6(b) shows a comparison of the NRMSE for the
ully resolved, low-pass, and extrapolation reconstruction
esults versus the number of iterations. When computing
he NRMSE of the extrapolation approach, any data out-
ide of the far-field measurement area were ignored. Dis-
arding the extrapolated data is necessary for comparison
ith the diffraction-limited image. Because the
iffraction-limited image has zero energy outside of the
easurement window, any extrapolated data, even if cor-

ect, will increase this error metric.
The NRMSE of the low-pass reconstruction, shown in

ig. 4(e), is computed with respect to the low-pass
iffraction-limited image shown in Fig. 4(c). Notice that
lthough the NRMSE of the low-pass reconstruction is
ower than that obtained with the extrapolation, the
ormer is computed with respect to a low-pass diffraction-
imited image of decreased resolution.

Figure 6(c) shows the support error E, given by Eq. (4),
ersus iteration number for the extrapolated reconstruc-
ion. This error metric is commonly used to evaluate the
rogress of the reconstruction, and unlike the NRMSE
ith respect to the diffraction-limited image, it is avail-
ble for reconstructions where the true phase is not
nown. For this reconstruction, the support error can be
alculated using the current image estimate with or with-
ut the extrapolated data. Both of these calculations were
erformed and are displayed in Fig. 6(c).
During the first 45 HIO iterations of each series of 50

terations, the support error tends to increase as the algo-
ithm explores the solution space. This capability of es-
aping local minima is what makes the HIO a particularly
aluable tool for phase retrieval. As the five error-
eduction iterations are applied at the end of each series,
he support error quickly drops and settles. The support
rror was the same with and without the extrapolated
ata for the first 200 iterations, on account of the nature
f the expanding Fourier tapering approach. Before itera-
ion 200, the Fourier magnitude was multiplied by the au-
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ocorrelation of a circle with diameter equal to one half of
he entire computational window; this tapering function
oes to zero at the edge of the measurement window, so no
xtrapolation is performed up to this point. Upon further
xpansion of the tapering function, the algorithm gradu-
lly begins the extrapolation procedure, and the calcula-
ions with and without inclusion of the extrapolated data
ecome increasingly distinct. The support error of the
iffraction-limited image �E=0.139� is shown as well for
omparison purposes. This error is lower than the one
hat was previously quoted �E=0.203� because the sup-
ort used in the reconstruction was dilated by one pixel.
Without the far-field extrapolated data, as the tapering

unction was removed the support error tended to that of
he diffraction-limited image. With the far-field extrapo-
ated data, as the tapering function was removed the sup-
ort error decreased, with values that are significantly
ower than those of the diffraction-limited image. Notice
n particular that the support error, E, and the NRMSE
re strongly correlated. Thus the support error computed
ncluding the extrapolated data is in this case a valuable

etric to evaluate the reconstruction performance.
To assess the effect of noise on the reconstructed image,

e simulated photon noise in the measured intensity data
then took the square root to obtain the Fourier magni-
ude) and performed 1000 iterations of the ITA with ex-
rapolation by weighted projections as described above.
igures 7(a)–7(c) show final reconstructions for average
NR of 100, 10, and 5, which correspond to an average of
0,000, 100, and 25 photons, respectively, per detector
ixel. As expected, the algorithm performance degrades
s the noise in the measurements increases, although the
mage is still recognizable with only 100 photons per
ixel.
We can use the weighted projections approach to take

dvantage of the knowledge that the SNR is lower for pix-
ls where the measured intensity is low, by applying a
eight modulation within the measurement area that
ill aid the reconstruction for low photon counts.
Having a weighting function that has a slightly lower

alue where the SNR is low can help the reconstruction
y allowing a slight modification of the far-field amplitude
alues. An alternative weighting function of the form

W	�u� = 1 − 	 + 	
�F�u��

maxu�F�u��
�9�

as used to improve the reconstruction for SNR=5,
here �F�u�� is the noisy measured data and 	
1 is a

onstant.
A cut through this weighting function for noisy data,

or the simulated data with SNR=5 and 	=0.1, is shown
n Fig. 6(a). Figure 7(d) shows the reconstruction result
fter 1000 iterations. Although significant improvement
an be seen for SNR=5, the reconstruction does not im-
rove when this is implemented for SNR of 10 or 100. Fig-
re 7(e) shows the NRMSE of the reconstructions from
oisy data as a function of the number of iterations.

. CONCLUSION
n important problem arising in coherent computational

mage reconstruction is the presence of sidelobes that ex-
end beyond the object support in the diffraction-limited
mage. These sidelobes are due to the finite extent of the
etector array, and their inclusion in numerical simula-
ion of data acquisition is crucial to assess the perfor-
ance of reconstruction algorithms. By truncating the
ourier data computed from the ideal object, we make nu-
erical simulations more realistic by including the effects

f the sidelobes. It was found that this truncation signifi-
antly hinders the performance of phase retrieval algo-
ithms because finite data in the Fourier domain is math-
matically inconsistent with the continually reinforced
ard-edged object-support constraint.
This problem has been reasonably well managed in the

ast by applying a suitable low-pass filter in the Fourier
omain, which reduces the sidelobe amplitude but at the
xpense of image resolution. As an alternative, we devel-
ped a controlled analytic continuation (extrapolation) for
se with ITAs by means of weighted projections in Fou-
ier space. The technique allows for better consistency be-
ween the extrapolated Fourier data and the object sup-
ort constraint and was found to significantly improve the

ig. 7. Reconstruction with the ITA with weighted projections
or an average SNR of (a) 100, (b) 10, and (c) 5. (d) Reconstruction
or SNR=5 using the alternative weighting for noisy data �	
0.1�. (e) NRMSE, �, versus iteration number for reconstructions

rom noisy data.
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uality of the reconstruction without sacrificing reso-
ution. We found this approach to be robust in the pres-
nce of noise.

Algorithms that perform analytic continuation by itera-
ive methods have been proposed previously to achieve
uper-resolution [22]. Although super-resolution is not
he goal of the proposed extrapolation, we found that the
xtrapolated data was accurate for just a few pixels from
he measurement window. We would like to emphasize
hat in this work the Fourier data are only slightly ex-
ended to make the object support constraint work better.

Extrapolation by nonbinary weighted projections can
e used whenever a significant portion of the data is miss-
ng. If there are large voids of data in the measured Fou-
ier magnitude, as occurs in the case of three-dimensional
-ray imaging [8], then as one interpolates farther away
rom the measured data, the interpolation becomes less
ertain and errors are likely to increase. In these cases,
se of a weighting function whose magnitude increases as
e move farther from the data should prove to be useful.
Finally, we also used an alternative projection weight

unction with a smaller value where the SNR is low
ithin the far-field measurement area to improve the re-

onstructions for low average SNR. This approach allows
he ITA to slightly change the amplitude of the measured
ata and was found to increase the overall reconstruction
erformance for an average SNR of 5. Although this ap-
roach seems promising for photon-limited applications,
urther research is needed to determine the optimum
eighting function, W	�u�, and coefficient, 	, depending

n the SNR and noise statistics.
Portions of this paper were presented in [25].
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