
Phase retrieval algorithms: a personal tour [Invited]

James R. Fienup
The Institute of Optics, University of Rochester, Rochester, New York 14627, USA

(fienup@optics.rochester.edu)

Received 28 September 2012; accepted 15 October 2012;
posted 4 December 2012 (Doc. ID 181961); published 21 December 2012

This paper gives the reader a personal tour through the field of phase retrieval and related works
that lead up to or cited the paper “Phase Retrieval Algorithms: a Comparison,” [Appl. Opt. 21, 2758
(1982)]. © 2012 Optical Society of America
OCIS codes: 100.5070, 100.3010, 010.7350, 110.0110, 030.0030, 070.0070.

1. Introduction

This is not your usual paper for Applied Optics, being
neither just the latest results in, nor a comprehen-
sive review of, a particular field. Solicited by
Editor-in-Chief Joseph Mait, it is in part a retrospec-
tive paper about a personal journey in the field of
phase retrieval, in the context of the 50th anniver-
sary celebration of Applied Optics. He solicited the
present paper because the paper “Phase Retrieval
Algorithms: a Comparison” (henceforth: “the 1982
Applied Optics paper”) [1] had, as of early 2012, re-
ceived over 1,350 citations (Thompson Reuters’ Web
of Science), making it the fourth most cited paper in
Applied Optics. Its annual rate of citation accelerated
in the last decade (to over 100 per year) rather than
the usual deceleration of citations that occurs for a
paper of its vintage. Section 2 of the present paper
describes the historical events that lead up to the
1982 Applied Optics paper, briefly summarizes the
contents of that paper, and speculates on the reasons
for its high citation rate. Section 3 describes some of
the many fields within optics and other disciplines of
the papers that cited the 1982 Applied Optics paper.
Section 4 mentions some of the significant enhance-
ments to the phase retrieval algorithm, including the
first exposition of the “continuous” version of the
hybrid input–output (HIO) algorithm.

2. How It Came to Be

A. Computer Holography, Kinoforms, and Iterative
Algorithms at Stanford

This is the most personal part of the story. As a grad-
uate student in the Applied Physics Department of
Stanford University, my thesis [2] advisor was Prof.
Joseph W. Goodman in the Electrical Engineering
Department, and he had a grant to study computer-
generated holograms (CGHs) as a way to optically
store data. Storing data optically in the Fourier
domain rather than in the image domain or the bit
domain, as is done now on the CDs and DVDs that
we have all used for music and movies, has some dis-
tinct advantages. Slight motion of a Fourier trans-
form hologram does not change the intensity of the
image, making it tolerant to positioning the readout
beam; small defects in a Fourier hologram cause
added noise in the image rather than the complete
dropping of a bit, making it error-tolerant; and the
illumination of one hologram can create a whole
two-dimensional (2D) array of spots in the image
plane that can be read out simultaneously, making
it a page-oriented as opposed to a bit-oriented mem-
ory. Since I was an amateur photographer and knew
how things worked in the photographic darkroom, I
was given the task of making some CGHs. At the
time (early 1972) I was simply photographing pic-
tures of holograms out of the book Optical Hologra-
phy (see [3], Figs. 19.8 and 19.11), which included a
Lohmann and Paris CGH [4] and a kinoform [5] (at
that time Goodman’s Introduction to Fourier Optics
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[6] had no such pictures, although the present edition
[7] does), trying a variety of photographic positive
and negative materials. Bleaching the developed
transparencies made phase holograms and kino-
forms. I was intrigued by an accidental result: while
processing a batch of Kodak 5254 color film, I acci-
dentally exposed it to room light before development,
and the resulting transparency made a reasonable
kinoform without bleaching. That gave me the idea
of using a red transparency film (for use with a
He–Ne laser) for kinoforms instead of bleaching film,
which was inconsistent and time-consuming. Trying
different materials, I found that Kodachorome II
gave a large phase effect, which one could see by eye
by looking at its surface. Kodachrome II was a mar-
velous material, loved by photographers for its fine
resolution and wonderful color reproduction, and
celebrated in song [8]. To make a pure-phase CGH for
illumination with, say, red He–Ne laser light, one
would expose Kodachrome II to uniform, bright red
light and to a desired pattern of blue/green light so
that after processing it would be transparent to red
light (with little or none of the red-absorbing dye)
and have a desired thickness variation owing to
the blue- and green-absorbing layers. An extra bonus
was that there was a Kodak processing plant next to
campus that could process the film overnight. After
that discovery, I viewed Kodachrome II as a very easy
way to produce kinoforms without the messy, smelly
process of bleaching photographic film or plates.

Kinoforms [5] are CGHs that are phase-only trans-
parencies that operate on-axis, i.e., without a carrier
spatial frequency. They directly impose phase on a
transmitted wavefront by virtue of their spatially
varying thickness or bulk index of refraction (de-
pending on the material). This makes them highly
efficient: 100% of the light can go into the desired or-
der of diffraction since there is only one order, the
zeroth order. A problem with kinoforms, however, is
that they can only impart a phase to the wavefront,
whereas a field that will propagate to form an image
of a desired object will vary in amplitude as well as
phase. The amplitude of the Fourier transform of a
real, nonnegative object is very bright on axis and
very dim elsewhere, making the kinoform approxi-
mation very poor. This problem can be greatly re-
duced by assigning a quasi-random phase pattern to
the object, which will result in a desired hologram
field that is much more uniform, hence better,
although still not uniform enough [9]. Away to adjust
the quasi-random phase of the object to improve the
uniformity of its Fourier transform was by an itera-
tive algorithm invented by Gallagher and Liu [10],
although they later found out [11] that it had been
invented even earlier by the inventors of the kino-
form [12]. What they developed was a way to perform
spectrum shaping, i.e., how to assign a phase to an
object or a field such that its spectrum (the intensity
of its Fourier transform) would approach a desired
distribution. This is an example of a synthesis prob-
lem. They also found out [11] that their algorithm

was very similar to the Gerchberg–Saxton algorithm
for solving a phase retrieval problem in electron mi-
croscopy [13]. These similar algorithms worked as
follows. Suppose a function f �x; y� has Fourier trans-
form F�u; v� (or they are related by some other pro-
pagation integral), and we are given their moduli
(amplitudes) jf �x; y�j and jF�u; v�j, where the moduli
are either the square roots of measured field inten-
sities or the square roots of desired image and holo-
gram intensities. The algorithm is to start with a
guess for the field in the object domain, typically as-
signing random numbers for the phase ϕ�x; y� of
g�x; y� � jf �x; y�j exp�iϕ�x; y��, which has the mea-
sured or desired modulus. Then perform the follow-
ing four steps: (1) transforming that field to the
Fourier domain to give the field G�u; v� �
jG�u; v�j exp�iθ�u; v��, (2) changing that field to give
it the measured or desired modulus in that domain,
making it G0�u; v� � jF�u; v�j exp�iθ�u; v��, (3) then
inverse Fourier transforming that back to the
object domain to give the image g0�x; y� � jg0�x; y�j×
exp�iϕ0�x; y��, and (4) then give it the measured or de-
sired modulus, resulting in a new version of g�x; y� �
jf �x; y�j exp�iϕ�x; y�� where the earlier version of
ϕ�x; y� is replaced by ϕ0�x; y�, completing one itera-
tion. These four steps are repeated until no further
progress is made or for a fixed number of iterations.
This kind of iterative algorithm is widely referred to
as the Gerchberg–Saxton algorithm, even though the
patent [12] came first. (Publications in archival jour-
nals are more accessible than patents.)

The Gallagher and Liu paper (the only one of the
iterative algorithm papers of which I was aware in
late 1973) inspired me to try out their algorithm for
kinoforms, to seek improvements in the algorithm, to
control quantization errors in other CGHs, and to use
it for general spectrum shaping [14]. For reducing
quantization errors in kinoforms and CGHs, how-
ever, I found that, while it would reduce the standard
deviation of the error in the image of a bit pattern,
the maximum error for any single bit could remain
undesirably large. To keep the bit error rate small,
it was important to reduce the errors of those out-
liers. For what follows, we refer to the function g�x; y�
above as the input to an iteration of the algorithm
and g0�x; y� after the inverse Fourier transform as
the output. The key to reducing the error of the out-
liers is the observation that if the input g�x; y� gives
rise to the output g0�x; y�, then if we make a small
change in the input, replacing it by g�x;y��Δg�x;y�,
where

P
x;yjΔg�x;y�j2≪P

x;yjg�x;y�j2, then the ex-
pected value of the new output image is g0�x; y� �
αΔg�x; y� plus some additional noise [14], where α
is a constant that depends on the statistics of
jF�u; v�j and jG�u; v�j. Suppose that an image pixel
that was supposed to be zero was a positive number.
Then to drive it toward zero, one could subtract from
the current input α−1 times the positive number, and
the new output would be closer to zero at that pixel.
This is the input–output point of view. In it, we
think of the three operations—Fourier transforming,
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giving the result the desired Fourier modulus, and
then inverse transforming—as a nonlinear system.
Small enough changes to the input to this nonlinear
system result in closely related small changes to the
output of the system. That is like saying that a non-
linear function can be approximated as linear one
over a small enough range of input values. Note that,
when this is done, the new input no longer has the
desired modulus at that pixel like it does for the
other iterative algorithms, so the new input image
is no longer an estimate of the object.

During the time that this work on iterative algo-
rithms was being done (1973–1974), Prof. Goodman
was at the Institut d’Optique in Orsay, France, on a
year-long sabbatical. After returning, he recom-
mended to me: see if an iterative algorithm like this
can also solve the phase retrieval problem. Re-
constructing astronomical images from intensity
interferometry data [15] or from stellar speckle inter-
ferometry data [16] was of particular interest.

The phase retrieval problem, as found in x-ray
crystallography, astronomical imaging, Fourier
transform spectroscopy and some other fields, is dif-
ferent from that found in electron microscopy or
spectrum shaping. One typically has jF�u; v�j from
measurements, but instead of knowing jf �x; y�j, one
typically has much weaker information, often know-
ing, for example, that f is real-valued and nonnega-
tive, f ≥ 0, and knowing something about the support
of f , i.e., knowing that f must be zero outside of some
region, the support constraint. Reconstructing f from
jF�u; v�j (and some constraints on f , such as support
and nonnegativity) is known as the phase retrieval
problem. It is so named because if the true Fourier
transform is F�u; v� � jF�u; v�j exp�iψ�u; v��, then re-
constructing f is equivalent to retrieving the phase
ψ from jFj (and some constraints on f ), since once
one has ψ, one can simply inverse Fourier transform
F�u; v� � jF�u; v�j exp�iψ�u; v�� in a computer to get
f �x; y�. The phase retrieval problem had been studied
for many years, but no practical algorithm for solving
it had been invented. Furthermore, the prospects
seemed dim because it was understood that in the
case of one-dimensional (1D) functions there were
ordinarily a large number of other functions having
the same Fourier modulus; that is, the solution would
not be unique, as studied for spectroscopy [17] and
astronomy (although just in one dimension) [18].

I attempted using the iterative algorithm, includ-
ing using the input–output approach, for solving the
phase retrieval problem. Unfortunately, at that same
time sufficient funds to use Stanford University’s
mainframe computer were running thin, so it was
suggested that I instead use a new Interdata
minicomputer that was available in the Electrical
Engineering Department for no extra cost. That com-
puter, however, was extremely slow and had very lit-
tle memory as compared with the mainframe. For
that reason the phase retrieval experiments were
limited to 1D functions. Constraints used were a
noise-free Fourier modulus, a support constraint

(the width of the object was assumed known), and
a nonnegativity constraint. The results are shown
in Fig. 2 of [19]. While there was considerable varia-
tion in the various reconstructed images, the general
shape of the object could be discerned, despite the
known lack of uniqueness for this 1D phase problem.
Presumably the nonnegativity constraint helped to
prevent the solutions from being wildly different.
These 1D results were not of sufficient quality for
journal publication, but were included in a subsub-
section of my dissertation [2], which was mostly
about the Referenceless On-Axis Complex Hologram
(ROACH) made with Kodachrome II film, which al-
lowed on-axis amplitude control as well as the phase
control as from a kinoform [20].

B. Early Phase Retrieval at ERIM

My first job after graduating was at what was then
known as the Environmental Research Institute of
Michigan (ERIM), which was an independent, not-
for-profit research institute, which not long before
had been the Willow Run Laboratories of the Univer-
sity of Michigan. It was a wonderful hotbed of ad-
vanced research in various forms of reconnaissance
(radar and optical), holography, and other fields.
(It was bought by Veridian Systems by the time I
departed for academia 27 years later, and has since
become part of General Dynamics—Advanced Infor-
mation Systems.) While initially working on projects
having to do with such things as automatic focusing
for synthetic-aperture radar, optical processing for
radio interferometer data, and diffractive optics, I
applied for internal research and development
(IR&D) funding to continue the phase retrieval work
I had started at Stanford. Such funding was precious
and my proposal was turned down; the topic was
deemed not sufficiently important. Then in the fall
of the following year I attended the OSA Annual
Meeting in Tucson, where a talk by Frieden and
Currie [21] on a phase retrieval algorithm, even
though it only worked for special cases, created a
great deal of excitement in the audience. That event
emboldened me to be more forceful in my request for
IR&D funds, which were granted the next year.

At ERIM I repeated the digital experiments per-
formed at Stanford, but with 2D objects, which our
PDP 11∕45 computer could handle, with the help of
a special processor for performing fast Fourier
transforms (FFTs). I tried several variations on
the input–output algorithm applicable to the image
reconstruction problem in astronomical interfero-
metric imaging that used different ways of modifying
the input image (the fourth step of the iterative
algorithm) based on the current output image and
the previous input image. From the Gerchberg–
Saxton point of view, the next input image would
be the output image, but modified to satisfy the
object-domain constraints of support and nonnega-
tivity, i.e., set the next input image to the output im-
age where the output image satisfies the constraints,
and set it to zero where the output image violates the
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constraints. This is referred to as the “error-
reduction” approach. The “input–output” approach
would be to set the next input image to the previous
input image where the output image satisfies the
constraints, and set it to the previous input image
minus a constant times the output image where
the output image violates the constraints. Another
approach was based on the interesting property of
this nonlinear system, that if one takes an output
of the system and uses that as a new input, then
the new output is the same as the new input: the sys-
tem leaves it unchanged because the new input
already satisfies the Fourier-domain constraint.
Hence, no matter what input produces a given out-
put, one can pretend that the output resulted from
itself as an input. The “output–output” approach,
then, would be to set the next input equal to the out-
put where the output satisfies the constraints, and
set it to the output minus a constant times the output
where the output violates the constraints. I also tried
other variations, and tried mixing and matching
different operations from different approaches to
handling the values where the output image either
satisfies or violates the constraints. This was not the
beautiful mathematics of an Einstein that predicted
what would happen long before an experiment was
performed; this was the trial and error approach that
Edison used to invent a practical light bulb: keep try-
ing different things (guided by physics, mathematics,
and intuition) until you find something that works;
and then refine that. There is beautiful mathematics
surrounding the phase retrieval problem, and it
is centered around the zeros of the Fourier trans-
form analytically extended to the complex plane
[17,18,22,23], for example]; but that beautiful mathe-
matics had yielded no practical phase retrieval algo-
rithms. More than one of the variations I tried
worked to a degree; but the best one, both in the 1D
experiments at Stanford and the 2D experiments at
ERIM, was the “HIO” algorithm. The HIO approach
is to set the next input equal to the output where
the output satisfies the constraints, and set it to the
input minus a constant times the output where the
output violates the constraints; it is a hybrid between
the output–output (first line) and input–output (sec-
ond line) approaches. It is given by Eq. (44) in Ref. [1],
and was described in words in terms of Eq. (2) and
Eq. (5) in Ref. [19],

gk�1�x; y� �
�
g0k�x; y�; �x; y�∉γ
gk�x; y� − βg0k�x; y�; �x; y� ∈ γ

; (1)

where gk�x; y� is the input at the kth iteration, g0k�x; y�
is the output at the kth iteration, β is the feedback
constant, and γ is the set of points for which the out-
put violates the object-domain constraints. For a non-
negativity and support constraint, the condition
�x; y�∉γ can be expressed as �x; y� ∈ S& g0k�x; y� ≥ 0,
where S is the set of points inside the support con-
straint. A value of β somewhere between 0.5 and
1.0, say 0.7, usually works well. I think of the value

of β as being like the force with which one depresses
the accelerator while driving a car up a narrow
mountain road, seeking the top. Press too gently
(e.g., β less than 0.5), and the car will make steady
progress, but too slowly; press too forcefully (e.g., β
greater than 1.0), and the car will progress much
more quickly, but is likely to veer off a cliff and crash.

The 2D results, using support and nonnegativity
constraints in the object domain, were dramatic.
The reconstructed images, while not perfect, were
very good representations of the object, much better
than the 1D case. This implied that the 2D phase pro-
blem was unique—or else I would have been very
lucky for the algorithm to have stumbled onto the so-
lution that matched the object I had started with
rather than one of the other solutions—in contrast
to the nonuniqueness typical of the 1D case. Here
we consider the solution to be unique if it is the same
to within a translation or a 180° rotation, since those
operations do not change the Fourier modulus, and
one still gets the same picture of the object. These
results created substantial interest at the 1977 OSA
Annual Meeting in Toronto [24] and were published
in Optics Letters in 1978 [19], which is the seminal
paper on the approach, although its citation rate is
less than half that of the 1982 Applied Optics paper.

With good image reconstruction results in hand,
searching for external funding immediately com-
menced. One potential sponsor, skeptical of the vera-
city of the results, arranged for B. L. McGlamery to
simulate Fourier modulus data from stellar speckle
interferometry of a photograph of a satellite and send
it to me in a blind test, which was a success, as de-
scribed in [25,26], the latter of which won the SPIE’s
Rudolph Kingslake Medal and Prize for best paper in
Optical Engineering that year. Papers on the effect of
noise [27], results with real stellar speckle interfero-
metry data [28], understanding the uniqueness of
phase retrieval [29], estimating the support of the
object from its autocorrelation function [30], and
on a wide variety of applications of the iterative
transform algorithm [14] were published along with
summary papers on the phase retrieval algorithm
[31,32], all before the 1982 Applied Optics paper.
So what was new in that paper, and why is that paper
so highly cited?

The 1982 Applied Optics paper [1] was an ex-
tended version of a presentation at the 1981 Annual
Meeting of the OSA [33], whose main new point
was that the error-reduction approach (satisfying
constraints in each domain) was equivalent to a
steepest-descent gradient search algorithm with a
particular line-search step size, minimizing an error
metric, which was the sum of squared differences be-
tween the computed Fourier modulus and the mea-
sured one. As pointed out in [1], “The relationship
between a gradient search method and the error-
reduction algorithm for a problem in digital filter de-
sign is discussed in Ref. 13,” i.e., in [34]. [1] also gives
a proof of convergence in the weak sense that the
error could only decrease or stay the same at each
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iteration. Liu and Gallagher [11] showed this for the
case of intensities in image and Fourier domains, but
in [1] it was proven for the general problem of arbi-
trary data and constraints. It also gave the name
“HIO” to the version of the most successful iterative
transform algorithm, but it was the same algorithm
already described in [19], which did not go into that
detail on account of the necessary brevity of Optics
Letters (one researcher using HIO admitted to me
that he did not realize that it was same algorithm
as described in [19]). It further showed that a conju-
gate gradient method was superior to a steepest-
descent method. It also gave an example with helpful
tips to making the algorithm work successfully.
While this was all good, it probably does not deserve
to have more citations than the seminal paper [19].
Some possible explanations for this are as follows.
Perhaps the word “Comparison” in the title made
some people who did not read it thoroughly think
that it was a review paper on phase retrieval algo-
rithms, which it was not meant to be; it was meant
to compare iterative transform algorithms with gra-
dient search algorithms. On the other hand, since the
competing phase retrieval algorithms at the time
were not effective for general objects, it was in effect
comparing all the dominant phase retrieval algo-
rithms. Perhaps it is because it had a great deal of
mathematical detail on the algorithms, although [14]
had quite a bit of detail as well. Perhaps it is because
it discusses both the image reconstruction and the
wavefront sensing applications, although [14] did
this as well. Perhaps a few authors of papers, for
these or some other reasons, referenced [1] but not
[19], and subsequent authors reading these papers
just referenced [1] without reading it in detail to find
out that it was just one of several earlier papers
[14,19,26,27,28,31,32] in which I had written about
the algorithm.

That this group of papers is so highly cited partly
arises from the generality of the Gerchberg–Saxton
algorithm and these derivative algorithms, as was
the main point of [14]:

“This paper discusses an iterative computer method
that can be used to solve a number of problems in op-
tics. This method can be applied to two types of pro-
blems: (1) synthesis of a Fourier transform pair having
desirable properties in both domains, and (2) recon-
struction of an object when only partial information
is available in any one domain.

…

Both the synthesis and the reconstruction problems
can be expressed as follows:

Given a set of constraints placed on an object and an-
other set of constraints placed on its Fourier transform,
find a Fourier transform pair (i.e., an object and its Four-
ier transform) that satisfies both sets of constraints.”

This paper [14] was not just a showing of results
for a few different applications, but was also a call
to arms to the optics community to apply related al-
gorithms to many different problems in different

fields; yet it has received only 1∕5 the citations of
the 1982 Applied Optics paper.

What follows next are brief discussions of some of
the application areas explored in the papers that
cite [1], with what is currently the most important
such application (as measured by citations) saved
for last.

3. Application Areas Citing the 1982
Applied Optics Paper

In this section we mention some of the more popular
applications areas resulting in citations to the 1982
Applied Optics paper. Some of them were already
mentioned above: reconstruction of phase from the
intensity distribution of electron beams in two
planes; image reconstruction for astronomical imag-
ing including from stellar speckle interferometry
data, amplitude interferometry data, and intensity
interferometry data; and various forms of spectrum
shaping for CGHs, and for the reduction of quantiza-
tion noise. In what follows are some additional areas.
This is not meant to be a comprehensive review or
even listing of all these areas, but is merely designed
to give the reader an appreciation for the wide range
of possibilities. The particular references cited are
meant only to be examples with which I was familiar
and which cited the 1982 Applied Optics paper,
rather than necessarily being the first or most note-
worthy papers on the topics.

A. Synthesis Problems

1. Beam Shaping
The iterative algorithm has been used by many for
other applications of spectrum shaping, also known
as beam shaping. Typically one wants a phase-only
transparency or transparencies, to avoid absorption
of light, to produce a desired intensity pattern of
light. An example of beam shaping is the design of
a phase plate that has smoothly varying phase that
produces a high-power laser beam having a uniform
far-field speckle distribution for use in inertial con-
finement fusion [35]. Three-dimensional (3D) beam
shaping has also been performed [36].

2. Optical Encryption
One can design a diffractive optical element that
allows for the encryption of data for security applica-
tions [37]. The problem involves jointly designing
two diffractive elements having quasi-random
phases, with finite pupils, that together reconstruct
an image although neither diffractive element by it-
self gives any hints as to what is in the image.

3. Optical Communication
By designing the temporal phase of a light beam and
transmitting it through a fiber, one can compensate
for the dispersion of the fiber and temporally concen-
trate the energy at the output to give a desired bit
pattern [38].
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4. Antireflection Coatings
One can iteratively design antireflection coatings,
where one wants certain features in a desired spec-
tral response but has constraints on the number of
layers and the indices of refraction of the multilayer
structure [39]. This can be extended to designing
other types of multilayer coatings as well.

B. Reconstruction Problems

1. Wavefront Sensing for Radio Antennas
Bymaking a simple powermeasurement from a point
source on a satellite, one canmeasure the far-field pat-
tern of the telescope. That, combined with knowledge
of the transverse shape of the antenna, allows the
phase (i.e., longitudinal shape of the antenna) to
be reconstructedwithaphase retrievalalgorithm[40],
thereby diagnosing the deformations of the radio dish.

2. Wavefront Sensing for Optics
Similar to the problem for radio dishes, measuring a
point-spread function (PSF) of an optical system, to-
gether with knowledge of the shape of the exit pupil
of the optical system, allows one to determine the
aberrations of the optical system with a phase retrie-
val algorithm. This was done for determining the
aberrations due to atmospheric turbulence [41], for
determining the aberrations of the flawed Hubble
Space Telescope [42], and has been developed for
phasing up the segments of the future James Webb
Space Telescope [43], for optical metrology in the
manufacture of optical surfaces [44], and for measur-
ing x-ray focused beams [45]. With sufficient forms of
measurement diversity, it is possible to reconstruct
the amplitude of the pupil as well as the phase, i.e.,
without any prior knowledge of the pupil [46]. There
are many forms of diversity, mostly modifying the
phase in the exit pupil making the total phase the
unknown phase plus a known phase perturbation.
This makes the phase retrieval algorithms more
robust to noise, to algorithm stagnation, and to the
possibility of nonuniqueness and is important for
applications, such as wavefront sensing for space
telescopes or for optical metrology, where one usually
needs a very accurate, reliable solution. The most
common type of measurement diversity is focus di-
versity, as will be used for the James Webb Space
Telescope [43,47]. Other forms of diversity include
wavelength diversity, piston diversity (for segmented
systems), actuator poking diversity, and transverse
translation diversity (of a structure or an illumina-
tion beam relative to the object) [48,49] and diversity
of field position to assess misalignments [50]. Di-
verse measurements are important under stressing
conditions, such as when dealing with broadband
or undersampled data [50,51] or when reconstructing
amplitude as well as phase [46]. When one measures
two planes of intensity that are very near to one an-
other, such that one can estimate the partial deriva-
tive of the 3D intensity with respect to the axial
coordinate, then one can also use what is commonly
called the transport-of-intensity approach [52].

3. FROG
Frequency-resolved optical gating (FROG) deter-
mines the temporal characteristics of fast (femtose-
cond) laser pulses [53,54]. FROG traces, as a
function of frequency and time delay, are the squared
magnitude of the Fourier transform of a 2D signal,
hence solvable by a phase retrieval algorithm.

4. Blind Deconvolution
When one or more blurred images have unknown
PSFs, then straightforward image restoration by de-
convolution is not possible. Given constraints on both
the object, such as support and nonnegativity and
the PSF (support and nonnegativity again), then one
can use an algorithm of the iterative transform type
or a gradient search algorithm, but with an addi-
tional Wiener filtering step [55].

5. Tomography
Tomographic imaging can suffer frommissing projec-
tions [56], or unknown phases in optical refraction
tomography [57] and diffraction tomography [58],
which iterative algorithms can fill in.

6. Miscellaneous
There are also a number of citing papers in areas out-
side my knowledge base that find phase retrieval
algorithms pertinent, for example for determining
complex Ginzburg–Landau equations [59] and cur-
rent distributions in Josephson junctions [60].

The most fun is Elser’s application of an HIO-like
algorithm to solving the Sudoku problems [61] that
one can find in many daily newspapers. In its most
common form, one must find numbers 1 through 9 to
place in a 9 × 9 grid of squares, separated into 3 × 3
boxes of size 3 × 3 squares each, such that all the
numbers 1 through 9 appear exactly once in each
length-9 row, once in each length-9 column, and once
in each 3 × 3 box. Although there are no Fourier
transforms or phases, the problem does involve solv-
ing for systems of equations, with the constraints
mentioned above as well as the constraints given
by the starting numbers given in some of the squares.

7. Lensless Imaging
Holography is an approach to imaging without
lenses, relying on the interference of a coherent field,
reflected from or transmitted through an object and
propagated to the detector plane, with a reference
beam. If there is no reference beam, however, then
it is still possible to reconstruct an image from a sin-
gle intensity pattern of the propagated field if there
are strong enough constraints on the object, such as a
sharply defined support constraint [62], which can be
natural to the object (a bright object on a dark back-
ground) or by virtue of an illumination pattern [63],
or having a low-resolution image [64]. Alternatively,
by correlating the measured speckle intensity, by the
same process as Hanbury–Brown and Twiss inten-
sity interferometry one can estimate the Fourier
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magnitude of the underlying intensity reflectivity of
the object and with a phase retrieval algorithm
reconstruct an incoherent image of the coherently
illuminated object [65]. Emmett Leith once told me,
in a friendly, joking way, that he called these ap-
proaches “anti-holography,” since they did away with
the need for holography to reconstruct complex-
valued fields in some instances.

Most papers have an initial surge in citations,
followed by a decay. The 1982 Applied Optics paper,
in contrast, had a relatively steady citation rate (15
to 30 per year) for many years, but then starting in
2002 experienced a surge that continues to this day.
This surge was a result of the final application area
described next.

8. X-ray Coherent Diffractive Imaging (CDI)
A particular kind of lensless imaging is to illuminate
a microscopic object with a coherent beam of x rays,
measure the intensity of its far-field diffraction pat-
tern, and reconstruct an image from that data using
a phase retrieval algorithm (employing support and
possibly nonnegativity constraints on the object).
The phase problem in x-ray diffraction has a long his-
tory, and multiple Nobel prizes have been awarded to
those who solved it for crystals. For many years it
was limited to crystals, in which case the x-ray illu-
mination beam needed to be spatially coherent only
over a modest number of unit cells in the crystal. The
1982 Applied Optics paper mentioned x-ray crystal-
lography as an application of the phase retrieval
algorithm. Sayre [66] pointed out the need to sample
the diffraction pattern at intervals twice as fine as
the usual reciprocal-lattice (Bragg reflection) points,
which by themselves give undersampled data. The
ability to avoid the undersampling is trivial when
a small object is not a periodic crystal structure,
since there is data everywhere in the far field, rather
than just at reciprocal-space points. Eventually with
brighter, more-coherent x-ray beams from synchro-
tron radiation and more recently x-ray free-electron
lasers and even “table-top” x-ray sources, it is possi-
ble to obtain bright beams with spatial coherence
widths greater than amicrometer, enabling x-ray dif-
fraction experiments to be performed on noncrystal-
line samples, and the field of x-ray CDI grew [67]. It
was obvious that images could be reconstructed from
this data, since it had been done already with longer
optical wavelengths, both in computer simulation
experiments [62] and with data gathered in the
laboratory, even for complex-valued objects [68].
Nevertheless, it required a successful experiment
with x rays [69] to galvanize the field. Reference [70]
gives an excellent account of the phase retrieval
approach to x-ray CDI.

4. Some Other Algorithm Developments

A number of developments in the understanding of
and in potential improvements in the iterative algo-
rithms have taken place.

Why the HIO algorithm could seemingly climb out
of local minima while the error-reduction algorithm
is often doomed to be trapped in the same local mini-
ma was only partly understood at the beginning.
Later we were able to demonstrate conclusively that
HIO could climb out of such local minima [71],
although it was not guaranteed to do so [72]. Takajo
and Takahashi shed light on the convergence proper-
ties of HIO [73,74,75].

Only briefly explored in the 1982 Applied Optics
paper, the conjugate gradient nonlinear optimization
algorithm was shown by Lane to be effective for im-
age reconstruction [76]. Gradient-search nonlinear
optimization techniques were generally found to
be superior to iterative transform algorithms for
the application of wavefront sensing [42,77,78], pre-
sumably because the bulk of the phase can be repre-
sented by a tens to a few hundreds of basis-function
coefficients, a much smaller search space than the
thousands to hundreds of thousands of unknowns
represented by a point-by-point phase map. The
expression of a phase function by a basis-function ex-
pansion with amoderate number of terms also serves
as a regularization of the phase retrieval problem
and avoids many local minima associated with non-
physical phases [42].

Having a good support constraint greatly improves
the convergence of the algorithms. Approaches to re-
constructing upper bounds on the support of the ob-
ject from the support of its autocorrelation function
(which can be computed from the given Fourier mod-
ulus data) were improved [30,79] and the “shrink-
wrap” technique for refining the support constraint
during the iterations was developed [70].

To avoid algorithm stagnation (being caught in a
local minimum), it helps to “sneak up on the solution”
when solving the phase retrieval problem. For exam-
ple, in the “expanding Fourier modulus” method [64]
the algorithm converges more successfully if one first
reconstructs a low-resolution image from the lower
spatial frequencies, then gradually adds higher spa-
tial frequencies reconstructing a successively finer-
resolution image. For wavefront sensing applica-
tions, it helps to retrieve the large, low-order Zernike
coefficients first and then work up to the higher-
order Zernike coefficients.

The error-reduction algorithm was known to con-
verge in a weak sense, as discussed earlier. Later,
Youla [80] set forth a formalism for a more general
set of problems and the popular method of projec-
tions onto convex sets was developed [81], including
a proof of convergence in a strong sense. The error-
reduction algorithm is indeed a projection onto sets
algorithm, but it was not described in this Hilbert-
space formalism. For phase retrieval, the set of
function having the same Fourier modulus is highly
nonconvex and the error-reduction/projections-
onto-sets algorithm works poorly for it, as described
earlier.

Additional variations on the HIO algorithm
were developed. It was shown that HIO could be
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understood in terms of the projections onto sets the-
ory and was a special case of the Douglas–Rachford
algorithm [82]. The hybrid projection–reflection
(HPR) algorithm [83] is a generalization of the HIO
algorithm with comparable performance. Elser [84]
developed the “difference map” algorithm, which also
has HIO as a special case.

Another variation is a continuous version of the
HIO algorithm (CHIO). It was documented only
briefly in a 1-page conference paper [85] and never
discussed in an archival journal, so a fuller account
is given here. CHIO was designed to overcome a
drawback of HIO. With successive iterations, HIO
has a tendency for the values at a given pixel to os-
cillate somewhat with increasing iteration number.
The conjecture was that the oscillations had to do
with the fact that the input image at the next itera-
tion is a discontinuous function of the output image.
Figure 1 shows the relationship between the next in-
put value, gk�1�x� as a function of the previous input
gk�x� and it output g0k�x� for three different versions
of the iterative algorithm when employing a nonne-
gativity constraint for a point �x; y� inside the support
constraint. In Fig. 1(a) we see that for the error-
reduction algorithm, the next input is zero when
the output value is negative and equal to the output

value where it is nonnegative. In Fig. 1(b) we see the
relationship described in Eq. (1) for HIO. There is a
discontinuous relationship between the value of the
next input gk�1�x; y� as a function of the current
output g0k�x; y�, depending on whether the current
output value is greater than or less than zero. This
discontinuity might make the algorithmmore violent
than what is optimal. The fourth step of the CHIO
algorithm, the update of the input, is illustrated in
Fig. 1(c) and is given by

gk�1�x;y��

8>><
>>:
g0k�x;y�;�x;y�∈S&αgk�x;y�≤g0k�x;y�
gk�x;y�−

�
1−α
α

�
g0k�x;y�;0≤g0k�x;y�≤αgk�x;y�

gk�x;y�−βg0k�x;y�;otherwise
:

(2)

Other forms are possible; for example, by employ-
ing terms of higher order in g0k�x; y�, one can get
curves that have continuous values and continuous
derivatives everywhere. The equation above has
continuous values but not continuous derivatives.

To test the CHIO algorithm, the satellite model
shown in Fig. 2 was used as the object. It was em-
bedded in an array of greater than twice its width
and height to ensure that the Fourier intensity is
sampled better than Nyquist. Figure 3 shows the
magnitude of its Fourier transform, the data from
which we will try to reconstruct the object. Figure 4
shows the support constraint used for this experi-
ment. A better support constraint could be derived
from the support of the autocorrelation of the object
[79], but this much looser support constraint was
chosen purposely to make the reconstruction more
difficult for the algorithms (otherwise the HIO algo-
rithm reconstructed it too easily). Figure 5 shows
images reconstructed from (a) HIO, using β � 0.7,
and (b) CHIO, using β � 0.7 and α � 0.4 after 160
iterations. Note that in both cases the reconstructed
image is the twin image (rotated 108°), which is

Fig. 1. Next input value as a function of the output value for
(a) error-reduction, (b) HIO, and (c) CHIO algorithms. Fig. 2. Object.
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considered to be an acceptable solution. For this
number of iterations the image from HIO is consid-
erably worse than from CHIO, suggesting the super-
iority of CHIO over HIO, although with more
iterations HIO eventually converged as well.

Figure 6 shows the convergence of the two algo-
rithms. The top curves show the object-domain error
metric,

E2
o �

P
�x;y�∈γjg0k�x; y�j2P
�x;y�

jg0k�x; y�j2
; (3)

where γ is the set of points where the object-domain
constraints (of support and nonnegativity) are vio-
lated; this is how well the reconstructed image satis-
fies the data and the constraints, and can be computed
in real-world scenarios as the algorithm proceeds. The
bottom curves show the absolute error [86],

E2
abs � min

�xo;yo�

P
�x;y�jg0k�x − xo; y − yo� − f �x; y�j2P

�x;y�
jf �x; y�j2 ; (4)

which is the normalized mean-squared difference
between the true object, f , and the reconstructed
image. This metric is computed for both the recon-
structed image and its twin, and the smaller of the
two numbers is reported. The minimization over
translations is done to subpixel accuracy [87]. This
metric is known only for computer-simulation experi-
ments for which the true object is known. From these
curves we can see that CHIO converged much more
rapidly than HIO for this particular case; HIO did
eventually converge to the solution after more
iterations.

Fig. 3. Magnitude of the Fourier transform of the object.

Fig. 4. Support constraint.

Fig. 5. Reconstructed images after 160 iterations by (a) HIO and
(b) CHIO.

Fig. 6. (Color online) Convergence as a function of iteration num-
ber for HIO and CHIO. Top: object-domain error metric, bottom:
absolute error (with respect to the true object).
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The fourth step of the HPR algorithm [83, Eq. (21)]
can be written

gk�1�x;y�

�
�g0k�x;y�; �x;y�∈S&gk�x;y�∕�1�β� ≤ g0k�x;y�
gk�x;y�−βg0k�x;y�; otherwise

; (5)

and is illustrated in Fig. 7. From this we see that
HPR is a special case of CHIO with α � 1∕�1� β�.

5. Concluding Remarks

The iterative algorithms invented by Gerchberg and
Saxton and those working in computer holography
were adapted and improved for image reconstruction
and wavefront sensing, including the development
of the HIO algorithm and gradient-based nonlinear
optimization algorithms, and were expanded to
numerous different application areas because of the
ubiquity of Fourier transforms in physics and engi-
neering and the generality and simplicity of the algo-
rithms, allowing them to effectively solve a multitude
of reconstruction and synthesis problems. These areas
and algorithms continue to be actively developed,
with the application to x-ray coherent diffractive
imaging as the current area of most rapid growth. For
more detailed reviews of phase retrieval, the reader is
referred to [88,89] for astronomical imaging, [90] for
electron diffraction, [91] for crystallography, and [92]
for coherent diffractive imaging.

I would like to thank my many collaborators at
ERIM/Veridian Systems and my students and post-
docs at the University of Rochester for making this
such a memorable journey.
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