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Phase retrieval for undersampled
broadband images
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Phase-retrieval algorithms have been used for wave-front sensing to determine the aberrations of an optical
system from system point-spread functions (blurred images of point sources). Previously, computationally ef-
ficient algorithms were developed and applied to data from the Hubble Space Telescope [Appl. Opt. 32, 1737
(1993); Appl. Opt. 32, 1747 (1993)], but those algorithms, which employ analytic expressions for the gradient of
an error metric, required narrow-band light and adequately sampled images. Generalizations of those phase-
retrieval algorithms, which accommodate broadband light, allow for undersampled images, permit fitting of
multiple images simultaneously, and have a flexible description of the aberrations, are described in this study.
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1. INTRODUCTION
The most common way to measure the aberrations of an
optical system is to use an interferometer, but sometimes
circumstances do not permit the use of interferometry.
For example, after the Hubble Space Telescope (HST) was
launched into orbit it was not practical to return it to
Earth for interferometric measurements to determine its
aberrations. Instead, phase-retrieval algorithms were
used to determine its aberrations.1–6 These algorithms
employ one or more images of unresolved points (stars)
taken through the aberrated system and find an aberra-
tion to impose on a computer model of the pupil function
that predicts a blurred image consistent with the mea-
sured data.

In our previous work2,3 we developed computationally
efficient phase-retrieval algorithms that depended on the
ability to propagate a wave front back and forth between
the pupil and the detector plane. This allowed the entire
gradient of an error metric to be computed with just two
propagation calculations, irrespective of the number of
unknown phase parameters. Unfortunately, that ap-
proach required that the images be coherent—that they
be taken through narrow-band spectral filters and that
they be sampled finely enough by the CCD array detector
to Nyquist sample the optical field. This limited us to us-
ing images taken through narrow-band filters of wave-
lengths longer than 500 nm for the HST’s Planetary Cam-
era, so many of the available images from the Planetary
Camera could not be used. There were no spectral filters
transmitting wavelengths longer than the 1.667 mm re-
quired for the Wide-Field Camera, so these algorithms
could use none of the images from the Wide-Field Cam-
era.

In this paper new, generalized phase-retrieval algo-
rithms that formally handle the cases of undersampled
imagery and broadband light are derived. They involve
using a more complicated and more complete forward
model of the image formation process and deriving gradi-
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ents for an error metric consistent with that model. Sec-
tion 2 gives the forward model and the expressions for the
derivatives. Various combinations of phase-error de-
scriptions are possible, including polynomial and point-
by-point (nonparametric) phase, single or multiple images
optimized simultaneously, and phases that can be either
the same or different for different images. Beside recov-
ering phase, it is also possible to optimize over and to re-
construct other system parameters, such as the ampli-
tude in the pupil plane.

Section 3 gives an example of phase retrieval by means
of this approach on computer-simulated data. It also
shows an example of the effect of using an insufficient
number of wavelengths to adequately characterize the
broadband light and indicates the robustness of the solu-
tion to noise. Section 4 gives conclusions.

2. GENERALIZED PHASE-RETRIEVAL
ALGORITHMS
We first formulate a forward model of the aberrated opti-
cal system and detection process, then define an error
metric or cost function that measures the difference be-
tween the predictions of the model and the measured
data, and finally derive an analytic expression for the gra-
dient of the error metric with respect to the unknown pa-
rameters for which we wish to solve. We can then incor-
porate this analysis into a conventional gradient-based
nonlinear optimization algorithm to solve for the un-
known parameters.

A. Forward Model
It is well known that the relationship between the optical
field (wave front) in the pupil plane of a telescope and the
field in the detector (image) plane is basically a Fourier
transform.7 For the HST’s Wide-Field/Planetary Cam-
era, for the highest accuracy it is also necessary to ac-
count for the fact that there is an obscuration at an addi-
tional plane that is not conjugate to the entrance pupil2,3;
1999 Optical Society of America
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however, for simplicity in this paper we will treat only the
case of the Fourier relationship. We may measure mul-
tiple images, and each of them could be at the same, or at
different, focal positions and positions within the field of
view. If there are field-dependent phase errors, then
each image could have different phase errors, although
the difference will usually reside only in the lowest-order
terms. To allow for broadband light, we must explicitly
use a wavelength-dependent model of the wave front.
Using the discrete Fourier transform, computed with a
fast Fourier transform (FFT), a model for the kth wave
front of wavelength l l in the detector plane is

Glk~ p, q ! 5 S l l

lo
D(

mn
Al ~m, n !

3 expF i
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l l
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where l is the index over wavelength; k is the index over
the different images; lo is a reference wavelength; Al is
the aperture function (which scales with wavelength); fok
is the phase error for the kth wave front at wavelength
lo ; and M and N are the array length and width, respec-
tively, over which the FFT is computed. The kth point-
spread function (PSF) at the lth wavelength is the
squared magnitude of Glk( p, q).

A disadvantage of employing Eq. (1) is that it involves
interpolating both the aperture function and the phase
function to resample them differently for each wave-
length. An alternative is the transform
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where
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is the kth optical field in the pupil at the lth wavelength
and Ao(m, n) is the aperture function and fok(m, n) is
the phase error, both for a fixed wavelength lo . In this
version of the transform, one performs the interpolation
by varying, according to wavelength, the length of the
FFT in each of the two dimensions, according to
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and similarly for Nl , where Dx is the sample spacing in
the pupil plane (x 5 mDx), Du is the sample spacing of
Gl k( p, q) in the detector plane (u 5 pDu), zf is the focal
length, and Mo is the FFT length for wavelength lo . To
allow for efficient computations of the FFT, we choose a
set of wavelengths l l such that the FFT lengths Ml and
Nl are highly composite numbers. When dealing with
measured data that is undersampled, we choose a finer
sample spacing Du for Glk( p, q) than for the sample
spacing of the CCD detector array.

We model the phase error as

fok~m, n ! 5 (
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where Zjd(m, n) are the J1 Zernike polynomials (or some
other basis set) that may differ for each of the K wave
fronts, Zjs are the polynomials that are the same for all
the wave fronts, ajd,k and ajs are their respective coeffi-
cients, and fopp(m, n) is a point-by-point (nonparamet-
ric) phase map, needed for higher-order phase errors,
which we assume here is the same for all wave fronts.

We model the detected intensity for the kth PSF as

Ik~ p, q ! 5 grid~ p, q !(
l51

L

Sl uGlk~ p, q !u2 * D~ p, q !,

(6)

where Sl is the spectral response at the lth wavelength
and the convolution with D( p, q) represents the integra-
tion over the area of a CCD pixel. The function
grid( p, q) is the sampling function, an array of delta
functions separated by the detector sample spacings.
The convolution in the equation above is performed at a
finer sampling rate than the detector sample spacing for
the case of undersampled data. Recall that we choose Ml
and Nl to be highly composite numbers by adjusting the
wavelengths l l . We can do this while keeping the same
effective spectral properties by making appropriate ad-
justments in the value of the Sl.

Another possibility would be to allow for the object be-
ing extended, rather than an unresolved point. This case
would be handled by a generalization of the phase-
diversity algorithm.8,9

B. Error Metric
The error metric (or cost function or objective function)
that we choose to minimize is the mean-squared error

E2 5 K21(
k51
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where K is the number of PSF’s used in the optimization,
Fk is the weighted energy of the kth PSF, Wk( p, q) is a
weighting function that allows for reducing or excluding
the effects of bad CCD pixels, uFuk( p, q) is the square
root of the measurement at CCD pixel ( p, q), and ak is a
factor used to normalize the energy of the modeled PSF to
match that of the measured PSF.
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Several other error metrics could be used. A particu-
larly appropriate one would follow from a maximum-
likelihood estimator, which depends on the noise model.

C. Analytic Gradients
To determine the unknown parameters (such as phase er-
rors) by optimizing (minimizing) the error metric over the
set of unknown parameters, it is valuable to have easily
computable, analytic expressions for the partial deriva-
tives of the error metric with respect to the parameters.
Then one can avoid computing the derivatives by finite-
difference methods, which are computationally expensive
when the number of unknown parameters is large.
Previously,2 it was shown how all the partial derivatives
(the entire gradient) can be computed with two propaga-
tions (FFT’s) for the case of monochromatic light. In this
section we generalize that computation to multiple wave-
lengths, multiple PSF’s, and undersampled data.

Let b be a parameter of the pupil-plane optical field,
glk(m, n). Taking the partial derivative of the error
metric with respect to b, we have
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Using the fact that
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where c.c. denotes the complex conjugate of the expres-
sion that precedes it, and
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and changing the order of the three spatial summations,
we find that
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We can think of glk
D(m, n) as the pupil-plane field quan-

tities that tell us how the current estimates of the fields
disagree with the measured data. The most computa-
tionally intensive aspects of computing the KL functions
glk

D(m, n) are the KL propagations (FFT’s) used to com-
pute the detector-plane fields Glk( p, q) and the final KL
FFT’s in Eq. (12). Note that there are only K convolu-
tions with D( p, q), the CCD detector pixel area, and K
cross correlations with D( p, q). Since D( p, q) is non-
zero only over the area of a CCD pixel, the convolution
and the cross correlation with D( p, q) is faster if per-
formed directly rather than by Fourier techniques, and it
is done at the finer sample spacing. The cross correlation
arises from the convolution found in the detection process
because of the reversal of the order of the summations.
Its effect is to spread the information from a single
sample defined on grid( p, q) associated with a particular
CCD pixel over all the samples associated with the area of
that CCD pixel at the finer sample spacing of the com-
puted field Glk( p, q).

Note the similarity between the above expression for
the gradient of the error metric and the expression in Ap-
pendix B of Ref. 3 that includes the effects of jitter. This
similarity arises because the effects of both jitter and
CCD-pixel integration are convolutional. By incorporat-
ing a known jitter spread function into the kernel D( p, q)
we could include jitter in this analysis as well. This new
formulation allows for finite spectral bandwidth and un-
dersampling as well, which was not allowed previously.2,3

The partial derivatives of glk(m, n), the pupil-plane
fields, with respect to a variety of (b) parameters are
given as follows:
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If we were to have a point-by-point phase map that was
different for each PSF, then the partial derivative of g
with respect to it would be like Eq. (15), but with an ad-
ditional product with d (k, k1).

Inserting these relations into the expression for the
partial derivative of the error metric yields the deriva-
tives
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We also find that
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Setting this partial derivative to zero and solving, we find
that the optimum value of the normalization parameter,
for given values of the other parameters, is
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(In practice we hold ak constant for most of our calcula-
tions and update it only occasionally.)

3. COMPUTER SIMULATION EXAMPLE
Our previous algorithms2,3 were limited to using images
from the HST’s Planetary Camera taken through narrow-
band filters of wavelengths greater than 500 nm. To test
the generalized phase-retrieval algorithm, we simulated
PSF’s through the camera’s F555W spectral filter, which
is wideband and (centered at 555 nm) includes significant
spectral content below 500 nm. We simulated the effect
of the filter by using five wavelengths, as given in Table 1.
For simplicity we assume that both the spectral emissiv-
ity of the source star and the spectral sensitivity of the
CCD detectors are independent of wavelength. For each
of two PSF’s, we simulated phase errors across the pupil,
using the values of the Zernike coefficients given in the
first row (labeled True) in Table 2. Both PSF’s have the
same aberrations except for the fourth Zernike polyno-
mial, that of focus. The modified Zernike polynomials
that we used are those given in Table 17 of Ref. 3. The
simulated pupil functions included the obscurations of the
HST’s Optical Telescope Assembly, including the second-
ary mirror, the spiders holding the secondary mirror, and
three circular bolts that hold the primary mirror in place.
For each focal position and at each of the five wave-
lengths, we computed finely sampled monochromatic
PSF’s, using a 256 3 256 FFT. For each focal position,
we added the Sl-weighted intensities of the five mono-
chromatic PSF’s to arrive at a finely sampled polychro-
matic PSF. We then summed over 2 3 2 groups of pixels
to form 1283128 arrays that simulate the effects of spa-
tial integration and undersampling by the CCD elements.
Figure 1 shows the polychromatic PSF’s and examples of
the monochromatic PSF’s. Note that the finest fringe
structures in the monochromatic PSF’s are washed out in
the polychromatic PSF’s. Effects due to diffraction from

Table 1. Simulated Wavelengths and Spectral
Response for WF/PC F555W Filter

l l l (nm) Sl

1 472.5 0.78
2 516.0 0.91
3 562.5 0.82
4 609.0 0.50
5 656.0 0.18
edges of the pupils are suppressed by the combined effects
of the wideband light and the undersampling by the CCD.
Nevertheless, all the large-scale structure in the PSF re-
mains. This structure results from the geometrical-
optics effects of the aberrations in combination with the
gross features of the pupil function. These smoothed
PSF’s still retain the information necessary for successful
phase retrieval.

We performed several phase-retrieval experiments, re-
trieving the phase error jointly from these two simulated
PSF’s.

When we ran the phase-retrieval algorithm, described
above, using the same five wavelengths as in the data
simulation and using the true solution as an initial esti-
mate, it stayed at the true solution.

When we ran the algorithm starting with an incorrect
aberration estimate, it would converge to the true solu-
tion or not, depending on the starting estimate. For ex-
ample, if the focus terms of our initial estimate were both
positive or both negative (i.e., PSF’s on the same side of
the focus rather than on opposite sides of the focus), then
it would not converge. It is easy to see how the algorithm
would prevent the estimate from approaching the true so-
lution in such a case. When the estimated focus term
has the wrong sign, to get to the correct sign the focus es-
timate would have to pass through zero to approach the
correct value. But for these highly out-of-focus PSF’s, a
computed PSF with the correct magnitude but the incor-
rect sign of the focus term will match the measured PSF
better than a tightly focused PSF with zero for the focus
term. Consequently, the algorithm will not allow the fo-
cus term to go near zero, so it cannot pass through zero to
approach the correct sign. Then the algorithm will stag-
nate at a local minimum without finding a solution con-
sistent with the measured data. For this reason the al-
gorithm has a certain capture range: Initial estimates
too far from the true solution may never converge to the
true solution. This can be overcome by use of a number
of initial estimates with different focus terms.

In one series of experiments we used the initial esti-
mate given in the row labeled Initial in Table 2. When
we used the same five wavelengths to simulate the for-
ward imaging problem during the reconstruction, we ob-
tained the values shown in the row labeled Rec. 5 in Table
2. The largest deviation from the true solution in this
case was 0.005 waves, for the focus term of the second
PSF. When we used just a single wavelength, 555 nm, to
simulate the forward imaging problem as though it were
monochromatic during the reconstruction, we obtained
Table 2. Values of Zernike Coefficientsa

Focus A Focus B Astigmatism Coma Triangular Coma Spherical

Case 4A 4B 5 6 7 8 9 10 11

True 1.500 20.750 0 0 0 0.010 20.020 0.010 20.300
Initial 1.200 20.400 0 0 0 0 0 0 20.250
Rec. 5b 1.499 20.755 0.000 0.002 0.001 0.008 20.020 0.010 20.299
Rec. 1c 1.473 20.531 0.002 20.004 0.008 0.021 20.016 0.001 20.314

a Values are given in waves rms at a wavelength of 500 nm.
b Reconstruction with five wavelengths.
c Reconstruction with only one wavelength.
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the values shown in the row labeled Rec. 1 in Table 2.
The largest deviation from the true solution in this case
was 0.224 waves, for the focus term of the second PSF.
In this case the algorithm had stagnated without arriving
at a solution. We would know that the algorithm stag-
nated because the reconstructed PSF’s differed from the
measured PSF’s by substantial amounts. Figure 2 shows
plots of the error metric as a function of iteration number
for both cases. The squared error metric, given by Eq.
(7), was 0.303 for the initial estimate. For the polychro-
matic reconstruction the final error metric, after 300
steps, was 0.0001. For the monochromatic reconstruc-
tion the final error metric, after 400 steps, was 0.034.
Here we define a step to be one evaluation of the error

Fig. 1. Simulated PSF’s. (a) Polychromatic PSF with 11.5
waves (rms) defocus, (b) polychromatic PSF with 20.75 waves
defocus, (c) monochromatic PSF with 11.5 waves defocus, (d)
monochromatic PSF with 20.75 waves defocus.

Fig. 2. Normalized error as a function of iteration number.
Upper curve, calculated with a monochromatic PSF calculation;
lower curve, calculated with a polychromatic PSF calculation.
metric. (There were typically three to six evaluations of
the error metric for each evaluation of the gradient of the
error metric.) This experiment demonstrates the impor-
tance of modeling the PSF’s with their proper spectral
bandwidth.

To demonstrate the effect of low light levels on the ac-
curacy of the aberration estimation, we imposed various
amounts of Poisson noise on the two simulated PSF’s.
Figure 3 shows two extreme cases. Since the error de-
pends on the starting estimate, we chose to determine the
best-case error by starting the algorithm with the true so-
lution and letting the algorithm converge to a noisy solu-
tion that is more consistent with the noisy PSF’s. Figure
4 shows the residual error in the phase estimate as a
function of light level. This error is the square root of the
sum of the squares of the errors in the reconstructed
Zernike polynomial coefficients, in waves. The scale at
the bottom of Fig. 4 is given in terms of both the total

Fig. 3. PSF’s with photon noise. (a), (b) 1,000,000 total photons;
(c), (d) 1000 total photons.

Fig. 4. Residual rms phase error versus light level.
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number of photons per PSF and the number of photons
per pixel. The first PSF is spread over a circle of roughly
70 pixels in diameter, or roughly 5000 pixels in area. For
these highly defocused PSF’s the rms wave-front error
was approximately 0.01 waves when there were just a few
photons per pixel.

4. CONCLUSIONS
In this paper we have generalized previous gradient-
based phase-retrieval algorithms,2,3 employing efficient
calculation of analytic gradients, to the cases of wideband
light, undersampling by the CCD detector, and multiple
PSF’s. The new formulation can also incorporate known
telescope jitter. It has been shown, with a short-
wavelength, wideband simulation of the Hubble Space
Telescope PSF’s, that successful phase retrieval can be
obtained despite wideband light and undersampled
PSF’s. These effects obscure most of the fine fringelike
detail resulting from edge diffraction that is present in
oversampled, monochromatic PSF’s; however, they do not
destroy the gross features predicted by geometrical optics,
which may explain how our algorithm can still succeed.
Another explanation is that the particular aberrations
that we investigated could be described by a modest num-
ber of low-order polynomial coefficients; it would be inter-
esting to see how well this approach works with random,
high-order phase errors. Having reduced the require-
ments for both spatial coherence of the light (by including
the incoherent convolution with the CCD pixels) and tem-
poral coherence (by widening the optical bandwidth), we
now have efficient phase-retrieval algorithms that can op-
erate on light with greatly reduced coherence. The more
complicated forward model of the imaging process re-
quires additional computation, and the number of FFT’s
per iteration is proportional to both the number of wave-
lengths simulated and the number of PSF’s being fitted
simultaneously.

The generalized algorithm was demonstrated to have
improved accuracy and robustness to stagnation on wide-
band data when employing a wideband model as com-
pared with a monochromatic model. Another interesting
question would be, If we had our choice between selecting
a narrow-band filter and a wideband filter through which
to collect the data, which would we choose? If the signal-
to-noise ratio (SNR) were high for the monochromatic
data, then we would expect them to be the better data.
However, it is possible that, in a light-starved regime, the
greater SNR for the wideband images would make them
yield superior results. This might be especially true
when the images are undersampled, since the fine details
of the monochromatic images would be washed out any-
way. One would also like to know what the optimum de-
focus is as a function of spectral bandwidth, aberration
complexity, SNR, and undersampling ratio. From earlier
work with HST data3 we know that some defocusing is
better than none. However, one would be at a disadvan-
tage to defocus to the extent that the SNR per pixel be-
comes too low.10

These algorithms could be further generalized to ac-
commodate more-complicated optical systems, as was
done previously.2,3 Other generalizations could include
the use of other error metrics, such as one arising from
maximum-likelihood estimation, and operation with ex-
tended objects, as is accomplished with phase diversity.8,9
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