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The joint estimation of an object and the aberrations of an incoherent imaging system from multiple images
incorporating phase diversity is investigated. Maximum-likelihood estimation is considered under additive
Gaussian and Poisson noise models. Expressions for an aberration-only objective function that accommodates
an arbitrary number of diversity images and its gradient are derived for the case of a Gaussian noise model.
Expressions for the log-likelihood function and its gradient are presented for the case of Poisson noise. An
expectation-maximization algorithm that enforces a
structed for use in the Poisson noise case.

1. INTRODUCTION

The resolution of an incoherent imaging system is often
limited by phase aberrations. Phase aberrations arise
from a variety of sources including atmospheric turbu-
lence, misaligned optics in phased-array systems, and
improper mirror figure. Knowledge of phase aberra-
tions affords either their correction by using adaptive op-
tics or postdetection deblurring of the imagery. Phase
aberrations can be measured directly. For example, the
Hartmann-Shack wave-front sensor is often used for
measuring atmospheric turbulence. In addition, laser in-
terferometers and lateral-effect detectors have been used
to measure piston and tilt misalignments in phased-array
telescopes.' These techniques require considerable ad-
ditional optical hardware that could also be subject to
misalignments.

Phase aberrations may also be inferred directly from
the image data. For example, phase-retrieval methods
have been used in conjunction with knowledge of the pupil
function to estimate phase aberrations from point-spread
function (PSF) data.2 This approach was recently ap-
plied to images of stars from the Hubble Space Telescope
to diagnose errors in the mirror figure.',4 In many imag-
ing scenarios, however, a point object is not available.
Even for astronomical applications, the assumption of a
point object involves some risk owing to the abundance of
binary stars.

A technique known as phase diversity can also be used
to infer phase aberrations from image data while accom-
modating extended objects or even scenes. The technique
requires the collection of two or more images. One of
these images is the conventional focal-plane image that
has been degraded by the unknown aberrations. Addi-
tional images of the same object are formed by perturbing
these unknown aberrations in some known fashion. For
example, a simple translation of the detector array along
the optical axis further degrades the imagery with a
known amount of defocus. The quadratic phase error in-
troduced by this intentional defocus is an example of one

nonnegativity constraint in a natural fashion is con-

type of phase diversity. The goal is to identify a combina-
tion of object and aberrations that is consistent with all
the collected images, given the known phase diversities.

The phase-diversity technique offers several advantages
over other aberration-sensing methods. The optical hard-
ware required is modest. For example, a simple beam
splitter and a second detector array will permit the simul-
taneous collection of the two images, as illustrated in
Fig. 1. In addition, the method relies heavily on an exter-
nal reference: the object being imaged. Therefore the
method is less susceptible to systematic errors introduced
by optical hardware. The technique also works well for
extended objects. Finally, each photon is used for both
imaging and aberration estimation. This may be prefer-
able to the strategy of diverting valuable photons from the
imagery to a separate wave-front sensor, where they are
used solely for aberration estimation.

The use of phase diversity to infer aberrations when
imaging incoherently illuminated, extended objects was
proposed by Gonsalves.5', Gonsalves derived an objective
function for the estimation of aberration parameters that
requires two collected images but does not explicitly de-
pend on an object estimate. Conventional nonlinear opti-
mization has been applied to this objective function in
simulation experiments that resulted in the accurate es-
timation of aberration parameters. 6 -8 Once these es-
timates are known, an estimate of the system optical
transfer function (OTF) can be constructed, and the ob-
ject can be restored by using, for example, Wiener filter-
ing. Simulation studies have also been performed to
investigate the sensitivity of the phase-diversity method
to additive noise and to certain systematic errors.8 The
ability to operate on image subframes successfully, which
is a fundamental requirement in the application of phase
diversity to scenes, has also been demonstrated.8

In this paper we examine the phase-diversity technique
from the viewpoint of maximum-likelihood estimation.
We also generalize the technique to accommodate an arbi-
trary number of diversity measurements. In Section 2 we
pose the problem of jointly estimating the object and aber-
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Fig. 1. Optical layout of a phase-diversity system. The conven-
tional image is degraded by aberrations in the optical system.
The diversity image is degraded by the combination of the same
aberrations and a known amount of defocus.

Diversity is introduced by including a known phase func-
tion in the generalized pupil function of the system:

Hk (u) = Hk (U)Iexp{i[O(U) + Ok (U)]}, (4)

where is the unknown phase-aberration function that we
would like to estimate, ok is a known phase function asso-
ciated with the kth diversity image, and u E X. Phase
diversity can be created, for example, by intentionally de-
focusing the system by known amounts. Note that in gen-
eral each binary pupil mask H I could also change with the
differing diversity measurements. It is often convenient
to parameterize the unknown phase-aberration function:

rations from diversity data. This problem is considered
under an additive Gaussian noise model in Section 3. We
derive an objective function that does not depend explic-
itly on the object and that yields the maximum-likelihood
estimate (MLE) for the aberration parameters when
maximized. This objective function is shown to be a gen-
eralization of the Gonsalves objective function. An ex-
pression for the gradient of this objective function is also
derived. The computational burden incurred in evaluat-
ing this gradient expression is surprisingly light. In Sec-
tion 4 the same problem is considered under a Poisson
(photon-limited) noise model. In this case an objective
function that does not depend explicitly on the object has
not been found. However, an expression for the gradient
of the log-likelihood function is derived and found to be
computationally tractable. This suggests the use of a
gradient-search technique to maximize the log-likelihood
function over the set of object pixels and aberration pa-
rameters. The gradient of the log likelihood is also given
for the special case in which the object is known a priori
to be pointlike. Finally, we construct an expectation-
maximization (EM) algorithm for the joint estimation of
an object and the aberrations. One advantage of this itera-
tive algorithm is that object estimates are constrained to
be nonnegative in a natural fashion.

2. STATEMENT OF PROBLEM

Frequently, space-invariant incoherent imagery is formed
continuously through a convolution operation and detected
discretely with a detector array. The analysis for our
problem simplifies, however, if we model the object and its
Fourier transform as discrete arrays. Accordingly, the
incoherent image-formation process is approximated by
the following discrete and cyclic convolution:

gk(X) = E f(x )Sk(X - X') (1)
x'EX

-f * S(X), (2)

where f is the object array, sk is a PSF having diversity k,
gk is the kth diversity image, and x is a two-dimensional
coordinate. We treat the object, the PSF's, and the im-
ages as periodic arrays with a period cell of size N x N.
These arrays are completely specified by their functional
values on the set X, where

X = {0,1,...,N - 1} x {0,1,...,N - 1}.

+(u) = E. ajoj(u),
j=1

(5)

where J coefficients in the set {aj} serve as parameters
and {y} is a convenient set of basis functions, such as dis-
cretized Zernike polynomials for a monolithic aperture or
piston and tilt basis functions, used to represent misalign-
ments in a phased-array system. The form and the num-
ber of basis functions employed will depend on the nature
of the aberrations involved. However, there is no loss of
generality in parameterizing the phase function since the
parameters could represent the point-by-point phase val-
ues, in which case the basis functions will be Kronecker
delta functions:

(6)0j (U) = 8U"j-{I U = UjUi-0 u snU

For notational convenience we construct a J-dimensional
aberration parameter vector a with elements al, a 2 , .. ., aj.

The inverse discrete Fourier transform of the general-
ized pupil function gives the impulse-response function
for a coherently illuminated object:

hk (x) = 1 7 Hk (u)exp(i27r(u, x)/N), (7)

where ( , )represents an inner product. The incoherent
PSF is just the squared modulus of the coherent impulse-
response function:

Sk (X) = hk (X) 2. (8)

The PSF depends on the aberration parameters through
Eqs. (4), (5), (7), and (8). The noiseless image gk depends,
in turn, on the PSF through Eq. (1). Of course any de-
tected imagery will contain noise. The relationship be-
tween a noiseless image and the actual detected image dk
will depend on the specific noise mechanisms.

The problem that we address may now be stated.
Given the set of K detected diversity images {dk}, the cor-
responding set of phase-diversity functions {Ok}, and the
binary pupil functions {JHkJ}, estimate the object f and
the aberration parameters a. We consider this problem in
the cases for which the noise is modeled as additive Gauss-
ian and Poisson.

3. ADDITIVE GAUSSIAN NOISE CASE

We now consider the case in which the noise at each detec-
tor element is modeled as an additive, independent, and
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identically distributed random variable with a zero-mean
Gaussian probability density having a variance 0r2. Such
a model would be appropriate, for example, if the domi-
nant noise were thermal noise. In this case each detected
diversity image dk is related to the corresponding noise-
less diversity image gk as follows:

d*(x) = g(X) + nk(x)

= f * S(x) + nk(X),

(9)

(10)

where nk represents the additive noise. Note that, be-
cause of the noise component, dk(x) will be a random vari-
able with a normal probability density:

fdk W; a] = (2o -)2 exp{
[dk(x) - f * Sk (X)]l

2 (

(11)

depends explicitly on the aberration parameters but only
implicitly on the object pixel values.5 The result is a sig-
nificant reduction in the dimension of the parameter
space over which a numerical optimization is performed.
This approach is made possible by the existence of a
closed-form expression for the object that maximizes the
log-likelihood function, given a fixed aberration function:

D1(u)S*(u) + D2(u)S 2*(u)
FM(u) = IS1(u) 2 + S2(U)12 (15)

where an asterisk used as a superscript implies complex
conjugation. Substituting this expression into the log-
likelihood function [Eq. (14)] and dropping the 1/N2 scale
factor yields a new objective function that does not depend
explicitly on an object estimate:

The probability density for realizing an entire data
{d*}, consisting of all the pixels in each detected dive]
image, is given by

K 1
p({dk}; a) = HI 1r 2)1/2

X exp [#d(X) - f * S(X)]2}
exp~~~ 20'n2

The MLE is the estimate that is most likely to I
produced a specific measurement.9 It is found by n
mizing the likelihood function [Eq. (12) evaluated wi
specific measurement] with respect to f and a.
maximization is more easily carried out on a modified
likelihood function:

K
L(f, a) = -I 2 [dk(x) - f * Sk(X)]

k-1 XEX

which is obtained by taking the natural logarithm of
likelihood function and dropping an inconsequential
stant term and scale factor. For convenience we reft
L as the log-likelihood function. Applying discrete
sions of both Parseval's theorem and the convolution t
reml' to Eq. (13), we have that

1 K
L(f a) =- 2 K IDk(u) - F(u)Sk (u)1 2 ,

N 2k-1 uEX

where Dk, F, and Sk are discrete Fourier transforms of
da, f, and S, respectively. Recall that Sk has the role of
an unnormalized OTE"1 Note that maximizing the log-
likelihood function is equivalent to minimizing the sum of
squared differences, which is the error metric used by
Gonsalves.

The application of nonlinear optimization techniques to
the log-likelihood function could be used to estimate the
object and aberration functions simultaneously. This
would require searching over a parameter space of large di-
mension, with object pixel values and aberration parame-
ters serving as the axes of the space. Gonsalves showed,
for the case of K = 2, that the aberration parameters can
be estimated by optimizing an objective function that

LM(a) = _>2, ID1(U)S2(U) - D2 (U)S1(U) 2Lm u) X- IS,,(U)12 + S(u1 2
l set
'sity

(16)

where it has been assumed that Sl(u) and S2(u) do not
simultaneously go to zero for u E X. It is important to
recognize that maximizing the Gonsalves objective func-
tion LM yields the MLE for the aberration parameters ex-
plicitly and the object parameters implicitly, under the

(12) additive Gaussian noise model. Note that the dimension
of the parameter space over which a numerical optimi-
zation is performed is dramatically reduced, since the

iave N x N object parameters have been eliminated.
t a Figure 2 illustrates how a two-dimensional log-likelihood
Tha function would be mapped into a one-dimensional objec-
The tive function by this method. Let the X axis represent an
log- aberration parameter and the Y axis represent an object

parameter. The contour plot represents the log-likelihood
function L, and the goal is to find the coordinates of the

(13) peak value. The locus of points (X, YM), for which YM
maximizes L given X, traces out a curved line that corre-

fthe
con-
er to
ver-
heo-

(14)

Y (object parameter)

ridge

-X(aberration\
parameter)

objective function
'evaluated along ridge

I ~~~Xaberration
( parameter)

Fig. 2. Pictorial representation of the construction of the
aberration-only objective function. The two-dimensional con-
tour plot represents the log-likelihood function. A ridge of the
contour plot is defined by the locus of points (X, YM) for which YM
maximizes L for each value of X. The projection of the ridge
values in the Y direction yields the one-dimensional, aberration-
only objective function.
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sponds to a ridge in the contour plot. Substitution of a
closed-form expression for Y into the expression for L
maps the objective-function values along the ridge into a
function of X alone. The resulting one-dimensional func-
tion is analogous to the Gonsalves objective function.
The maximum of this objective function, corresponding to
the MLE of the aberration parameter, can then be in-
dependently pursued. Once this MLE for the aberration
parameter is found, it can be used in the closed-form ex-
pression for YM to find the MLE for the object parameter.

We now proceed to generalize the Gonsalves objective
function to accommodate an arbitrary number K of diver-
sity measurements. We seek an expression for the par-
ticular F that maximizes L, given in Eq. (14). The real
and imaginary parts of any such FM will satisfy the follow-
ing equations:

a~ O(17)
aFr(u)(

L= 0 u E X, (18)
OFi (u)

where Fr(U) and Fi(u) are the real and the imaginary parts
of F(u), respectively. The solution for Eqs. (17) and (18) is
derived in Appendix A and is given by

K /K
E Dk(u)Sk*(U) ISI(u)12

FM(U) = k-1 1=1
u E X1

, (19)
u E Xo

simultaneously go to zero at selected spatial frequencies.
An alternative form for Eq. (20), also derived in Appen-
dix B, is

K 2

2 Dj(u)Sj*(u) K

LM(a) = j K - : IDk (u) 2
.

> IS,(U)1 2
uEx k1

1=1

(21)

This alternative expression is preferable to Eq. (20) since
its evaluation requires fewer operations. The second term
in Eq. (21) is just a constant, independent of the estimated
aberration parameters. As a result, only the first term
needs to be computed during the optimization sequence.
Furthermore, the numerator of the first term contains a
single summation, whereas the numerator in the first
term of Eq. (20) is an iterated summation.

We may employ nonlinear optimization techniques' to
find aberration parameters that maximize Eq. (21).
Many of these techniques repeatedly compute the gradient
of the objective function. An analytic expression for the
partial derivative of the objective function with respect to
the aberration parameters, given a mild assumption on
the OTF's, is derived in Appendix C and is given by

- Lm = - 422 j ( 0U)IM [ Hk(U)(Z*k * kk)(U) aa,, N rx kk~4i
(22)

where

Sj* )Dk* -Di Sk* 1 ( S112)

where the set of spatial frequencies X has been partitioned
into the subset Xo, the set of spatial frequencies at which
all the OTF's are zero valued, and its complement, X1.
Equation (19) indicates that, when u E Xo, FM can take on
any complex value so long as the Hermitian property of
F or, equivalently, the real-valued property of f is satis-
fied. Any of the set of functions defined by Eq. (19) is a
maximum-likelihood object estimate for a fixed aberra-
tion function. When a single solution is required, addi-
tional constraints must be imposed. For example, the
minimum-norm solution is found by setting FM = 0 for
u E Xo. This estimate has been proposed for use in self-
referenced speckle holography. 2 -4 In Appendix B we
show that substituting any one of the estimates defined by
Eq. (19) into Eq. (14) and dropping the 1/N2 scale factor
yields a generalized objective function,

JDj(u)Sk(u) - Dk(u)Sj(u) 2
K-1 K

LM(a) = - E j=1 k=j+1

UeXi
K

E ISI(U)12
L=1

K

-E Z IDk(u)12 .
uEXO k1

(20)

Note that this expression agrees with Eq. (16) when K = 2.
Furthermore, LM is now well defined even if the OTF's

u E X1

* (23)u E Xo

In these equations the operator Im[-] takes the imaginary
part of the argument, and the summations overj, k, and 1
run from 1 to K. Equation (22) is exact and is therefore
preferable to approximations provided by the method of
finite differences. Moreover, using this analytic gradient
can provide a significant computational savings over such
approximations. Note that the argument of the operator
taking the imaginary part is the same for all aberration
parameters. Therefore this argument needs to be com-
puted only once for a full gradient computation. The com-
putation of the gradient, through the use of Eq. (22), will
be dominated by the 4K fast Fourier transforms (FFT's)
required (2K to construct the Sk and 2K for the con-
volutions), where K is the number of diversity measure-
ments. By comparison, 2K(J + 1) FFT's are required to
approximate the gradient by using the method of one-
sided finite differences, where J is the number of aberra-
tion parameters.

We now consider the form of the gradient in two spe-
cial cases. For the important case of K = 2, Eq. (22)
reduces to

-LM = 42 4(U)ImEH1(U)(ZS2 * H,*)(U)
aaC, N uE*X

- H2(U)(ZS * H2*)(U)] , (24)
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where I(DSl* + D2 S2*)(D2*Sl* - D*S2*)

Z(U) 9 io (IS,12 + 1S212)2

the object and aberration parameters is
K

L(f e) = > E [dk(x) ln g(x) - gk(x)],
k=1 xEX

u E X1 (29)

u E Xo where an inconsequential constant has been dropped.
(25) Consider the second term in Eq. (29):

A second special case arises when we are trying to esti-
mate the point-by-point phase values in the generalized
pupil function. In this case the aberration basis func-
tions will be Kronecker delta functions 5,u., and Eq. (22)
reduces to

4 [MK
-Lm= -- i Hk(U)(Zk * Hk*)(un) (26)

Note that the number of FFT's required for computing
the gradient in this case is the same as that when the
aberration basis functions are polynomials. However, the
projection onto all J basis functions is not needed here.
Hence the point-by-point phase gradient is somewhat
easier to compute.

Using simulation experiments, we have observed that,
when Gaussian noise is added to the imagery, the objective
function LM takes on a rough texture containing many
local maxima.7 The nalve application of gradient-search
methods to this objective function will result in rapid en-
trapment by a local maximum. One strategy for handling
this problem is to use an algorithm, such as simulated an-
nealing, that is designed to find a global maximum in the
presence of local maxima. Alternatively, regularization
techniques can be used to smooth the objective function so
that a gradient-search algorithm would yield a regular-
ized MLE. We have had preliminary experience with two
regularization strategies, and in both cases appropriately
modifying the closed-form expression for the gradient has
been straightforward.

Once an aberration function that maximizes LM is
found, the corresponding OTF's can be constructed, and
the MLE of the object is easily computed with Eq. (19).

4. POISSON NOISE CASE

We now consider the case in which the data are limited by
photon noise. In this case the number of photoconver-
sions that occur at each detector element will be a Poisson-
distributed random variable with a mean value prescribed
by the noiseless image gk given in units of mean detected
photons per pixel. Therefore the probability of detecting
dk photoevents at location x is

Pr[dk(x)] = gk(x)k() exp[-gk(x)] (27)

We assume that the number of photoevents realized will
be statistically independent for each pixel. Therefore the
probability of realizing an entire data set {dk} will be

K

E gk(x)
k=1 xEX

K

= E, I E f(X )Sk( - )
k- xX x EX

K
= E E f(X ) E Sk( - )

k-1 x Ex xEX

K
= E E f(x') E Ih(x - x,)12

k=l xEx xEX

K 1

= x E AXP) 2
k-l xEy 

X E J~k (u)exp - i27r(u, x')/N) 1 2
uEX

(30)

(31)

(32)

(33)

1 K

= >, f(x') > > jHk() 2, (34)XEx N k- uX

where we have used discrete versions of the Fourier shift
theorem and Parseval's theorem.'0 Note that the double
sum over the squared moduli of the pupil functions is just
a constant, independent of the object, the aberration pa-
rameters, and the phase diversity. Let

(35)
K

C- 2 I 2 lHk(U)12.

Equation (34) then becomes
K

2 Z gk ( = C E f(x),
k=i xEX xEX

and the log-likelihood function simplifies to
K

L(f, ) = dk(x)ln g(x) - C 2 f(x)
k=i xEX xEx

K _ _

=2 2 dk(x)ln 2 f(x')sk(x - )
k=l xEX x'EX

(36)

(37)

- C>2 f(x).
xEX

(38)

At this point we could logically follow the same strategy
that we pursued in the Gaussian noise case in an effort to
reduce the dimension of the parameter space over which a
numerical optimization is performed. The desired se-
quence is to solve for the MLE of the object, given fixed
aberration parameters, and substitute this result into the
expression for the log-likelihood function to create an ob-
jective function that does not depend explicitly on the
object estimate. We begin by computing the partial de-
rivative of the log-likelihood function with respect to the
ith pixel value of the object estimate:

a =K a
2 2 dk(x) ln f(x')sk(x - )

af(xi) k=l xEX af(xi) x'Ex

K ({ })d g(X)kx exp[-gk(x)]
Pr({dk}) = H H

It-i1 xX ydx)
(28)

A modified log-likelihood function (henceforth referred to
as the log-likelihood function) for the joint estimation of

'i, 

XEX af(xi)

K dk(x)sk(x - Xi) - C

k-l XEX 2 f(x')sk(x - x)
x'ex

(39)

(40)
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To find the MLE of the object for fixed aberration pa-
rameters we set this partial derivative equal to zero and
attempt to solve for f:

K dk(X)sk(X - Xi)

k=1 eX >2 f(x')Sk(X - X')
x'CX

- C. (41)

Solving Eq. (41) would provide the MLE of the object for
the multiple-kernel deconvolution problem given Poisson
noise. The same problem is encountered in time-of-flight
positron emission topography.'6 Unfortunately, a closed-
form solution for f has not been found, and hope for the
derivation of an aberration-only objective function is di-
minished. Note, however, that the partial derivative with
respect to each object pixel [Eq. (40)] can be found for all
object pixels with a reasonable number of FFT's (3K +
1 FFT's, assuming that the OTF's are precomputed).
This computation would be unmanageable if the method of
finite differences were used.

Gradient-Search Algorithms
The tractability of the computation implied by Eq. (40)
suggests the use of a gradient-search technique in maxi-
mizing the log-likelihood function over object pixels and
aberration parameters simultaneously. Recall that the
complete gradient also requires partial derivatives of the
log-likelihood function with respect to the aberration pa-
rameters. The expression for these partial derivatives is
derived in Appendix D and is given here as

a FK 1
-L = -22 n(U)Im[ Hk(u) 2E h*(x')
aa, uEX k l N .,.x

X( exp(i2 ( ')/N) 2 dk(x) fX - x') 1
EX >E f(x")Sk(X - X")

x"E-X

(42)

Careful scrutiny of Eq. (42) shows that the number of
FFT's (6K + 1) required for computing the entire set of
partial derivatives {aL/aan} is reasonable and does not de-
pend on the number of parameters J Because there is sig-
nificant overlap in the computation of aL/af (xi) and aL/aa,
the total number of FFT's required for computation of the
gradient of the log-likelihood function is only 7K + 1.

Having derived expressions for the partial derivatives of
the log-likelihood function with respect to object pixels
and aberration parameters, we are now in a position to
suggest a strategy for the joint estimation of object and
aberration parameters. These partial derivatives consti-
tute a gradient of the log-likelihood function in a parame-
ter space of dimension N X N X J The computation of
this analytic gradient requires multiple FFT's but is man-
ageable, unlike a finite-difference computation. Any of a
variety of unconstrained and constrained nonlinear opti-
mization algorithms that utilize the gradient can be em-
ployed to search iteratively for a global maximum.' 5

Constrained optimization methods allow us to enforce the
nonnegativity property of incoherently illuminated objects
in our estimate. Perhaps a good initial estimate would be
the solution under the Gaussian noise model. If it can be
found, the global maximum will provide the MLE for both
the object pixel values and the aberration parameters.

The log-likelihood function can be modified to accom-
modate faulty detector elements:

K

L (, ) = 2 2 [dk (x)ln g (X) - g(X)] Wk (X) (43)
k=1 xEX

where Wk is a binary window function with a value of
unity for the detector elements that are functioning and
zero for those that are faulty, in the kth detector array.
This consideration would be important, for example, when
phase-diversity methods are applied to the Hubble phase-
estimation problem, for which selected detector elements
are known to have failed. The partial derivative of this
log-likelihood function with respect to the ith pixel value
is readily shown to be

a K [dk(x)

af(xi) >2 >2k LgA kx - 1 Wk(X)Sk(X - Xi). (44)

Similarly, the partial derivative with respect to the nth ab-
beration parameter is found to be

K
L.= -2 E n (U)Im 2 Hk(U) 2 2E h*(x')

aan uEx k-1 N .'Ex

X exp(i2T(u, x')/N)>2 [dk(X) - 1]WkXvfX - X9}. (45)

It is also worth considering the special case in which
the object is known a priori to be unresolved or pointlike.
This case has been important to researchers seeking to
estimate the aberrations present in the Hubble Space
Telescope from Hubble images of stars.3 4 When the
point-object assumption is valid, the object is known, and
there remain only aberration parameters to estimate. It
is straightforward to show that the log-likelihood function
is insensitive to shifts in object position. Therefore there
is no loss of generality in modeling the point object as a
weighted Kronecker delta located at the origin:

f(x) = a8(x), (46)

where

^ {1 x = (0, 0)
0 otherwise (7

Given this model, Eq. (42) quickly simplifies to

a FK 1 hk*(xI)dk(XI)
-L 2 _n(tU)ImL Hk(u) > s(x')
aan UCX k=1 N x'EX Sk(X )

X exp(i2iT(u, X')/N)]* (48)

If we define

___________X~ 1 hk*(x)dk(x)
Lhk*xdk(X) N 2 E Sk(X) exp(i2T(u, x)/N),

(49)

then Eq. (48) assumes the succinct form

L = -22 T f(U)IM E Hk(u)9;u 11]3

aa,, uEX k=1 S(X)

(50)
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This expression gives the partial derivative of the log-
likelihood function with respect to aberration parameters
for a point object given multiple diversity images corrupted
by Poisson noise. A gradient evaluation requires only
2K FFT's, again suggesting the use of a gradient-search
algorithm. Care must be used when invoking the point-
object assumption. For example, if this assumption were
unwittingly applied to images of a binary star, the result-
ing aberration estimates could be significantly biased.

Expectation-Maximization Algorithm
In this section we construct an EM algorithm as an alter-
native means to find the MLE of the object and aberra-
tions in the case of Poisson noise. The use of an EM
algorithm is suggested by similarities between our prob-
lem and time-of-flight positron emission tomography, in
which EM algorithms have been applied with considerable
success. 6,7 Kaufman has shown that there is a close re-
lationship between the EM algorithm used in positron
emission tomography and gradient-search methods.8
One potential advantage of the proposed EM algorithm
over a constrained gradient-search algorithm is that the
nonnegativity constraint is enforced in a natural fashion.
The EM algorithm is iterative, producing a sequence of
estimates of the object and aberration parameters with
the property that the log likelihood of these estimates is a
nondecreasing function of the iteration number. General
descriptions of the EM algorithm and its convergence
properties are found in Refs. 19 and 20.

The derivation of our EM algorithm begins with the
construction of an abstract statistical model. Recall that
the measured data dk(x) indexed by k and x consist of in-
dependent Poisson random variables, each with the ex-
pected value

gk(X) = 2 f(X')Sk(X - x
x'Ex

(51)

Now consider a collection of random variables dk(x I x') in-
dexed by k, x, and x', and let them be independent Poisson-
distributed random variables, each with the expected value

gk(XI X ) = f(x')Sk(X - X') . (52)

This expected value can be interpreted as the mean num-
ber of photons detected at pixel x, originating from the ob-
ject at pixel x'. Any sum of the random variables dk (x I x')
will produce a new random variable that is Poisson dis-
tributed with an expected value that is obtained by appro-
priately summing the gk (X I x'), as can be readily verified
by using characteristic functions. For example, the ran-
dom variables indexed by k and x,

2 ak (X 4', (53)
x'EX

will be independent and Poisson distributed, with expected
values equal to

E Rk (XI X') = 2 f(x')Sk(X - X')
X'EX X'Ex

-gi,(X).

(54)

(56)

Therefore a model that is statistically consistent with our
measured data results from treating the collected data as

dk(x) = E dk(x x ') -
x'Ex

(56)

Using terminology associated with the EM algorithm, we
refer to the random variables dk(x x') as the complete
data and the actual collected data dk(x) as the incomplete
data. The choice of the abstract data set dk(x I x') as the
complete data is somewhat arbitrary, and other choices
could lead to alternative algorithms.

The EM algorithm is a prescription for updating the set
of parameter estimates {f (r), a (r)} to the new set of parame-
ter estimates {f(r+), (r+l)} having the property that

(57)

where the superscripts in parentheses represent the itera-
tion numbers. The prescription requires an expression
for the (modified) log-likelihood function associated with
the complete data Ld. For our problem this expression is
found [by analogy with Eq. (29)] to be

K
L~d(f, a) 2 2 E {ak(X XI )

k-i xEx x'EX

X ln[f(x')Sk(X - X')] - f(x')sk(x - x)} (58)
K

= >2[> >2d*xk I x') n f(x')
x'EX k=1 xEX

K
+ E 2 2 (x I x)ln Sk(X - X')

k-1 xEx x'EX
K

- 2 f(x')>2 2 Sk(X - x')
x'Gx k-i XEX

K

= 2 2 Ea(xlx') lnfx'
x'ExL k-1 XEX

K

+ E 2 I (X I x - x') In Sk(X )
k-l x'Ex Ca X

K
- 2 f(x')2 2 sk(x),

X'Ex k-1 XEX

(59)

(60)

where inconsequential terms have been dropped. The ex-
pectation step (or E step) consists of evaluating the condi-
tional expectation of Led, given the measured data dk and
assuming that the parameters governing the complete
data are equal to {f(r), a(r)}. This conditional expectation
is defined as

Q[t a f(r) a(r)] E(r)[Lcd(, CZ) I {d}], (61)

where E(r)[.] denotes an expectation in which the parame-
ters associated with the complete data take on the values
{f(r) a(r)}. The maximization step (or M step) of the EM
algorithm consists of assigning to {f(r+l), a (r+i)} the values
of {f, a} that maximize Q subject to any constraints that
may exist. As derived in Appendix E, the resulting itera-
tions are

f(r+l)(X,) = f(rx) K 2 > Sk(r)(X - X)

>2 Sk(O) k-1 xGX
k-1

dk() (
(62)

K
a(r+l) = arg max 1E

a 1k-i x'Ex 

X [ f(r)(X Xt)S(r)(W ) dk(x) ln Sk(X')J , (63)
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where

gk'r)(X) >2 fk(r)(x)sk(r)(x - x , (64)
x'EX

Sk(r) kth diversity PSF evaluated for a (r) (65)

Sk(0) = 2 Sk(X) (66)
XEX

Note that Sk (0) is independent of the particular aberration
parameters. In the iterations zero divided by zero is de-
fined to be zero. Since the likelihood is a nondecreasing
function of r, when it is properly initialized the algorithm
will never produce gk(r)(x) = 0 when dk(x) $ 0.

Whereas Eq. (62) presents a closed-form expression for
updating the object parameter estimates, Eq. (63) requires
the solution to an optimization problem in order to update
the aberration-parameter estimates. Fortunately, this
optimization occurs in a space with a relatively small
dimension, the space of aberration parameters. More-
over, a closed-form expression for the gradient of the ar-
gument to be maximized in Eq. (63) is available for use in
the optimization sequence. This gradient expression is
analogous to that derived for the point-object case, as is
discussed in Appendix E.

We conclude this discussion of the EM algorithm by con-
sidering its application in two special cases. One special
case arises when the phase-aberration parameters are
known a priori. In this case the EM algorithm for esti-
mating the object intensity is

f~rl)(,) f~)( 1 K )dk (X)
( f (XP) K >2 2 Sk(X - X ) X (67)f~r~i(xI) ___K _ k__ 1 xEX 9k(r) _X

>2 Sk (O) k1XXg~~
k=1

which is essentially the same as the EM algorithm derived
by Snyder and Politte'5 and Politte' 7 for time-of-flight
positron emission tomography. For this case, arguments
similar to those used by Vardi et al.2 ' can be used to show
that f(r) converges to a global maximum of the log likeli-
hood. Under certain assumptions about the PSF's, {Sk},

this solution can be shown to be unique. With the addi-
tional restriction that K = 1, the iterative rule in Eq. (67)
is the same as that independently derived by Richardson2 2

and Lucy,2 using a Bayesian viewpoint. The second spe-
cial case arises when the object is known to be a point
source. In this case the EM algorithm for estimating the
unknown aberration parameters will converge in one
iteration to the maximum-likelihood solution.

gradient of this aberration-only objective function that will
allow for an efficient gradient-search phase-estimation al-
gorithm was derived.

An expression for the log-likelihood function has been
presented for the Poisson noise case as well. An attempt
to derive an aberration-only objective function by analogy
with the Gaussian noise case failed. However, an analytic
expression for the gradient of the log-likelihood function
was derived and shown to be computationally tractable,
suggesting the use of a gradient-search algorithm. An EM
algorithm that incorporates a nonnegativity constraint in
a natural fashion was also presented.

The viability of the phase-diversity concept was pre-
viously demonstrated through computer simulation for
the case of Gaussian noise with K = 2.` In the case of
Poisson noise, the gradient-search and EM algorithms de-
scribed herein need to be exercised to demonstrate their
utility. In every case additional simulations and theory
are needed to quantify the performance of the estimates as
a function of the number of diversity images, the types of
diversity, and the level of noise. A particularly intriguing
issue is the optimum distribution of a fixed number of
photons among diversity images.

APPENDIX A: MAXIMUM-LIKELIHOOD
OBJECT ESTIMATE FOR THE GAUSSIAN
CASE

In this appendix we derive the expression for the MLE of
the object under the additive Gaussian noise model and
for fixed aberration parameters. Recall that the log-
likelihood function is given by

K2

L(f,a) = -X2 Nh IDk(u') - F(u')Sk(u')l.

We seek an expression for F(u) that maximizes L.
tionary points of L are achieved when

a L= 0,
aFr(u)

aFi(u) =
u E X,

(Al)

Sta-

(A2)

(A3)

where Fr(u) and Fi(u) are the real and the imaginary parts
of F(u), respectively. Consider the partial derivative of L
with respect to Fr(u):

a L= - 12 K a(IDk 12 + IFSkl'
aFr k-Z1 kI

5. SUMMARY

We have formally stated the problem of the joint estima-
tion of the object and aberrations by using phase diver-
sity. Maximum-likelihood estimation has been considered
under Gaussian and Poisson noise models. In the Gauss-
ian noise case the estimation of the aberration parameters
can be accomplished without explicitly estimating the ob-
ject pixel values. An aberration-only objective function,
first derived by Gonsalves, was shown to yield a maximum-
likelihood estimate, and this objective function was gen-
eralized to accommodate an arbitrary number of diversity
measurements. Moreover, an analytic expression for the

= [ Sk a (Fr2 + Fe2)

(A4)

- DkSk Dk*Sk]

(A5)

(A6)
1 K

N2 -R (21SklF Fr Dk Sk - D*Sk) ,

where we have suppressed the dependence on u for brev-
ity. Similarly,

a = L= - ~~ (2ISkI2'Fi + iD, Sk* - iDk*Sk).- (A)

- DkF*Sk* - Dk*FSk)
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We now set the right-hand side of Eq. (A6) equal to zero
and solve for Fr:

K K
2Fr 2 Sk12 = 2 (DkSk* + Dk*Sk), (A8)

k-1 k-i

K / K
E (DkSk* + Dk*Sk)2 E IS112 U E X1

Fr(u) = -) 1=1
u E Xo

(A9)

where we have partitioned the set of spatial frequen
into the subset Xo, the set of spatial frequencies at
all the OTF's are zero valued, and its complemen
Formally,

Xo = {u Sk(U) = 0, k = 1,...,K},

X = {u:U E U Xo}-

The set Xo includes all spatial frequencies that fall outside
the union of the supports of all K diffraction-limited
OTF's, that is, all the spatial frequencies beyond the sys-
tem diffraction-limited cutoff. Note that it also includes
any spatial frequencies interior to this union of supports
for which the OFT's simultaneously go to zero owing to
aberrations. Equation (A9) indicates that, when u e Xo,
Fr(u) can take on any complex value so long as F(u) =
F(-u), which is consistent with the Hermitian property of
F or, equivalently, the real-valued property of f Setting
the right-hand side of Eq. (A7) equal to zero, we get

K / K
E (-Dk Sk* + Dk*Sk)i 2 >S 1

2

Fi(u) = k-U 1=1

The set of stationary points of L is found
Eqs. (A9) and (A12) as follows:

U E X,

u E Xo

by combining

By examining the second-order partial derivatives of L
with respect to the real and imaginary parts of F at each
spatial frequency, one can show that L is a concave func-
tion.5 As a consequence, Eq. (A15) represents the set of
objects that globally maximize L and therefore defines the
set of maximum-likelihood object estimates.

APPENDIX B: ABERRATION-ONLY
OBJECTIVE FUNCTION FOR THE
GAUSSIAN CASE

Substitution of any of the maximum-likelihood object esti-
mates into the log-likelihood function and eliminating the
1/N2 scale factor yields a new objective function LM(a) for
the estimation of the aberrations. The derivation of this
new objective function is presented here:

K
(A10) LM(a) = ->E E Dh(u) - FM(U)Sk(U)2

uE kl

=-E > Dk
uEX1 k

>2p$* 2

- S - E E Dk,
>2 IS42 uE:X k

(B1)

(B2)

where the u dependence has been suppressed and the sum-
mations over j, k, and I run from 1 to K. Equation (B2)
consists of two major terms distinguished by the summa-
tions over X1 and Xo. Recall that Xo is the set of spatial
frequencies at which all the OTF's are zero valued and Xi
is the complement of Xo. Note that the values of FM at
spatial frequencies in Xo are irrelevant since Sk(u) is zero
there. Also note that the contribution to the second term
in Eq. (B2) from data at spatial frequencies outside the
union of diffraction-limited OTF supports will be con-
stant and will not affect the contour of the objective func-
tion. Strictly speaking, this term must be retained,
however, in the event that the OTF's simultaneously go to
zero at spatial frequencies within the union of diffraction-
limited OTF supports. We now focus our attention on the
first term in Eq. (B2), which we designate by LMi. Ex-
panding this term, we have that

FM(u) = Fr(u) + iFi(u)
K / K

{ [DkSk* + D*Sk + iDkSk*i + Dk*Ski)] 22 ISI2

Fm*(-u)
K /
E Ds*/ |SI|2 u G X

= k u / 1=1
FM*(-U) U E X°

(A13)

u E 

u E yX (A14)

(A15)

LM=-E 2
uEx k

=- E
UEX k

Dk>2 IS12 _Sk>2Dj S*I2
1 1J I

'I Z JS112 I
D s1 I2

2 2
Dk>2S1I
2+ Sk>DjSl*

I j

- Dk*>Z ISl 2S Z DjSj* - D ISI 2S* IDj*Sj
I I I i

( 2 IS
1
V)

IE S112

(B3)

- (B4)
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Note that the summation over k affects only the numera-
tor in Eq. (B4). We now distribute the k summation over
each term in the numerator to get

This expression retains the form of the Gonsalves objec-
tive function (K = 2) for direct comparison. An alterna-
tive form derives directly from Eq. (B7) and is given by

2 ~~~~~~2
E IDk( IS,12) + E ISkI 2 DjSj*
k I k j

- 2 Dk*SkhE >s 2 SDjSj*
k I j

- >2DkSk*2I SI2> EDj*Sj
k I j

(B5)

f- 2 2
12 ID I2 Z Sil) -S22 > 2DE Ss*

(B6)

K j2 Dj(u)Sj (U) 2
LM(O)= -2 2 ID(U)I2 _ 

uEX1 k= 2 IS1U)l
1=1

K

- > IDk(U)12
uEXo k=i

K 2

>2 Dj(U)Sj*(U)
=-2 K -

uEX1 >2 IS1(U) 2

1=1

K
>2 E IDh(U) 2.
uEX k=l

where the second and third terms in Eq. (B5) have been
canceled. Factoring out the common factor yl IS,1

2 in the
numerator and canceling this with the same factor in the
denominator, we Let

2

>2 IDI2>2 lSl2 - >2DjSj*
EX k i ES1 2

uEXl S 

APPENDIX C: PARTIAL DERIVATIVE
OF THE ABERRATION-ONLY OBJECTIVE
FUNCTION FOR THE GAUSSIAN CASE

In this appendix we derive an expression for the partial
derivative of the objective function LM with respect to an
aberration parameter a,, for the case of additive Gaussian

B7) noise. Using the form of the objective function expressed
(B7) in Eq. (21), we have that

2 2 Dk Sj2 - E 2 Dj Sj*Dk*Sk
k i j k

L2 IS1l2
(B8)

Ea Dj(U)Sj*(U) 2
d m a j= -LM => K

aan aafn uExi E IS(U) 2

1=1

a K
- IDk(U)I2.
aan uEx k=l

(1/2)2 >2 ID Sj - Dj Sk 2

= E k i E IS11 , (B9)

where we have used the fact that k and j are dummy in-
dices. Note that the terms in the numerator for which
j = k vanish. Rearranging the summation limits to
retain half the remaining terms in the numerator, we
have that

K-1 K

E 
LMi = - >2 j=i k=j+l

uEX1

Reintroducing the seco
tion gives

K-1 K

LM(a) = - 2 j=l k=j+l
UEXi

)j(U)Sk(U) - Dk(U)Sj(U)I2

K

E ISi(U)I2
1=1

nd term in the objective func-

1DJ(U)Sk(U) - Dk(U)Sj(U)1 2

K
E ISl(U)12
1=1

K

- >2>2IDk(u)2.
uEXO k=l

(C1)

The second term in Eq. (Cl) vanishes because the data are
independent of the parameter estimates. The partial de-
rivative in the first term is difficult to evaluate since the
set Xi that defines the limits of the summation can actu-
ally depend on the aberration parameters. Indeed, the
derivative may not exist at coordinates in the space of the
aberration parameters for which the limits of summation
are changing. To circumvent this problem we place a
mild restriction on the set of OTF's. Consider the set of
pixels Xs defined by the union of the diffraction-limited
OTF supports. Spatial frequencies in the complement of
Xs are permanent elements of Xo and never enter into the
limits of summation in the first term in Eq. (Cl). It is
only when the OTF's simultaneously go to zero at spatial
frequencies within Xs that the limits of summation can
vary as the aberrations change. Recall that the value of
an OTF at a spatial frequency u E xs is the sum of unit-
length phasors. Such a sum is unlikely to be exactly zero,
particularly with random phases.2 4 The prospect of all K
OTF's summing to zero at the same spatial frequency is
even more remote. Therefore the limits of summation in
Eq. (Cl) will be constant almost everywhere in the space
of the aberration parameters. We assume that the partial
derivative is evaluated at the aberration parameters about
which the OTF's do not simultaneously go to zero at spa-
tial frequencies within Xs. When this is true, the partial
derivative can be taken inside the summation as

numerator =

(B12)

(B13)

= UE
uEXl
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K 2

2 Dj(u)Sj*(u)
- L = a -

aCn fleX, aan E SI(U)I 2

1-1

(C2)

= 

= 
u~xJ

2

>2IslI2 2DDj *2 Dk*Sk'- |2 Dj S* >2 S*SI'
I j k j I

(Z IS112)
+ c.c.

= E Zk Sk' + c.c.,
uEX k

where the u dependence has been suppressed; the summa-
tions overj, k, and I run from 1 to K; the prime applied to
a function signifies a partial derivative; c.c. represents a
term that is the complex conjugate of the preceding term;
and we have defined

h f[2 ISlI2(2,DJSj*)Dh* - E2DjSj* Sk ] ( 52)2

(C3)

(C4)

(C5)

where we have used the change of variables u" = u' - u in
Eq. (C13).

Returning to the primary derivation, we substitute
Eq. (C14) into Eq. (C5):

u E X1

u E Xo (C6)

Note that defining Zk in this way extends the summation
in Eq. (C5) over all of X.

At this point we digress to derive an expression for the
partial derivative of an OTF with respect to an aberration
parameter. Recall that the unnormalized OTF for the
kth diversity system is the discrete Fourier transform of
the corresponding PSF:

Sk () = 2 k (x)exp(- i2 w(u, x)/N)
xEX

= -xhC(X)12exp(-i2r(ux)IN).
xC=X

(C7)

(C8)

Equation (C8) can be rewritten in terms of the generalized
pupil function H, using the discrete version of the auto-
correlation theorem:

Sk(U) = N2 Hk(U')Hk*(U'- u),

where

Hk(U) I Hk(U)exp{i[ Ok + 2 ajkj(u)]}

a -L = E f(U) i E o.(U,)
aa uex k=l N UX

X [H(u')H*(u' - U) - Hk*(U')Hk(U + u)]} + c.c. (C15)

i ~K
2 ,b O-(U') E Hk(U ) 2 Zk(U)Hk*(u - u) + c.c.N u, ex k-i uex

i ~K- >2K

-2 E (U ) Hk*(U ) e Zk(U)Hk(u' + U) + C.C.N ',EX k-l uGX

(C16)
Using the Hermitian property of Zk and the change of
variables u" = -u' we rewrite the second term above as

second term =

(C9)

2E ( ) E Hk*(U )

X I Z*(-U)H(U' + U) + c.c. (C17)
uEX

i ~K= - 2 E 'O.(U ) E H*(U )
N uEX k=l

x E Zh*(U )Hk(U - u ) + c.c., (C18)
U EX

(C10)

The partial derivative of the OTF is

a Sk(U) 2 I Hk (u- U) a Hk(u ) + H ) a Hk*(Uaa,, N2 .,Cx[ aa" aa"
- U)] (Cll)

= (1/N2) 2 [H*(u- u)i0.(u')Hk(u') - Hk(u)ip.(u - u)Hk*(U, - U)]

N 2L iOk(U)Hk(u')Hk*(U' - U) - E i,,(u")Hk(U" + U)Hk*(U)]2~~~~~~~~~~~~~~~~~

(C12)

(C13)

= (i/N2 ) > n(U')[Hk(U)Hk*(U- U) - Hk*(u')Hk(U' + U)], (C14)
u'GX

+ c.c)- DjSj*9 2SI*SI' + c.c)

(E IS,12) I~~~~~~~~~

2 IS112 2 Dj Sj* 2 Dk*Sk'
I i k
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from which it is apparent that the second term is just the
complex conjugate of the first term. Therefore

(C19)

4 [~~K= - 4 (U,)IM ~~H)U]>2 'On( ')Im>2 Hk(U')(Zk * k*)(u ,

(C20)

where the operator Im[-] takes the imaginary part of the
argument.

APPENDIX D: PARTIAL DERIVATIVE WITH
RESPECT TO ABERRATION PARAMETERS
FOR THE POISSON CASE

In this appendix we derive the expression for the partial
derivative of the log-likelihood function with respect to

-Sh(X) = hk*(x) + c.c.
aa,, aan

(D3)

hk*(X) a E Hk(u)exp(i2(U, x)/N) + c.c.
N 2 aan uEx

(D4)

2h*(X) a E Hh(U)I
N 2 aan uEx

X exp{i [Ok(U) + a (U)]})

X exp(i2qr(u, x)/N) + c.c. (D5)

= hk*(X) in (u)H (u)exp(i2X(u, x)IN) + c.c.,

(D6)

where c.c. represents a term that is the complex conjugate
of the preceding term. Equation (D2) then becomes

a K dk(x) [ ~x)hh*(x - ')
L= E > 22f(X i,n(u)Hk(u)exp(i27r(u,x - x')/N) + c..]

aan k= xEx 9k W x'Ex uEX

[ dk()-Efx')/N)] X
=>2>2 >2 f(x') 2 2 i.()Hk(u)exp(i27r(ux - X )IN) + c.c.

k=i xex gk(x) XEX fN uEX

K ~~1 dk x)[, i n(u)Hk(U) > g >2 f(x )hh*(x - x')exp(i2T(u,x - N) + c.c.
k=l uEX XEX gk(X) x EX

K 1 dhkx 1= 2 i0.(u)Hk(U) x2 -h ex2(- x')hk*(x)exp(i27T(u,x x')] + c.c.
k-i ueX N x'EX WXxe,

[K 1(Xf 1-X'= - 2 i>n(u)Hk(u)) h>*(x )exp(i27r(u, X)2U) ' ] + C.C.
k= [ uEh x N x'EX x gk(x)

= - 2 2 Z n.(u)Hk(u) N hk*(X )exp(i2r(u, X )/IN) E 

= -22 En(U)Im[2KHk(U) 2 hk*(x')exp(i2,.(u, x')/N)>2 dk(X)f(x -X) x
uEX k= N N x'E xex 2 f(X")S(X - X")

-~~~~~~~~~~~X

aberration parameters for the case of Poisson noise. Re-
call that the log-likelihood function is given in Eq. (38).
We now take the partial derivative,

K dk(X) a
- L => >2 >2 f(X') - Sh(X - X')aan k=- xeX 2 f(x")sh(x - X") x'ex aan

(Dl)

K dk(x)a
=> >2 >2 E f(x')-sk(x - x), (D2)
kh- xex gk (x) X aan

where an is the nth parameter of the phase function
'k. Consider the partial derivative of the PSF, found in

where we have assumed that f is real valued in order to
step from Eq. (D7) to Eq. (D8). Equation (D13) is the
desired expression for the partial derivative of the log-
likelihood function with respect to aberration parameters.

APPENDIX E: DERIVATION OF THE
EXPECTATION-MAXIMIZATION
ALGORITHM FOR THE POISSON CASE

In this appendix we derive an EM algorithm for the joint
estimation of the object and aberrations in the case of
Poisson noise. Recall that the E step of the EM algorithm
requires the evaluation of the conditional expectation of
the complete-data log likelihood:

Q[f, a I f('), a(')] = E(")[Lcd(f a) I {dk}], (El)

Eq. (D2):

a [2i HhU'

Lm = [N 2 I On(U ) Hk(U)

X 2 Zk(U)Hk*(U - U)] + c.c.
,EX

(D7)

(D8)

(D9)

(D10)

(Dll)

(D12)

(D13)
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where E(`)E.] denotes an expectation assuming that the pa-
rameters governing the complete data take on the values
{f(), a(')}. The log likelihood of the complete data was
shown in Eq. (60) to be

Ld(f a) = e [E E dh(X I X')]ln f(X)
x'CE k xE-XK

+ 2 E2 Z d(x x -x) ln sh(x)
k-1 x'Gx xex

K
- E f(X') 2 E Sk(X).

x'EX ki xEX

where we have defined

= EX [ki E f( (')(X) dk(x)]ln f(X')
K

- E2f(X') E S),
x'Ex k=1

Qa = E[ f~r)( - ,)Sk )(X )
k-i xEx xEx gr(X) dk JIn Sk(X')

(Ell)

(E12)
(E2)

Examining this expression, we see that the only random
variables are the {dk}. Therefore for the E step we need
to evaluate the conditional expectation

E(r)[dh(X I x') I {dk}] = E(r)[d (X I X') I d(x)],

where we remind the reader that

(E3)

(E4)d(x) = E k(X I X ) .
x'Ex

Then f(r+i) is obtained by maximizing Qf, and a(r+) is ob-
tained by maximizing Qa. To maximize Qf, observe that

Qf 1 f(r)(x)Sk(r)(X - X )

af(x) f(x') k-i XEX gx(X) dk(x)
K

- S0),
k-1

a2Qf - 8X- X') 1

af(x')af(x") -a - [f(X,)] 2

(E13)

From Eq. (E4) we see that the expectation in Eq. (E3) is
conditioned on the requirement that all the dh(X I x') sum
to a known value. As noted by Shepp and Vardi,25 if z,
and 2 are independent Poisson random variables with
means A1 and A2, respectively, then

E[zilzi + Z2 = A (Z1 + Z2)- (E5)
A1 + Ak2

Through the use of this rule and Eq. (52), the conditional
expectation in Eq. (E3) is readily evaluated as

EWr)[d (X I x') I dk(x)] = f (X,)S(X - ) dh(x), (E6)

where

(E7)(r()= >2 fh r)x s(X-x'k ( 9 k (X)Sk ) - X ,
x'Ex

Sh(r) = kth diversity PSF evaluated for a(r). (E8)

Substituting Eqs. (E2) and (E6) into Eq. (El), we have that

Q[f a f'r), ']

= L [K fE r)(x ~s(r-)(X) d () ]ln f(X')

K r (X - X)Sh W (XI) 1+ 2 I [E f X X)W ( dk(X) In (X')

k-1 x'EXx EX gk 

K

- >2f(x') Sk(0), (E9)
x'ex k-1

where S(O) = ExEx Sk(X) is independent of the aberration
parameters. For the M step we determine the parame-
ters {f a} that maximize Q subject to any constraints that
may exist and then assign the maximizing values to
{f(r+l), a (r+i)}. Fortunately, this maximization may be per-
formed separately over f and a. We may rewrite Q as

K f(r)(xt)s(r)(X - X)
X E g ()() _ dk(X) 0,

(E14)

where 8(x) represents a Kronecker delta. Therefore a
global maximum of Qf is found by setting Eq. (E13) to
zero. Consequently, we assign to f +') the values

f(r+)(Xi) = f(X) K > > Sh(r)(X - X ) K, 

>2 Sk(O) hi x~k gk (X)
k =1

(E15)

Unfortunately, no closed-form expression is obvious for
the maximizer of Qa, so we write

a (r~i) = arg max{ k E f E )( (r)( ) dk 1
a tk-i x'EX EX gh()~ d~)

X ln Sk(X')}- (E16)

The optimization in Eq. (E16) bears a striking resem-
blance to the optimization of L(f a) when the object is
known to be a point. In this special case Eq. (38) re-
duces to

K
L(a) = > E dh(x)ln S(X) + C.

k= xeX
(E17)

Therefore we can use the closed-form expression for the
gradient of the log-likelihood function in the point-object
case in the optimization of Eq. (E16) by substituting

(E18)dk(x) -> - X)Sk(r)(X) dk(X )
x'e-x g9Cr)(XP) d~

Q[f, a f(r),a ] = Qf + Q., 

Paxman et al.

(E10) into Eq. (50).
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