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It is difficult to reconstruct an image of a complex-valued object from the modulus of its Fourier transform (i.e.,
retrieve the Fourier phase) except in some special cases. By using additionally a low-resolution intensity image
from a telescope with a small aperture, a fine-resolution image of a general object can be reconstructed in a two-step
approach. First the Fourier phase over the small aperture is retrieved, using the Gerchberg-Saxton algorithm.
Then that phase is used, in conjunction with the Fourier modulus data over a large aperture together with a support
constraint on the object, to reconstruct a fine-resolution image (retrieve the phase over the large aperture) by the
iterative Fourier-transform algorithm. The second step requires a modified algorithm that employs an expanding

weighting function on the Fourier modulus.

1. INTRODUCTION

Phase retrieval from a single intensity distribution for the
case of complex-valued objects arises in a number of applica-
tions such as holography, wave-front sensing, and imaging
with coherent illumination. If the support of the object
(the set of points over which it is nonzero) is well known or of
a favorable type, then it is often possible to reconstruct an
image of the object from the modulus of its Fourier trans-
form (the square root of the Fourier intensity) by using the
iterative Fourier-transform algorithm.! Favorable support
constraints include polygons with no parallel sides (particu-
larly triangles), which must be known a priori,1? and sup-
ports with separated parts, which need not be known a
priori.13 If, on the other hand, the object has a polygonal
support that is not known well a priori, or if the object has
tapered edges (i.e., it goes to zero smoothly, rather than
abruptly, at its edges), then both the ability to converge to a
solution and the quality of the reconstructed image deterio-
rate.l4-6  This situation contrasts sharply with the case of
real, nonnegative objects, for which phase retrieval is much
easier.”® Image reconstruction is also possible if the com-
plex-valued object has a strong glint or glints (for example, a
single glint well separated from the object gives rise to a
hologram that can be reconstructed easily!?).

In this paper we show that even the difficult types of
complex-valued objects can be reconstructed if one has a
low-resolution intensity image of the object, taken through a
telescope having a small aperture contiguous with the Fouri-
er intensity measurements, to supplement the Fourier inten-
sity data. In Section 2 an example is given of an optical
system that would produce the desired measurements. Sec-
tion 3 describes the data-processing steps required to recon-
struct a fine-resolution image. A two-step method is used,
employing an accelerated version of the Gerchberg—Saxton
algorithm1!!-15 in the first step and a modified version of the
iterative Fourier-transform algorithm!7-213-15 in g gecond
step. This new modification, the expanding weighted mod-
ulus algorithm, was necessary to produce convergence with a
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reasonable number of iterations. In Section 4 an example of
reconstructing an image by using this approach is given, and
Section 5 contains our conclusions.

2, OPTICAL SENSOR CONFIGURATION

Suppose that the object being imaged is illuminated by a
coherent laser and is far away so that the relationship be-
tween the optical field at the object, f(x), and that in the
aperture plane of the optical receiver, F(u), is approximately
a Fourier transform.!® Here u and x are both two-dimen-
sional coordinates: u in the aperture plane and x in the
object or image plane. (If the relationship is a Fresnel trans-
form, then the method described here will work with minor
modifications.l’) Figure 1 depicts an example of an optical
receiver that gathers the types of data needed for the recon-
struction described here. An array of light-bucket detectors
(shown with field lenses in front of them) samples the inten-
sity of the optical field in the aperture plane. For the inten-
sity of the speckle pattern in the aperture plane to be sam-
pled adequately, there must be at least two detectors per
speckle width in each dimension (as determined by the
wavelength of the laser, the distance to the object, and the
object diameter). Since only the intensity is detected, these
measurements are independent of any phase errors that may
be present owing to atmospheric turbulence in front of the
aperture (assuming that atmospheric scintillation is negligi-
ble) or owing to misalighment of the detector array. In

"addition, embedded in the array (or contiguous with the

array on the edge of the array) is a small-aperture diffrac-
tion-limited telescope. If it is located on Earth, the small-
aperture telescope could be diffraction limited by virtue of
having an adaptive-optics system that compensates for at-
mospheric turbulence in real time. Such an adaptive-optics
system may not be practical for a telescope with an aperture
the size of the entire large aperture. If it is in space, then
adaptive optics would not be needed for the small telescope.
A beam splitter in the small telescope allows for the detec-
tion of intensity simultaneously in two planes: the usual
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Fig. 1. Optical sensor configuration. Data collected for a coher-
ently illuminated object (not shown, located far to the right) include
aperture-plane (Fourier) intensity and a low-resolution diffraction-
limited intensity image from a small-aperture telescope.

focal plane, where there exists a diffraction-limited image of
the object, and a demagnified image of the aperture plane.
The diffraction-limited image of the object has low resolu-
tion since it comes from a small aperture. It is assumed that
the intensity measurements are made over a short enough
time that the object and the receiver are essentially fixed in
space relative to each other.

In summary, the optical receiver makes the following in-
tensity measurements: Letting Ay (a binary function) de-
note the entire large aperture (including the small aperture)
and A, denote the small aperture, we have |F(u)|2[AL(u) —
A,(u)] from the light-bucket detectors, |[F(1)|24,(x) from the
reimaged aperture of the small telescope, and |g(x)[2, the
intensity of the low-resolution image, where g(x) = a,(x) *
f(x), as(x) is the Fourier transform of A;(u), and * denotes
convolution.

3. DATA-PROCESSING STEPS

Figure 2 is a block diagram depicting how these three inten-
sity measurements (or their square roots, the moduli or
magnitudes) are used to retrieve the phase over the large
aperture and recontruct a fine-resolution image. A support
constraint for the object is computed (in either of two ways),
and the phase over the small aperture isretrieved. Then the
fine-resolution image is reconstructed by using all the avail-
able information. In what follows, each of these steps is
described in some detail.

A. Support Estimation
Assuming that the object, which is flood illuminated by a
laser, is on a dark background, a support constraint for the
object can be obtained in one of two ways: from the low-
resolution image or by using a triple intersection of the
autocorrelation support.3-18

An estimate of the support of the object can be obtained
from the low-resolution image, |g(x)I2, by thresholding it at
an appropriate level [i.e., the support function is set equal to
unity where |g(x)|? exceeds the threshold and to zero else-
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where]. If the threshold level is set too high, then the sup-
port of the object is underestimated. If the threshold levelis
set too low, then the support is overestimated because of
noise and sidelobes owing to diffraction. The sidelobes can
be minimized by placing an apodization (weighting) across
the small aperture but at the expense of optical efficiency
and resolution of the low-resolution image.

The method that we find useful for selecting the threshold
level is as follows. Several candidate thresholded low-reso-
lution images are computed by using different threshold
values. When the threshold value is too high, small changes
in the threshold value tend to cause small changes in the area
of the thresholded image. When the threshold falls below
the value needed to pick up the noise and/or sidelobes, then
the area of the thresholded image grows rapidly, spreading
over the entire image space, and the thresholded image
breaks up rapidly. This is illustrated by the example shown
in Fig. 3 for the case of a telescope with a small circular
aperture (a diameter-16 circle embedded in a 128 X 128
array). Thus a good choice of threshold value is one just
larger than the values for which the area of the thresholded
image grows rapidly. Figure 4 shows the corresponding
results for the case of a weighting function across the small
aperture. The weighting function was chosen to be the
autocorrelation of a circle of half the diameter of the small
aperture; that is, the weighting function falls to zero at the
edges of the small aperture. With the aperture weighting
included, the diffraction sidelobes are greatly reduced, and
the area of the thresholded image is much less sensitive to
changes in the threshold value, making the aperture weight-
ing worthwhile despite the loss of resolution that it causes.

For the case of diffusely scattering objects, the Fourier
intensity is a speckle pattern, and the image (the low-resolu-
tion image as well as the fine-resolution image) is speckled,!?
as can be seen from Figs. 3 and 4. Nulls in the thresholded
image due to speckle nulls in |g(x, y)I2 can be eliminated by
convolving the thresholded image with a small circle and
then rethresholding, as illustrated in Fig. 5. The estimate of
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Fig. 2. Data-processing steps to reconstruct a fine-resolution im-
age (retrieve the phase in the aperture plane) from the intensity
measurements.
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Fig. 3. Thresholding the low-resolution intensity image to esti-
mate a support constraint, with no weighting on the small aperture.
(A) Diffraction-limited low-resolution image modulus (overexposed
in order to show the sidelobes that extend beyond the support of the
object); (B)-(D) thresholded images, with threshold values equal to
SB) 0.078, (C) 0.157, and (D) 0.392 of the maximum value of the
image.
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Fig. 4. Thresholding the low-resolution intensity image to esti-
mate a support constraint,.with a weighting on the small aperture.
(A) Diffraction-limited low-resolution image (not overexposed);
(B)-(D) thresholded images, with threshold values equal to (B)
0.078, (C) 0.157, and (D) 0.392 of the maximum value of the image.

the support of the object, shown in Fig. 5(C), is used as a
support constraint in the final step of fine-resolution image
reconstruction by the iterative Fourier-transform algorithm.
Since this support constraint is only approximate and may
be too small, it is often useful to enlarge the support con-
straint to ensure that the object fits within it. We typically
enlarge the support constraint by adding pixels to the edges
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of the initial support constraint, as shown by the example in
Fig. 5(D).

A second method of generating a support constraint,
which uses the Fourier intensity over the entire aperture, is
the method of triple intersection of the autocorrelation sup-
port.> First the Fourier intensities over the small aperture
and from the light-bucket detectors are combined to arrive
at the intensity over the entire aperture. This intensity is
inverse Fourier transformed to obtain a fine-resolution
(complex-valued) autocorrelation of the object. The magni-
tude of the autocorrelation function is thresholded, and the
nulls due to speckles are eliminated in a way similar to that
shown in Fig. 5. Noise and sidelobes outside the true auto-
correlation support are eliminated to the extent possible by
a similar method operating on the complement of the sup-
port. Theresultis an estimate of the support of the autocor-
relation. Then three appropriate translates of the autocor-
relation support are made to intersect to arrive at an upper
bound on the support of the object.? In this case the support
constraint is not an estimate of the support of the object but
is an upper bound that contains all possible object supports
consistent with the support of the autocorrelation.

The support constraint computed from the autocorrela-
tion function is from finer-resolution data and therefore may
be more accurate, but it may also be too large since recon-
struction of the support of an object from the support of its
autocorrelation function is ambiguous for wide classes of
objects.320 The thresholded low-resolution image avoids
these ambiguity problems but, being of lower resolution,
may not be so accurate. Further study is required to deter-
mine which of the two methods is better and to devise a way
to combine the best features of each into a composite sup-
port estimate.
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Fig.5. Removal of nulls due to speckles in the image. (A) Thresh-
olded image from Fig. 4(C), (B) convolution of (A) with a circle of
diameter 7 pixels (about half the diameter of a speckle), (C) thresh-
olding of (B) at 0.58 of its peak, (D) enlarged version of (C) that may
be used to ensure that the object fits within it.
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Fig. 6. Block diagram of the Gerchberg-Saxton algorithms. The
object-domain constraint is the square root of the measured intensi-
ty of the low-resolution image, and the Fourier constraint is the
square root of the measured intensity over the small aperture. FFT
denotes fast Fourier transform.

B. Small-Aperture Phase Retrieval Using The
Gerchberg-Saxton Algorithm

The phase, Y(u), of the optical field, F(u)As(u), in the plane
of the small aperture is determined from the intensities in
the focal plane and the image of the aperture plane by using
a variation of the Gerchberg-Saxton algorithm that is accel-
erated. Figure 6 is a block diagram for the Gerchberg—
Saxton algorithms. Here we refer to the original Gerch-
berg-Saxton algorithm!!12 as GS and the accelerated ver-
sions as GS1 and GS2,13-15 the latter having the image-
domain operation!* [combining Eqs. (9) and (10) of Ref. 14]
8 (x) , 8,(x)

(1)

where 8 is a constant, |g(x)| is the modulus of the low-
resolution image, §,(x) is the input image to the kth itera-
tion, and g;’(x) is the output image from the kth iteration.
The rates of convergence for these three algorithms were
compared, and 8 was optimized. The differences in the
convergence rates are affected not only by the choice of 8 but
also by the choice of the random phase used as the initial
estimate. It was found that GS2 generally converges much
faster than GS1, which in turn converges significantly faster
than GS. A better method than using any single algorithm
is to combine GS2 and GS: perform several iterations with
G8S2, which initially converges quickly, then finish with sev-
eral iterations of GS, which is more stable and converges to a
smaller error. For these algorithms the object-domain error
metric (ODEM), a normalized root-mean-squared (rms) er-
ror, is given by

Br1(x) =g/ + B[2|g(x)|

> gy @)l = g
ODEM? = = ) (2)

Z lg(x)I?

which is a measure of how closely the output image modulus
agrees with the modulus of the measured low-resolution
image and is the criterion by which we judge whether the
algorithm has converged. (A similar error metric in the
Fourier domain can also be used.) Note that in order for Eq.
(2) to be meaningful it is necessary to normalize lg(x, y)| so
that it has the same energy (sum of squares) as the Fourier
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modulus data. The quality measure that we use to evaluate
the reconstruction results is the absolute error (ABSERR) of
the complex-valued reconstructed image, also a normalized
rms error, which is given by

D lag'x = x) = @)
ABSERR? = £ ) 3)

z lg(x)?

where « is the complex factor and x; is the shift that mini-
mizes the ABSERR. It can be shown that xg is given by the
location of the maximum magnitude of rgg(x), the cross
correlation of g’ with g; and a = ry(xo)/Tlg’(x)[2. This
ABSERR can be computed only in digital simulation experi-
ments for which the true image is known. Although it mea-
sures the error in the complex numbers, which includes both
magnitude and phase errors, the ABSERR correlates well
with the standard deviation, oy, of the error of the phase
retrieved over the small aperture. As is shown in Appendix
A, the expected relationship, if errors in the modulus are
ignored, is

ABSERR? ~ 1 — exp(—0,?). @)

Figure 7 shows examples of algorithm convergence.
Twenty iterations of either GS2 or GS were followed by
twenty iterations of GS. The optimum value of 8 was found
to be approximately 1.5 to 2. The algorithm is not highly
sensitive to small changes in the value of 8. Retrieval of the
phase over the small aperture was found to be relatively fast
(only ~30 iterations are required).

To test the sensitivity of the combined algorithm to noise,
low light levels (quantum-limited measurements) were sim-
ulated by subjecting the intensity measurements in both
planes to a Poisson noise process. We chose to simulate the
same number of photons in each of the two planes. After the
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Fig. 7. Convergence of the Gerchberg-Saxton (GS) and acceler-
ated Gerchberg-Saxton (GS2) algorithms. Twenty iterations of
either GS2 or GS were followed by twenty iterations of GS. GS2
with feedback parameter 8 = 1.5 to 8 = 2 converged fastest.
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intensity data were scaled to have a given expected total
number of detected photons, each pixel was replaced with a
sample drawn from a Poisson distribution with mean and
variance equal to the pixel value.

For these experiments the object is approximately of size
40 X 60 pixels embedded in a 128 X 128 array. Therefore
the intensity of the Fourier transform of the object (comput-
ed using a fast Fourier transform) is a speckle pattern with
approximately 3 X 2 samples per speckle. The Fourier data
were set to zero outside a circle of diameter 16 pixels to
simulate the effect of the small aperture (without weight-
ing). Therefore there should be 782/6 ~ 33 speckles in the
small aperture.

Figure 8 shows the ABSERR, the quality of the output
image, as a function of iteration number for a variety of noise
levels. Figure 9 shows the ABSERR for the reconstructed
image as a function of the total number of detected photons.
Good results are obtained for 10? or more photons, corre-
sponding to 104/33 =~ 300 photons per speckle. From these
results we see that the Gerchberg—Saxton algorithms con-
verge rapidly and are reasonably robust in the presence of
noise.

Since the image domain was highly oversampled, we also
performed a simple noise filtering before reconstructing
with the GS algorithm. The noisy image intensity was Four-
ier transformed, the Fourier transform was set to zero out-
side a circle of diameter 32 pixels (since the ideal complex-
valued image has a Fourier transform that is zero outside a
circle of diameter 16 pixels), and the result was inverse
Fourier transformed to yield a smoothed image with reduced
noise. Before the square root was taken to compute the
image modulus, small negative numbers introduced by the
filtering process were set to zero. As expected, we found
that the ODEM was lower for the reconstructions with noise
filtering than without it. However, the ABSERR, which is
ultimately of greater importance, was slightly better without
filtering; consequently it is better not to filter the image in
thisinstance. Thissubject of filtering requires further anal-
ysis.

C. Fine-Resolution Image Reconstruction

With all the data in hand—including the Fourier intensity
over the entire aperture, the phase over the small aperture,
and the support constraint—we perform image reconstruc-
tion by using the iterative Fourier-transform algorithm,
which seeks a solution consistent with all the data and con-
straints.1-%13-15 A block diagram of the algorithm, which is
a generalization of the Gerchberg-Saxton algorithm, is
shown in Fig. 10.

When using any phase information in the Fourier domain,
one must choose the position of the support constraint in the
image domain to be consistent with the given Fourier phase.
(For more conventional phase retrieval with no a priori
phase information, the position does not matter.) One way
to ensure correct positioning is to cross correlate the support
constraint with the low-resolution image and use the loca-
tion of the peak value of the cross correlation to determine
the optimal position of the support constraint.

For the case of a difficult-to-reconstruct complex-valued
object, initial attempts to use the small-aperture phase with
the iterative Fourier-transform algorithm were unsuccess-
ful, whether the phase was just used in the initial estimate or
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Fig.8. Rms error (ABSERR) of the complex-valued reconstructed
low-resolution image as a function of iteration number of a variety of
light levels.
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reinforced during the iterations. A possible reason for this
failure is the fact that the area of the small aperture is a small
fraction of the area of the entire large aperture, and so the
incorrect phase over the rest of the aperture overwhelms the
influence that is due to the correct phase over the small
aperture.

The following modifications to the algorithm were found
to be necessary for a reliable reconstruction. First, in order
to reduce impulse-response sidelobes it is advantageous to
multiply the Fourier modulus by a weighting function. This
is important since large sidelobes extending beyond the
edges of the object support will violate the support con-
straint and hinder convergence. For ease of implementa-
tion, the Fourier modulus weighting function was chosen to
be the autocorrelation of a circle. Initially the diameter of
the circle was chosen to be such that the Fourier modulus
weighting went to zero over an area just slightly larger than
the area over which the small-aperture phase was known.
Then a cycle of 30 hybrid input-output iterations (with
feedback parameter 8 = 0.7) followed by 10 error-reduction
iterations! was performed, reinforcing the phase over the
small aperture at each iteration. Phase reinforcement is
accomplished simply by replacing the phase of the Fourier
transform of the input image by the (now) known phase over
‘the area of the small aperture, while leaving the phase un-
changed over the rest of the aperture. (In practice, reason-
ably good results can also be obtained if the phase over the
small aperture is used for the first iteration only, without
being reinforced during later iterations; but better results
are obtained by continual reinforcement of the known
phase.) This approach allowed the algorithm to converge to
a solution for the phase over the nonzero area of the weight-
ed Fourier modulus, since the phase was already known over
most of that area to begin with. Then the Fourier modulus
was reweighted with a weighting function of slightly larger
area, and another cycle of iterations was performed. This
process was continued until the weighting function encom-
passed the entire area of the measured Fourier modulus
data. Thus the phase retrieval proceeded by a bootstrap
approach, with successively larger areas of phase retrieved,
and successively finer-resolution images reconstructed, dur-
ing each cycle of iterations. When we compute the AB-
SERR by Eq. (8), we use for g(x) the diffraction-limited
image for the same weighting of the Fourier transform as is
being used for the Fourier modulus weighting for that cycle
of iterations. We recently learned that others have also
found an expanding weighted modulus approach to be im-
portant for reconstructing images from noisy data.?!

Ordinarily when reconstructions are performed with a
poorly known support constraint (as is the case here), we
find it best to start with a smaller support constraint for
early iterations and expand the support constraint for later
iterations. However, when the expanding weighted modu-
lus algorithm is used, the images that are reconstructed
during the early iterations are larger than the images recon-
structed during the later iterations, since for the early itera-
tions the point-spread function is much larger owing to the
use of a narrow weighting function in the Fourier domain.
By experimentation with support constraints that were ex-
panded or shrunk as the iterations progressed, we found that
a good strategy was to use a support constraint appropriate
for the low-resolution image and keep it fixed during all the
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iterations. However, an alternative strategy may be neces-
sary, depending on the ratio of the diameters of the small
and large apertures or on how the support constraint is
formed.

For fine-resolution image reconstruction from the Fourier
modulus, for which the only image-domain constraint is a
support constraint, the ODEM is given, instead of by Eq. (2),
by

> lgy ol

ODEMZ=2¢5 | (5)
) Z ng’(x)lz

i.e., the energy outside the support constraint .S.

4. IMAGE-RECONSTRUCTION EXAMPLE

Figure 11 shows an example of image reconstruction that
uses the approach described above. Only the modulus of
each complex-valued image is shown. Figure 11(A) shows
the Fourier modulus data (noise free) over the entire aper-
ture, a circle of diameter 64 pixels (embedded in a 128 X 128
array), with the aperture of the small telescope indicated by
a dark circle. Figure 11(B) is the low-resolution image ob-
tained through the small aperture of diameter 16 pixels,

Fourier modulus Low resolution
IF(u)IA (u) image lg(x)i2

(A) ‘ (B)

Support Reconstructed Ideal

constraint image image
S(x) - f(x) £(x)
© ) E)

Fig. 11. Image-reconstruction example. (A) Fourier modulus
data over a large circular aperture—the black circle shows the area
of the small aperture, (B) low-resolution image from the small aper-
ture, (C) object support constraint derived from (B), (D) image
reconstructed by the Gerchberg—Saxton algorithm followed by the
iterative Fourier-transform algorithm using (A)-(C), (E) ideal im-
age for comparison.
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Fig.13. Convergence of the iterative Fourier-transform algorithm:
ODEM (0O) and ABSERR (A) (solid curves, scale at left) and the
diameter of the Fourier-modulus weighting function (dotted curve,
scale at right) as a function of iteration number.

weighted by the autocorrelation of a diameter-8 circle. The
support constraint, Fig. 11(C), was obtained by thresholding
the low-resolution image as described above, and the small-
aperture phase was estimated by the accelerated Gerchberg—
Saxton algorithm. All that information—the Fourier mod-
ulus over the large aperture, the support constraint, and the
Fourier phase over the small aperture—was combined to
retrieve the phase over the large aperture by the iterative
Fourier-transform algorithm, using the expanding weighted
modulus approach. After 25 cycles of iterations during
which the weighting was expanded, plus an additional 6
cycles at the end, for a total of more than 1000 iterations, the
image shown in Fig. 11(D) was obtained. It is very close to
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the true fine-resolution diffraction-limited image shown in
Fig. 11(D). Figure 12 shows intermediate results with dif-
ferent weightings on the Fourier modulus. The phase is
retrieved well for each weighting of the Fourier modulus
before the weighting function is expanded, and so at each
step a diffraction-limited image (for the resolution given by
the weighting function) is reconstructed. Figure 13 shows
the ODEM and the ABSERR as a function of iteration
number. Also indicated is the diameter of the Fourier-
weighting function as the iterations progress. It was found
that if substantially fewer iterations per cycle were used or if
larger jumps in the size of the weighting function were used,
then the convergence of the algorithm was much less reli-
able. Unlike in previously published results, in which the
ODEM (or the ABSERR) starts out large and decreases with
iteration number, here it starts low and stays low since at any
given point we are trying to retrieve only an additional thin
annulus of phase. A sawtooth behavior is seen since the
error jumps up each time the weighting on the Fourier mod-
ulus is enlarged.

5. CONCLUSION

A complex-valued image of an object with convex support
and without bright glints, whose support is not known a
priori, is ordinarily difficult to reconstruct from its Fourier
modulus. We have demonstrated that a low-resolution in-
tensity image of the object, taken through a small-aperture
telescope contiguous with intensity measurements over a
large aperture, can be used to help to reconstruct a fine-
resolution image. The low-resolution image is used both to
determine the Fourier phase over the small aperture and to
form a support constraint for the object. The retrieval of
the phase over the small aperture, using an accelerated ver-
sion of the Gerchberg—Saxton algorithm, was found to be not
only fast but also robust in the presence of noise. The
reconstruction of the fine-resolution image was also success-
ful but was found to take a larger number of iterations and to
require a bootstrapping approach using an expanding
weighting function on the Fourier modulus. The determi-
nation of the algorithm’s performance in the presence of
noise will require further research, which is now being
planned. However, based on earlier experience,2® it can be
expected to be less sensitive to noise than alternative ap-
proaches that employ zero sheets.2223

APPENDIX A

We relate the variance of the error of an optical field (or the
Fourier transform of a complex-valued image) to the vari-
ance of its phase error for a zero-mean Gaussian-distributed
phase error.

Let

G(u) = Fu)explig.(u)] (A1)

be the aberrated optical field, where F is the ideal optical
field and ¢ is the phase error. Suppose that ¢, has point
statistics that are Gaussian zero mean with standard devi-
ation o4. First consider the case without normalizing G.

Then the variance of the error (i.e., the mean-squared error)
of G(u) is
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E?= A1 j IG(w) - Fw)"d%u
=4 ] [F(w)PI1 — explis,()]Pd%

=41 [ |F(w)24 sin?[e,(u)/2)d%, (A2)

where A is the area of integration. Assuming that the phase
errors are independent of |F(x)|, and approximating the in-
tegral by an ensemble average, yields

E? ~ 4(|[F(u)I? sin®[¢,(u)/2])
~ 4(|F(u)|?) (sin’[$,(u)/2]). (A3)
With the identity?®

J ) exp(—px?)sin®(ax)dx = (1/4)Jx/p [1 — exp(—a?/p)],
o

p>0, (A4
the average over the distribution of phases is given by

® 1

(sin?[6,(u)/2]) = L sin%(6,/2) y exp(—¢%/202)d,
= (1/2)[1 — exp(~c3/2)]. (A5)
Inserting Eq. (A5) into Eq. (A3) yields
o= mf:Tz) = 2[1 ~ exp(~c3/2)]. (A6)
Note that e2 — 2 for ¢, — « and
e?~o2 forodkl. (AT)

Next consider the case of a normalized G, as in Eq. (3):

E?= A [ laGw) — F(u)l2d%u, (A8)
where
f G ) F(w)d2
a= . (A9)
j IG(u//)Ideu”
Then
_(G*F) _ (FP*)(exp(-ig,) ALO
= em ) (A10)
= (exp(—ig,)) = exp(—a3}/2). (A11)
Thus

B2~ A7) [ |F(w)lexp(~o2/2)expli, )] — 11 du

=4 j |F(w)Pexp(~o?) + 1

—2 exp(—a3/2)cos[¢,(u)]}d%u
~ (|[F)P){exp(—03) + 1 — 2 exp(—a2/2){cos[¢, w)])}
= (IF@)P) [exp(=d2) + 1 — 2 exp(—o2/2)exp(—o2/2)]
= (IF@)P)[1 - exp(~c3)] (A12)
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or
2 E?

¢ = IFB

Note that for the normalized case, unlike the unnormalized
case, e2 —> 1 for o, — = and, like the unnormalized case, €2 ~
o3for o2 1.

By Parseval’s theorem it can be shown that the variance of
the error in the image domain is equal to the variance of the
error in the Fourier domain.

Just as image shifts can be taken out before computing
errors to allow for the fact that image shifts are unimportant
to image quality, linear components of the phase error ¢.(u)
can be taken out before computing o, or €2,

=~ 1 — exp(—o3). (A13)
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