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Numerical investigation of the uniqueness of phase retrieval
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Both a new iterative grid-search technique and the iterative Fourier-transform algorithm are used to illuminate the
relationships among the ambiguous images nearest a given object, error metric minima, and stagnation points of
phase-retrieval algorithms. Analytic expressions for the subspace of ambiguous solutions to the phase-retrieval
problem are derived for 2 X 2 and 3 X 2 objects. Monte Carlo digital experiments using a reduced-gradient search of
these subspaces are used to estimate the probability that the worst-case nearest ambiguous image to a given object
has a Fourier modulus error of less than a prescribed amount. Probability distributions for nearest ambiguities are
estimated for different object-domain constraints.

1. INTRODUCTION

The phase-retrieval problem considered in this paper is the
reconstruction of an object function f(x, y) from the modulus
IF(u, V)I of its Fourier transform:

F(u, V) = IF(u, v)Iexp[ii (u, v)] = W [f(x, y)]

= JJ f(x, y)exp[-i27r(ux + vy)]dxdy. (1)

It is equivalent to the reconstruction of the Fourier phase
V(u, v) from the Fourier modulus and to the reconstruction
of f(x, y) or 0(u, v) from the autocorrelation function

r(x, y) = 91-1'F(u, v)12. (2)

This problem arises in several disciplines, including optical
and radio astronomy, wave-front sensing, holography, and
remote sensing.

There are the omnipresent ambiguities: that the object
f(x, y), any translation of the object f(x - x0, y - yo), the twin
image f* (-x - x0, -y - yo), and any of these multiplied by a
constant of unit magnitude exp(iOc) all have exactly the
same Fourier modulus. These ambiguities change only the
object's position or orientation, not its appearance. If they
are the only ambiguities, then we refer to the object as being
unique. A solution is considered to be ambiguous only if it
differs from the object in ways other than these omnipresent
ambiguities.

If nothing is known about the object, then reconstruction
from its Fourier modulus is generally ambiguous except for
special cases. Fortunately, for many applications one has
additional a priori knowledge about or constraints on the
object. In the astronomy application, for example, the ob-
ject's spatial brightness distribution, f(x, y), is a real, non-
negative function. For several applications, one has a sup-
port constraint, i.e., the object is known to be zero outside
some finite area. Even if the support constraint is not
known a priori, upper bounds can be placed on the support
of the object since it can be no larger than half the diameter
of the autocorrelation along any direction. Additional mea-
surements or other forms of a priori information may be

available for specific applications; in this paper we consider
real-valued objects with known support, both with and with-
out a nonnegativity constraint.

Until the late 1970's, there was much doubt that the
phase-retrieval problem could be solved or that the solution
would be useful, because the one-dimensional theory of ana-
lytic functions available at the time indicated that there
were ordinarily a huge number of ambiguous solutions.'-3

The first indications that the two-dimensional (2-D) case
is usually unique, despite the lack of uniqueness in one
dimension, came from empirical reconstruction results4' 5 :
images that were reconstructed resembled the original simu-
lated objects used to compute the Fourier modulus data.

.These results gave hope that 2-D phase-retrieval problems
might be solvable and unique. (Other phase-retrieval prob-
lems, such as in electron microscopy in which one has
squared-modulus measurements in each of two domains6

and in x-ray crystallography in which one has the a priori
information that the object consists of a finite collection of
atoms,7 had been solved; but those earlier successes depend-
ed on much greater object-domain constraints than just non-
negativity and support.) Those empirical results gave im-
petus to attempts to extend the one-dimensional (1-D) the-
ory to two dimensions. Although progress has been made,8"3
the level of understanding of the 2-D problem has not yet
matched that of the 1-D problem.

One of the most enlightening developments has been the
work of Bruck and Sodin,14 who modeled the object distribu-
tion as an array of delta functions on a regular grid. Then
the continuous Fourier transform becomes the discrete Fou-
rier transform (DFT),

F(u, V) = IF(u, v)1exp[iiP(u, v)] = DFTVf(x, y)]

M-1 N-1

= E f(x, y)exp[I2r 2N)]
x=O y=O

(3)

where the DFT is taken over a 2M X 2N array but f(x, y) is
zero outside an M X N array in order to avoid aliasing in the
computation of r(x, y) and IF(u, V)12. For this discrete case
the Fourier transform given in Eq. (3) can then be expressed
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as a polynomial of two complex variables, z = exp(j7ru/M)
and w = exp(j7rv/N). It is also equivalent to the z transform.
Then the presence of ambiguity in the phase-retrieval prob-
lem is equivalent to the factorability of the polynomial.
This explains the vast difference between the 1-D and 2-D
cases, because polynomials (of degree 2 or greater) of a single
complex variable are always factorable, whereas polynomi-
als of two (or more) complex variables are rarely factor-
able.14-'6 Other interesting results have been obtained by
exploiting this discrete model. Fiddy et al.17 and Nieto-
Vesperinas and Dainty18 described an object support that,
by virtue of Eisenstein's irreducibility theorem, guarantees
uniqueness. Brames19 showed that any discrete object hav-
ing a support whose convex hull has no parallel sides is
unique among objects with supports having the same convex
hull; so if the convex hull of the support of such an object is
known a priori, then it is unique. For these cases, there also
exists a closed-form recursive reconstruction algorithm.20'21

Whether the objects are discrete or continuous, it is easy
to make up cases that are ambiguous. If g(x, y) and h(x, y)
are two functions of finite support with Fourier transforms
G(u, V) and H(u, v) respectively, then the convolutions

fl(x, y) = g(x, y) * h(x, y) (4)

and

f2(x, y) = g(x, y) * h*(-x, -y) (5)

are different objects as long as neither g nor h is conjugate
centrosymmetric, they have Fourier transforms

Fi(u, V) = G(u, v)H(u, v) (6)

and

F2(u, v) = G(u, v)H*(u, v) (7)

that have the same modulus,

IF1(u, v)l = IF2(u, v)l = IG(U, v)IIH(u, v)l, (8)

and the objects fi and f2 are ambiguous. This demonstrates
the equivalence of phase-retrieval ambiguity to convolutions
in the object domain [Eqs. (4) and (5)] and factorability in
the Fourier domain [Eqs. (6) and (7)]. Furthermore, if there
are K irreducible Fourier factors, then there are 2 K-1 ambig-
uous solutions. By this convolutional (products or factors in
the Fourier domain) method, it is possible to make up an
uncountably infinite number of ambiguous cases even
though the theory indicates that ambiguity is rare (of zero
probability) in two dimensions. Consider that it is also true
that any randomly chosen real number has probability zero
of being a rational number (almost all are irrational num-
bers). Yet any real number, even if irrational, can be ap-
proximated arbitrarily well by a rational number. Thus the
fact that the probability of any given object's being ambigu-
ous (the Fourier transform being factorable) is zero is not
necessarily comforting.

Sanz et al. have shown that the "uniqueness condition is
stable in the sense that it is not sensitive to noise."22 How-
ever, their analysis does not shed light on a more practical
definition of uniqueness. If a given nonfactorable polyno-
mial is near enough (in an integrated mean-squared differ-
ence sense) to a factorable polynomial, then the ambiguous
solutions associated with the factorable polynomial will be

consistent (to within the noise) with the noisy Fourier-mod-
ulus data. Under this circumstance the object may be con-
sidered to be ambiguous in a practical sense, even though it
may be unique, traditionally speaking. Up to this point it
was not known how close an arbitrary polynomial is, on the
average, to a factorable polynomial. Furthermore, the exis-
tence of ambiguous objects close to a given object is likely to
cause the existence of local minima in which iterative recon-
struction algorithms will become trapped. Current theory
has not adequately addressed these questions, even for the
discrete model. These questions can be answered, though,
by numerical means, as will be seen below.

One way to test for practical uniqueness is the use of the
iterative Fourier-transform algorithm.4 "'2'25 If multiple so-
lutions exist, then the algorithm tends to find all of them if
many reconstructions are performed, each starting from a
different array of random numbers as the initial estimate.26
In most instances investigated, when the algorithm is ap-
plied to the Fourier modulus of an object of interest, if it
does not stagnate25 it reconstructs essentially the correct
object,27 giving strong evidence of uniqueness for those types
of object. Furthermore, when noise is added to the Fourier-
modulus data, the result is usually a noisy image of the
object rather than a completely different reconstruction,2'8 29
contrary to some predictions.30 While this approach has
provided some assurance that the phase-retrieval problem is
usually unique in the practical sense even in the presence of
noise, it has not yielded any quantitative results on the
probability of uniqueness for any given level of noise.

An important consideration in the probability of unique-
ness is the set of constraints placed on the object. In all
cases we assume that the object has finite support (it is zero
outside some finite region). The support of the object plays
a crucial role. If the object has a delta function known to
satisfy the holography condition," then it is unique. As
mentioned above, discrete objects having certain supports
are guaranteed to be unique.17"19 In addition, objects having
separated parts are more likely to be unique." Although it
is less well understood, nonnegativity also plays an impor-
tant role in uniqueness.

In this paper we establish a methodology for determining
the probability of phase-retrieval uniqueness in the practi-
cal sense. We have developed a method, suitable for small
images, for answering the questions: Given an arbitrary
object and its Fourier polynomial, how close is the nearest
factorable polynomial, and does it have an ambiguous solu-
tion that is significantly different from the given object? In
this paper we explore this question for the case of objects
defined within 2 X 2 and 3 X 2 supports. A derivation of
object-domain conditions for factorability provides a means
for finding nearest factorable polynomials through a con-
strained-minimization search over the space of 2 X 2 or 3 X 2
ambiguous images. These searches are implemented with
different object-domain constraints in a Monte Carlo simu-
lation to estimate the probability that the nearest factorable
polynomial, with an ambiguous solution that is significantly
different from a given object, is within some distance of the
given polynomial. Before describing these main results, we
first define the pertinent error metrics and discuss some
preliminary results of a grid-search method for finding local
minima in phase retrieval, and relationships among minima,
ambiguities, and phase-retrieval stagnation.
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2. OBJECT-TO-FREQUENCY-DOMAIN
MAPPINGS AND ERROR METRICS

A useful means for visualizing the ambiguity problem is
through a mapping between the space of objects (images)
and the space of Fourier moduli as illustrated in Fig. 1. In
Fig. 1 each domain is a finite-dimensional space in which any
one point represents a 2-D function. In this diagram IF(u,
v)I represents Fourier-modulus data for a unique object and
IGa(u, v)I modulus data for an ambiguous object, since both
ga and gac map into it. We refer to ga and gaC as ambiguous
counterparts of each other, gotten by conjugating one or
more of the Fourier-domain polynomial factors. For the
case depicted in Fig. 1, as indicated by the distances between
the points, two widely different images, f and gac, may have
similar, but not identical, Fourier moduli. Thus, although f
is unique, one might unknowingly reconstruct gac by a phase-
retrieval algorithm given a noisy measurement of IFI.

The following error metrics provide a means for quantify-
ing differences in both domains. These metrics are the
focus of the numerical approach presented in this paper.
(Other related error metrics are also useful.) Given two
real-valued functions g(x, y) and f(x, y) defined on an M X N
support and zero padded to a 2M X 2N array, we define the
Fourier-modulus error, the error (distance) between IF(u, v)I
and IG(u, )l, as

e(g, If) -

' IF(u, V)12

U")

where

IF(uX V) 1/2

Uf = u, J(10)

XMGu, V)l12

is an energy normalization factor, G(u, v) = DFT~g(x, y)I,
and u and v summations are taken over the intervals 0, 1,
., 2M- l and 0, 1, .. ., 2N- 1, respectively.

A similar metric defines the object-domain error between
f(x, y) and g(x, y):

Space of Objects Space of Fourier Modulus

Fig. 1. Object-space to Fourier-modulus-space mappings of a
unique object f and a pair of ambiguous images (ga, gac), with error
metrics 3 and e.

E [k~oex, y) - f(X, A)]2 1/

b(g, f) =- x'Y (11)

E~f2(X y)

where

ao = af sign[Z f(x, y)g(x, Y)]
x"y

(12)

and x andy summations are taken over 0, 1,_.. ,M- 1 and 0,
1, ... , N - 1, respectively. The parameter ago takes into
account any differences in scaling and polarity between g
and f. Translations are ignored here because the support
constraint automatically rules them out. Because g(x, y)
and its twin, g(M - 1 - x, N - 1 - y), share the same Fourier
modulus, we compute 6(g, f) for both g(x, y) and its twin and
use the smaller of the two values of 6. Of particular interest
from the point of view of phase retrieval are images that have
a small Fourier-modulus error e, but a large object-domain
error 6, since these images may be ambiguous in the practical
sense.

3. GRID SEARCHES

Our first approach to understanding the relationship be-
1V2 tween e and 6, for a collection of images g relative to a given

object f, was by a grid search. What we mean by a grid
, (9) search is illustrated as follows for the case of 3 X 2 (M = 3, N

= 2) objects. Given a 3 X 2 object f, we calculate e and 3 for
all 3 X 2 images g = gref + ginc, where gref is another 3 X 2 real-
valued image and

S1 S2 S3E S4 S5 S6]
(13)

where, given a real-valued increment As, each si can assume
values in the set fkAs; k =-L,-L + 1,...,0,1,... ,L}. Ifwe
think of both f and g as points in a six-dimensional (6-D)
space, then we are calculating e and 3 for all g's sampled on a
symmetric 6-D grid of step size As centered about the point
gref, with the grid width equal to 2L + 1 steps in each of the
six dimensions.

This search can become quite extensive as the grid width
increases. Since the number of different ginm's (grid points)
is (2L + 1)6, even a five-step search (L = 2) requires 15,625
calculations of e and 3. If the search uses the zero image for
gref, we can cut down on redundant calculations of e by
eliminating twin images and images with polarity [sign of
F(0, 0)] oppositef. Note that the saving is in the calculation
of e, which is computationally more expensive than the cal-
culation of 6.

Grid-Search Example
The use of a successively finer grid search to find minima in e
(which could constitute a phase-retrieval algorithm) and
shed light on the properties of e and 6 is illustrated in the
following example. An integer-valued image f was chosen:

[2 1 -2]4)
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6 (OBJECT-DOMAIN ERROR)
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Fig. 2. Fourier-modulus error E versus object-domain error 6 for a
five-step grid search with step size As = 1. The minimum value of e
(excluding g = f) is boxed.

A five-step search (L = 2) was implemented with gref equal to
the zero function and with As = 1; i.e., the pixel values of g are
taken from the set {-2, -1, 0, 1, 21. Since the search is
centered about the zero function, the twin and polarity
search-reduction techniques mentioned above were imple-
mented. The results are displayed in Fig. 2 in the form of a
scatter plot of e versus 3. Several features of the scatter plot
are noted:

(1) e is less than or equal to 3. The proof of this fact is
given in Appendix A.

(2) The vertical striping reflects the discrete nature of
the search, i.e., the elements of g take on only integer values.

(3) e and 6 can both be greater than unity, despite the
normalization that takes place in the denominators of Eqs.
(9) and (11).

(4) The scatter plot exhibits a banded type of structure,
i.e., the points tend to cluster in a region where both 6 and E
are large. This is not surprising, since we expect most im-
ages that are quite different in the object domain to be quite
different in the Fourier-modulus domain as well.

of 6. The minimum value of e for this grid search corre-
sponds to the image

[- 2 2 (16)

with 6(gl, f) = 0.704 and E(gl, f) = 0.0648.
We performed a third five-step search, with gref = g, and

As = 1/9. The image corresponding to the minimum e for
this search is

2 7 -17

92{10 -2 -22 (17)
9 3 9

with 3(g2, /) = 0.666 and f(g 2, f) = 0.0569.

Iterative Grid Searches
The iterative searching above is an approach for finding
minima of E. It is summarized more generally by the follow-
ing steps for the case of M X N = 3 X 2.

(1) Initialize. Choose gref, the number of search steps
(2L + 1), the step size (As), and a step-size reduction factor
(r).

(2) Perform a 6-D (2L + 1)-step search with g = gref +
ginc, where

S1 2 '3(
ginc =s 5 6 (18)

-[4 85 S6J

and each sj, j = 1,2,... ,6, is from the set IkAs; k = -L, -L +
1, . . . , 0, 1, . . . , L}.

(3) Setgref equal to the image, g, which has the minimum
value of E found in the search of the previous step.

(4) Set As equal to As/r.
(5) Stop if the stopping criterion is met; otherwise go to

step 2.

0.125

The single point of greatest interest, an outlier with large 6
and relatively small e, is outlined by a box in Fig. 2. It
corresponds to the image

go =
1 -21]'

-1 -2'
(15)

w

Un

LLI

-J

0
0

Q!:

0P,
IL
1
J,

with 6(go, f) = 0.714 and e(go, f) = 0.124. It is the point
within the grid search with the lowest value of E aside from g
= f. Since it represents the point on the grid search closest
to being a serious ambiguity, we explored it further by per-
forming another five-step search, with gref = go of Eq. (15)
and a step size of As = 1/3. Because gref is not the zero
function, no data reduction was implemented, and E and 6
were calculated for the 15,625 different grid points. Figure
3 shows the scatter plot for this second search for e < 0.125.
It is apparent that our initial search with unit steps was quite
coarse and that, compared with go, there are images with
significantly smaller values of e and comparably large values

0.1 

0.075 +

0.05
0.5 0.6 0.7

6 (OBJECT-DOMAIN ERROR)
0.8

Fig. 3. Fourier-modulus error e versus object-domain error a for a
five-step grid search with As = 1/3 about the minimum of the grid
search of Fig. 2. All points satisfying E < 0.125 are shown here.
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The stopping criterion is based on the percentage change
in the minimum value of e from iteration to iteration, or set
for a maximum number of iterations, whichever is satisfied
first. For a large value of L, the search time is prohibitive,
but the sampling is finer. Also, the initial step-size and
step-reduction factor must be chosen carefully, since the
step size at the kth iteration is As/(rkhl). If r is chosen too
large, the grid may shrink too quickly to progress to a mini-
mum. If As is too small, the minimum might not be found
because it lies outside the initial grid. The most reliable
search uses a slowly shrinking grid with a large number of
grid points (large L) that samples the space over a large
region. The more finely we sample the space, the more
computationally burdensome the algorithm becomes, yet a
coarser grid would leave doubt about the reliability of our
minimum.

This iterative search could constitute a phase-retrieval
algorithm. However, it would be a computationally ineffi-
cient algorithm, requiring many thousands of DFT's to con-
verge to a solution for the case of larger objects. Here we are
using it only to find a local minimum (the global minimum is
at g = ffor which e = 3 = 0).

The iterative grid search was tested for [given by Eq. (14)
and with the following three sets of parameters: (1) L = 1,
As = 1/2, r = 2; (2) L = 2, As = 1/3, r = 3; and (3) L = 3, As =
1/4, r = 4. Each iterative search started with gref = go given
by Eq. (15), corresponding to the minimum E found in the
first search described above. Each of these searches found a
scalar multiple of the same image, gmin, given by

[0.623 0.749 -1.8711
gmin =1.149 -0.659 -2.530J' (19)

with b(gmin, f) = 0.667 and E(gmin, f) = 0.0558. This probably
represents a deep local minimum for the phase-retrieval
problem and could represent a practical ambiguity if the
noise in the Fourier modulus data were to exceed e(gmin, f).

4. MINIMA AND PHASE RETRIEVAL

The minimum in e, represented by gmin found in the iterative
grid searches described above, represents two potential
problems for phase retrieval. First, a relatively small error
in the modulus data (5.58%) could cause the data to be
consistent with gmin, which, if reconstructed, would have a
very large object-domain error (66.7%). Second, even when
it is performing phase retrieval with error-free modulus
data, the algorithm could get trapped and stagnate at this
local minimum. In particular, the error-reduction (ER) ver-
sion of the iterative transform algorithm is equivalent to a
steepest-descent gradient search method on a cost function
closely related to e.24 Thus, if the local minimum found in
our iterative searches were a true local minimum, the ER
algorithm could stagnate at this image, unable to find a
direction in which to descend. To visualize how e and a vary
around gmins we plot e and 6 along the line joining f [Eq. (14)]
and gmin [Eq. (19)]. Figure 4 shows e(g, f) and 3(g, f) versus t
for

g = f + t(gmi -f) (20)

While Fig. 4 represents only a 1-D slice through a 6-D space,
it gives the appearance of a minimum in e at t = 1 (g = gmin)

1.5

LU)

0

LU
0.5 

0

e
(FOURIER-MODULUS ERROR)

6
(OBJECT-DOMAIN ERROR)

Fig. 4. e(g, f) and 6(g, f) versus t for g = f + t(gmin - f), the line
joining f and gmin-

When ER is performed on IFl with gmin as the initial guess,
stagnation occurs immediately, giving further evidence of
the presence of a local minimum.

As another test of ER's tendency to stagnate at a mini-
mum in e, we use g's corresponding to different values of t in
Eq. (20) as initial guesses. These values are selected on both
sides of the peak in the e curve in Fig. 4. We might expect
values of t chosen on the right-hand side of the peak to
correspond to initial guesses that stagnate at gmin and guess-
es chosen to the left of the peak to converge to the correct
solution, f. Several values of t were selected on both sides of
the peak, and the predicted result was verified for all initial
guesses.

The hybrid input-output (HIO) version of the iterative
Fourier-transform algorithm 2 4 is one way of climbing out of
local minima. Simulated annealing 3 3 is another. Cycles of
HIO iterations followed by ER iterations2 4 were used with a
variety of starting points: g0 , g1, g2, and gmi. In each case
the HIO/ER combination converged to the correct solution,
f, although ER by itself stagnated in each of these same
cases. As we will see below, HIO is not always sufficient to
overcome stagnation.

5. MINIMA AND AMBIGUOUS IMAGES

A clue to the understanding of the stagnation point de-
scribed above is its relationship to ambiguous images. Con-
sider again the object f given by Eq. (14). Using methods
that are described below, one can verify that the 3 X 2
ambiguous image whose Fourier modulus is closest to the
Fourier modulus of the object f is

=0.594
ga2.330

1.624 -1.2111
1.415 -1.730]'

(21)

with b(ga, f) = 0.217 and e(ga, f) = 0.0859. The ambiguous
counterpart to ga [gotten by conjugating one of the factors of
Ga(u, v)] is

-0.618 1.9871
0.600 2.837J

. . . .
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with 6(gac, f) = 0.677 and E(gac, f) = 0.0859. A comparison of
gmin [Eq. (19)] with -gac (which, for our purposes, is equiva-
lent to sac) reveals a similarity between this pair of images.
The error metrics reveal their similarity in both domains:
0(-gac, gmin) = 3(gac, gmin) = 0.113 and E(gac, gmin) = 0.0663.

Because -gac and 9min are quit similar, we might expect
the ER algorithm with an initial guess of -gac to stagnate at
gmin. This is indeed the case after approximately 50 itera-
tions. This result, coupled with the similarity between f
[Eq. (14)] and its nearest ambiguity, ga, might lead us to
conclude that ER would find the correct solution if it were
started with an initial guess of ga. This is not the case,
however, and the algorithm stagnates after fewer than 20
iterations at

[0.694
gstag -[2.235

1.778 -1.0101
1.355 -1.856]'

(23)

with O(gstag, f) = 0.152 and e(gstag, f) = 0.0631. This stagna-
tion point is close to g,,, with 3(ga, gstag) = 0.0828 and e(ga,
gstag) = 0.0577. Because gstag is not in the range of the
iterative grid searches that found 9min, it was not found
earlier. A plot of e and 6 along the line joining f and gstag is
shown in Fig. 5. Despite the difference in vertical scaling,
the minimum in Fig. 5 does not appear to be as deep as that
in Fig. 4, so one would suspect there might be a good chance
of perturbing gttag enough to get the algorithm out of stagna-
tion. As with gmin, it was verified that the HIO is able to
move out of stagnation at gstag and to the solution.

Figure 6 depicts the possible relationships in both do-
mains between f, its nearest ambiguous image and counter-
part, and the two stagnation points. From the previous
results we form the following conjecture: For a given object
f and its Fourier modulus IFI, stagnation points of the itera-
tive transform algorithm (particularly ER) tend to be near
ambiguous images that have Fourier moduli close to IFI.
This conjecture is supported more strongly by the following
example.

Consider the following image f and its nearest ambiguity,
ga, with ambiguous counterpart gac:

0.4 T

Fig. 6. Object-space to Fourier-modulus-space mappings of an ob-
ject f, two stagnated images gmin and gstag, and the nearest ambigu-
ous image to f with respect to the Fourier-modulus error (ga, gac)-

[0.476 3.244
f [1.659 2.939

[0.867 3.521
= [1.679 2.651

[0.350 2.146
gac =[0.677 2.475

1.3791

1.102]'

1.2781

0.796]

3.171]
1.9742

(24)

(25)

(26)

with b(ga, f) = 0.128, 6(gac, f) = 0.502, and e(g., f) = C(gac, f) =

0.00861. This is a case of a close ambiguity; i.e., the object, f,

would be ambiguous in the practical sense unless the data,
IFI, were low in noise. The ER algorithm was run close to
900 times on AF using a nonnegativity constraint, each time
with a different random initial start. The algorithm con-
verged to the correct solution f of Eq. (24) only 10% of the
time. The algorithm stagnated near ga approximately 9% of
the time and at several images close to gac the rest of the time
(81%). When a combination of HIO and ER was used with
the same set of random starts, convergence to the solution f
was improved to a 26% rate. 74% of the time the algorithm
stagnated at one of two different minima, g,1 and gs2, each
close to the image gac in Eq. (26):

[0.353 2.143
= [0.684 2.470

(27)

35% of the time, with 3(g 81 , gac) = 0.00195 and E(gsb, gac) =

0.00144, and

e
(FOURIER-MODULUS ERROR)

6
(OBJECT-DOMAIN ERROR)

Fig. 5. e(g, f) and 3(g, f) versus t for g = f + t(gstag - f), the line
joining f and gstag,

- [0.266 1.876 2.9711
- [0.746 2.711 2.222

(28)

39% of the time, with (g 82, gac) = 0.0978 and E(gs2, ga.) =

0.0115. The imagesgsl andg, 2 are analogous togmin in Fig.6.
While convergence to g31 is bad in the sense that g41 is differ-
ent from the solution f [3(g,1, f) = 0.502], it is still consistent
with the given data [e(g81, f) = 0.00848] and could be consid-
ered a solution (albeit the wrong one). The stagnation at g82

is even more troublesome since it is not only similarly consis-
tent with the given data [E(gs2, f) = 0.00869] and far from f
[3(gS 2 , f) = 0.511] but also is not so close to gac [6(gs 2 , gac) =

0.0978].
A complete understanding of phase-retrieval stagnation

points and their relationship to ambiguous images is not yet
available. However, from the limited number of experi-
ments of the type described above, we can say that stagna-
tion points are often related to ambiguous images.

0.3+

0.2 +

a:

C'i

a:0

0.1+

0
-1 0 1 2
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6. NEAREST AMBIGUITIES

In this section we investigate the space of ambiguous images
in order to gain some insight into just how close the nearest
ambiguous image is to a typical image. This may in turn
have implications about how nearest ambiguities relate to
stagnation points encountered in iterative phase retrieval.
It also will tell us the probability of an ambiguity in the
practical sense, as a function of the noise in the Fourier-
modulus data.

Object-Domain Conditions for Ambiguity
As described above, ambiguous images are characterized in
the Fourier domain by factorable Fourier transforms and in
the object domain by being expressible as the convolution of
two or more smaller images. We choose the object-domain
relationship to characterize the space of ambiguous images.
We begin by deriving the ambiguity condition for the small-
est possible 2-D ambiguous image (2 X 2 support) and then
similarly derive it for a 3 X 2 support.

2 X 2 Ambiguity Conditions
Consider the case of a real-valued image on a 2 X 2 support.
It is ambiguous if it can be expressed as the convolution of
two 1-D sequences:

[C d] = -] gh

= [eg eh (29)

where e, f, g, and h are all nonzero (for simplicity only the
nonzero rows and columns of the arrays are shown). This
gives the following equations for a, b, c, and d:

a -= eg,
b = eh,

c = [g,

d = [h.

(30a)

(30b)

(30c)

(30d)

Multiplying Eq. (30a) with Eq. (30d) and Eq. (30b) with
Eq. (30c), we arrive at the following 2 X 2 convolution condi-
tion:

Note that the inequalities of relation (32b) combined with
Eq. (32a) imply that ibl F-. Idl 5'D Id.

Equation (32a) describes a three-dimensional surface in
the four-dimensional space of real-valued 2 X 2 images.
While it is accepted that there is zero probability that an
arbitrarily selected object will land on this surface, i.e., the
phase-retrieval problem is almost always (with probability
1) unique, in this paper we are concerned with how close the
Fourier modulus of a given object is likely to be to the
Fourier moduli of images lying upon this surface.

3 X 2 Ambiguity Conditions
The same approach is used to formulate object-domain am-
biguity conditions for 3 X 2 images. A 3 X 2 image results
from convolving either (a) a 3 X 1 sequence with a 1 X 2
sequence or (b) a 2 X 1 sequence with a 2 X 2 image. Since it
is known that any 1-D sequence can always be written as the
convolution of smaller sequences, we can write the 3 X 1
sequence of case (a) as the convolution of two 2 X 1 se-
quences. We can then combine one of these factors with the
1 X 2 factor to give case (b). Thus we need only consider
case (b), and our 3 X 2 image is ambiguous if

Id e if] I gh k 1]

= gi hi +gj hjl
gk hk + gl hi]' (33)

where g and h are nonzero and none of the pairs (i and j) or (i
and k) or (j and 1) or (k and 1) is zero. This gives six
nonlinear equations for a, b, c, d, e, and f in terms of g, h, i, j,
k, and 1. As is shown in Appendix B, these equations can be
solved to give the following ambiguity condition:

(a[- cd)2- (ae - bd)(bf- ce) = 0. (34)

Equation (34) describes a five-dimensional surface in the 6-
D space of real-valued 3 X 2 images. In comparison, for the
2 X 2 case the ambiguity surface describes a three-dimen-
sional surface embedded within a four-dimensional space.
Appendix B also shows that Eq. (34) can be solved to give,
for example, b in terms of the remaining five values:

b = = [e(c + - (e2 - 4df)l1/2 (C _ a)].
In this case a single ambiguous counterpart to an image
satisfying Eq. (31) is generated by convolving one of the 1-D
sequences by the flip (rotation by 1800) of the other (equiva-
lent to conjugating the corresponding Fourier factor). How-
ever, if e = f and/or g = h (i.e., one of the 1-D sequences is
symmetric), then flipping the factor has no effect, and the
image is still unique. Furthermore, if e =-f and/or g =-h,
then a flip of either convolution factor becomes the negative
of the original factor. Since we do not consider two images
that differ by a scalar multiple (-1 in this case) as ambigu-
ous counterparts, we must also rule out this special case of
negative symmetric factors. Therefore the image is unique
if lel = Ifi or if Igl = lhl. From Eqs. (30) we see that, if lal = lc
or lbl = Idl, then lel = Ifl, and if lal = Ibl or lcl = Idl, then igl =
lhl. When these special cases are combined with Eq. (31),
the ambiguity condition for the case of 2 X 2 support be-
comes

ad = bc, (32a)

lbl 5,# lal 5,d Icl. (32b)

(35)

An ambiguous, real-valued 3 X 2 image arising from the
convolution of a 2 X 1 sequence with a nonfactorable 2 X 2
image can be shown to have an ambiguous counterpart that
must also be real valued. However, if the 2 X 2 convolution
factor of Eq. (33) can itself be factored, then we have the case
of a 3 X 2 image resulting from the convolution of a 3 X 1
sequence with a 1 X 2 sequence. An ambiguous, real-valued
image formed in this way will have rows that are scalar
multiples of one another; i.e., a = Kd, b = Ke, and c = Kf for
some scalar K. This condition makes each difference term
in Eq. (34) equal to zero. It is straightforward to show that if
b 2 < 4ac, then this real-valued ambiguity will have a com-
plex-valued ambiguous counterpart. If the image is con-
strained to be real valued, then this complex-valued image
does not constitute an ambiguity within the space of real-
valued images. Furthermore, because this special case is a
small subset of the entire ambiguity surface, we expect it to
have a relatively minor effect on the likelihood of stagnation
due to nearby ambiguities.

ad = bc. (31)
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Fig. 7. Flow chart for determining the ambiguity of the 3 x 2 real-
valued image of Eq. (33). Multiple conditions in a box must all be
satisfied for "YES," except where "or" is specified.

The ability to factor an image into the convolution of two
or more images is necessary, but not sufficient, for determin-
ing ambiguity. When we discussed the ambiguity condition
for 2 X 2 images, we considered the special cases of what we
called symmetric and negative-symmetric convolution fac-
tors. These special cases, as well as the effect of zero-valued
pixels, also must be considered for 3 X 2 images. To save
space, rather than discussing these exceptions in detail we
summarize them in the ambiguity flow chart in Fig. 7.

Nearest Ambiguity by Means of Constrained
Minimization
The mathematical description of ambiguities for 2 X 2 and 3
X 2 images can be used to investigate the nearness of a given
object to an ambiguous image. We formulate the task of
finding the ambiguous image nearest a given object as a
multidimensional constrained-minimization problem. By
nearest ambiguity we mean the image on the ambiguity
surface for which some objective function involving the am-
biguous image and the given object is minimized. For the
objective function we choose

E(g, f) = E [IG(u, u)I - IF(u, v)1]2, (36)

u,v

which is just C
2

(g, f) of Eq. (9) with af = 1 and without the
normalization.

EachM X N image, having L = M X N pixel values, can be
thought of as a single point in an L-dimensional vector space.
To emphasize this fact we can denote an image g by the L-
dimensional vector x, where x = (a b c d)t for the 2 X 2 case
and x = (a b c d e P for the 3 X 2 case (the ordering of the
pixels in the vector x is arbitrary). Therefore, for a given
image f, we desire to find x (or g) on the ambiguity surface
that minimizes E(x) - E(g, f). (Note that if we did not
constrain x to be on the ambiguity surface, then we would
just be solving the phase-retrieval problem!) If we define
the ambiguity surface by h(x) = 0, then the problem of
finding the nearest ambiguity to f can be stated as follows:

Given an object f, find the * that minimizes the objective
function E(x) subject to the ambiguity condition h(i) = 0.

The two image supports for which we have derived ambi-
guity conditions [Eqs. (32) and (34)] give rise to the following

2X4):

2 X 2 Images (L = 4)

hl() = ad-bc = O, (37)

3 X 2 Images (L = 6)

h(0) = (af - cd)2 - (ae - bd)(bf - ce) = 0. (38)

Iterative Constrained Minimization
Using the mathematical framework developed above, we
now implement a generalized reduced-gradient (sometimes
referred to as a gradient-projection) method3 4 to find the
nearest ambiguity to a given image. This method is ex-
plained in detail in Appendix C and is summarized below.

In an unconstrained gradient-search method, we search
for a minimum to the objective function E(x) in the direction
of -VE(9), the negative gradient of that function. In a
constrained search we still would like to follow the negative
gradient, but we are constrained to move along a particular
surface within the space, described by the equation h(x) = 0.
We alter the search direction by projecting -vE(x) onto a
tangent plane of h(g), and we then move along the plane in
the direction of the projection, p, as depicted in Fig. 8.
Then, from a point along p, which is generally not on the
constraint surface, we find a nearby (not necessarily the
closest) point on the constraint surface. The method used
here to return to the constraint surface is detailed in Appen-
dix C. The search for the solution is iterative, and we define
our estimate of the solution after the kth iteration as 4. At
the solution, 5, -vE(x) is perpendicular to the tangent
plane to the constraint surface, and the projection onto the
tangent plane is zero.

It is difficult to determine whether the minimum found is
indeed the global minimum or just a local minimum. In a
numerical simulation such as this, one can gain confidence in
claiming a minimum as global only through repeated search-
ing with different initial guesses. Our practical criteria for
claiming that a minimum, x, is global is that E(Xs) is the
smallest among all minima found and that it is found more
than twice as many times as the total number of minima

Tangent Plane

=XR a

Constraint Surface
h(x) = 0

Fig. 8. Gradient-projection constrained-minimization algorithm.
The search direction is determined by projecting the negative gradi-
ent of the objective function onto the tangent plane to the constraint
surface.
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found, which must be more than four. If the above criteria
are not satisfied after 40 different minima are found, then
the one that minimizes E(x) is chosen (and we simply realize
that it may not be the global minimum). It should be noted
that at points on the surface where vh(G) = 0 the tangent
plane is not defined. If such a singular point is encountered
the search may terminate without satisfying a convergence
criterion, but the estimate at the singular point may still
minimize the objective function over all other estimates (see
Appendix C).

Although the constrained-minimization algorithm mini-
mizes an objective function defined in Fourier-modulus
space, the search itself takes place on surfaces in object
space. The minima found on the surface of Eq. (37) will
always correspond to images with two convolution factors,
and that usually will be the case for the minima found on the
surface of Eq. (38) as well. Thus the nearest ambiguity in
Fourier-modulus space to an object f corresponds in object
space to any of four images (not counting scalar multiples of
these images): the ambiguity, its ambiguous counterpart,
and the twin image of each. So, once we have an estimate of
the global minimum with respect to Fourier-domain error
[Eq. (36)], denoted by gl, we calculate the object-domain
error 6 for g, and its twin image, retaining the smaller of the
two values. We then find the ambiguous counterpart to gi,
denoted byg 1c, by convolving one of the factors of g, with the
twin of the other. After finding the smaller 6 for gl, and its
twin, we keep as the worst-case nearest ambiguity the larger
of this 6 and the one retained for g, and its twin. Referring
back to Fig. 1, the smaller value of a corresponds to the
nearest ambiguity in the object domain, ga, and the larger
retained value of 6 corresponds to its ambiguous counter-
partg 8c, the worst-case nearest ambiguity. Althoughga and
gac are both nearest ambiguities to f with respect to Fourier-
domain error, we differentiate them by defining the worst-
case nearest ambiguity as the one with the larger value of the
object-domain error, 6, with respect to f. The worse-case
nearest ambiguity corresponds to the point in object space
farthest from the true image that either is likely to cause
local minima to trap phase-retrieval algorithms or could be
confused with the true image if the squared error in the data
exceeds E0x).

Monte Carlo Simulations
To investigate the prevalence of ambiguities we implement-
ed the constrained-minimization nearest-ambiguity search
in a Monte Carlo simulation in which nearest ambiguous
images were found for a large number of random objects f(x,
y). Each pixel of the object was an independent, real-valued
random number uniformly distributed on the interval [-2,
2] or [0, 4] for nonnegative objects. The results of the Monte
Carlo simulations are presented in the form of scatter plots
of e versus 6 for the worst-case nearest ambiguity. For each
random object f, the value of e for the nearest ambiguity is
plotted versus the worst-case 6. The interpretation of these
scatter plots should not be confused with that of the grid-
search scatter plots shown above. Recall that all the (6, e)
pairs in a grid-search scatter plot are calculated by using a
single objectf and have nothing to do with ambiguities, while
each (6, E) point in Monte Carlo scatter plot represents met-
rics for the worst-case nearest ambiguity to a different ran-
dom object f. We computed these plots for five separate

cases: (1) 2 X 2 objects without a nonnegativity constraint
on f, (2) 2 X 2 objects with a nonnegativity constraint, (3) 3 X
2 objects without a nonnegativity constraint, (4) 3 X 2 ob-
jects with a nonnegativity constraint, and (5) L-shaped (with
b = c = 0) 3 X 2 objects with a nonnegativity constraint. The
five cases above represent different constraints on f. The
only constraint on the worst-case nearest ambiguity, gac, is
that it lie upon the ambiguity surface corresponding to the
support of f.

A typical scatter plot of -4000 points required '110 h for
the 2 X 2 objects and '1500 h for the 3 X 2 objects on an IBM
AT personal computer.

The scatter plots of e versus 6 for the 2 X 2 support cases
(1) and (2) are shown in Fig. 9. The points that would cause
trouble are those that have small Fourier-modulus error
(FME), E, and significantly larger object-domain error
(ODE), 6. These troublesome points are likely to induce
phase-retrieval algorithm stagnation and/or are ambiguous
from a practical point of view when the Fourier-modulus
data are sufficiently noisy. One definition of a trouble re-

0.5s
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0
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6 (OBJECT-DOMRIN ERROR)
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Fig. 9. Fourier-modulus error e versus object-domain error 6 for
worst-case nearest ambiguities to 2 X 2 objects. (a) No nonnegati-
vity constraint, 4752 objects; (b) nonnegativity constraint, 4486
objects.
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50 o. NO NONNEGRTIVITY, 6 > 46
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a NONNEGRTIVITY, 6 > 46
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Fig. 10. Monte Carlo estimates of the probability that the worst-
case nearest ambiguity to 2 X 2 objects with and without a nonnega-
tivity constraint has a Fourier-modulus error less than e and an
object-domain error greater than Ke (K = 4 and K = 10).

and (4)] reveals the opposite trend. Figure 11 shows the e
versus 6 scatter plots for the nearest 3 X 2 ambiguities with
and without a nonnegativity constraint on f. With no non-
negativity constraint, the scatter plot of Fig. 11(a) is uniform
in appearance, indicating a greater likelihood of nearby am-
biguities in the trouble regions. With the nonnegativity
constraint, Fig. 11(b) shows a high concentration of points in
the large e, large 6 region of the plot, away from the trouble
region. It is the nonnegativity constraint that creates the
favorable banding effect for the 3 X 2 case. Integrating
these plots below the K = 4 and K = 10 lines yields the
probability distributions of Fig. 12. In comparison with the
example given for the 2 X 2 nonnegative case, the probability
of finding a worst-case nearest ambiguity with FME e < 0.04
and ODE 6 > 0.16 is increased to 17% without nonnegativity
but reduced by approximately one half to 9% with the non-
negativity constraint on f.

One possible reason that nonnegativity reduces the proba-
bility of significant ambiguity for the 3 X 2 case is as follows.
From Eq. (35) we see that there are no real-valued ambigu-

0.5-

gion is all the points below the line 6 = Ke, shown in Fig. 9 for
K = 4 and K = 10. That is, we do not consider the practical
ambiguity problem to be significant unless the error, 6, in the
ambiguous reconstruction or stagnation point exceeds 4
times (or 10 times) the error in the Fourier-modulus data.
Only then would we consider the ambiguity to be significant.
(Although it was easy to show in Appendix A that 6 > e for
any pair of images, an analgous relationship for an image and
its worst-case nearest ambiguity has not been developed.)
Figure 9(a) (no nonnegativity constraint on f) exhibits a
banded structure with a higher density of points above the 6
= 4E line, which effectively reduces the probability of nearest
ambiguities in the trouble region. Figure 9(b) (nonnegati-
vity constraint on f) reveals a higher density of points in the
trouble region, particularly for 6 <0.5. Thus the nonnegati-
vity constraint on f actually increases the probability that a
random object's Fourier modulus is close to that of an am-
biguous image for the 2 X 2 case.

One way to estimate the probability of significant ambigu-
ity is to integrate these scatter plots in the trouble region
below the line 6 = Ke. If we bin the points below this line
with respect to e, we can obtain an estimate of the probabili-
ty-density function of the probability that the worst-case
nearest ambiguity has FME e and 6 > Ke. Integrating this
estimated probability-density function from 0 to e yields an
estimate of the probability that the worst-case nearest ambi-
guity to an arbitrary object has less than e FME and ODE 6 >
Ke. These cumulative probability distributions define what
we mean by the probability of significant ambiguity. These
distributions for cases (1) and (2) are shown in Fig. 10 for K
= 4 and K = 10. Figure 10 verifies our previous observation
that the nonnegativity constraint actually improves the
chance of significant ambiguity. For example, these esti-
mated distributions tell us that, given an arbitrary, real-
valued 2 X 2 object, the probability of finding a worst-case
nearest ambiguity with FME e < 0.04 and ODE 6 > 0.16 is
10% for f without nonnegativity and 18% for f with nonnega-
tivity.

The same analysis for the 3 X 2 object support [cases (3)
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Fig. 11. Fourier-modulus error E versus object-domain error 6 for
worst-case nearest ambiguities to 3 X 2 objects. (a) No nonnegati-
vity constraint, 4112 objects; (b) nonnegativity constraint, 4601
objects.
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Fig. 12. Monte Carlo estimates of the probability that the worst-
case nearest ambiguity to 3 X 2 objects with and without a nonnega-
tivity constraint has a Fourier-modulus error less than e and an
object-domain error greater than Ke (K = 4 and K = 10).

ous images for which e2
- 4df < 0. Since -4df is negative for

positive d andf, but is positive if one of them is negative, e2 -

4df is more often negative for nonnegative images. Thus
nonnegative objects are less likely to have nearest ambigu-
ities that are nearby (in the object domain) than are objects
without a nonnegativity constraint. Since objects that are
similar in the object domain will tend to be similar in the
Fourier-modulus domain, the nearest ambiguities to non-
negative objects are less likely to be nearby with respect to
Fourier modulus as well.

An important point that should be stressed is that the
nonnegativity constraint discussed in this section is on the
object f and not on the nearest ambiguity. Because of this
fact, the nearest ambiguous image to a nonnegative object
might not be nonnegative itself; it could contain one or two
negative-valued pixels. Thus a nonnegativity constraint in
a phase-retrieval algorithm may help to move the image
away from a stagnation point near the ambiguity, and the
probability of ambiguity in the practical sense would be
reduced compared with the results shown here.

At this point it is useful to recall the conjecture made in
Section 5, i.e., that stagnation points of the iterative Fourier-
transform algorithm tend to be near ambiguous images that
have Fourier moduli close to the given Fourier modulus, Wl.
The example given in Section 5 used an object f and its
.nearest ambiguity [Eqs. (24)-(26)] taken from the Monte
Carlo experiment with 3 X 2 nonnegative objects. Recall
that, for the object f of Eq. (24), after numerous trials we
found two stagnation points, gs, and gs2, of both the HIO and
ER versions of the iterative Fourier-transform algorithm.
The closeness in both domains of these stagnation points to
the worst-case nearest ambiguity, gac [Eq. (26)], was shown.
A few more simulations of this type were performed for
different nonnegative 3 X 2 objects. Objects were selected
based on the locations in Fig. 11(b) of their worst-case near-
est-ambiguity error metrics. All objects selected had a
worst-case nearest ambiguity with 0.45 < 6 < 0.55. Three
objects with (significant) worst-case nearest ambiguities
with e < 0.05 [as was the case for f of Eq. (24)] were selected,

and, compared with the 26% success rate for f with HIO, the
true solution was found 48%, 49%, and 59% of the time,
respectively, by using HIO on these three objects. As with f,
when the true solution was not found, the algorithm stagnat-
ed near the worst-case nearest ambiguity (gac) to each of the
three objects. Two objects with a worst-case nearest ambi-
guity with e 0.10 converged to the true solution 78% and
100% of the time, and another object with a worst-case near-
est ambiguity withe = 0.30 converged to the solution 100% of
the time. Thus stagnation tends to decrease as the nearest
ambiguities move farther away with respect to e (equivalent-
ly, as the significance of ambiguity decreases). As men-
tioned above, the limited number of experiments of this type
has not yet provided us with a complete understanding of
phase-retrieval stagnation points and their relationship to
worst-case nearest ambiguous images. Nevertheless, the
correlation of the object's worst-case nearest ambiguity hav-
ing large 6 and small e (e < 0.05 for our experiments) with the
presence of stagnation points has been convincingly estab-
lished.

The final case investigated is nonnegative, 3 X 2 objects
with b = c = 0, which we call L-shaped objects. The L-
shaped support itself mandates uniqueness; i.e., it is not
possible to convolve two nontrivial functions to obtain an
image with this support. After running the Monte Carlo
simulation for these objects, we discovered a class of L-
shaped ambiguities that gives rise to misleading results.
Consider the object

rl.48155 0 01
L2.01553 3.97050 0.168311'

with nearest 3 X 2 ambiguous image

[1.48170 6.29E-4 -2.78E-31
= [2.01419 3.97109 0.169071

=[ 004354] [201.48170
= [10.0354 * 2.01419

-0.063881
3.88340]'

(39)

(40)

with 6(ga, f) = 7.015E-4 and ((ga, f) = 4.167E-4. The ambig-
uous counterpart to ga, obtained by flipping the first convo-
lution factor in Eq. (40), is

gac = [0.045354 1] * 1419

= [0.06451 1.47892
0.08769 2.18326

-0.063881
3.883401

-0.063881
3.883401

(41)

The object-domain error between f and gac as defined by Eq.
'(11) is 6(gac, f) = 1.0629. However, comparison of f and gac
reveals that the image gac is similar to the image f shifted by
one pixel to the right. This is because the first convolution
factor of Eq. (41) is nearly a delta function, and the second
factor is very similar to the image f without its right-hand
column. The first convolution factor causes a tapering of
the image, making one column much smaller in value than
the other nonzero pixels. Flipping one of the convolution
factors simply shifts the significant pixels and moves the
tapered column to the other side of the image. Because the
object-domain error metric 6 does not take such shifts into
account, the value of 6(gace, ) calculated for this case is much
too large, resulting in a misleading point on the scatter plot.
(If the calculations were to be redone, then this problem
could be accounted for by cross correlating gac with f and

I
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shifting ga, according to the cross-correlation peak to mini-
mize 6.)

A similar problem may occur if the shorter leg of the L-
shaped support is tapered, leading to nearest ambiguities
that are close to 1-D sequences. To reduce the misleading
effects of tapered images on our analysis, we consider only
those images that satisfy a bound on the robustness of the L
shape. An L-shaped image [d ° f] has L robustness R%,
defined by

R = minfa, [A/[(a2 + d2 + e2 + f2)/4]11/2. (42)

Images with large R are robustly L shaped, whereas images
with small R (strongly tapered) are only weakly L shaped.

It should be noted that the same taper problem can also
cause misleading ODE calculations of worst-case nearest
ambiguities for the 2 X 2 and 3 X 2 images in cases (1)-(4).
In these cases, whole rows or columns would have to be
significantly smaller than the rms pixel intensity of the im-
age. Since the images are random, it is much less likely for

50 T

40

is-

> 30

m 200
cc
0L

10

3 x 2 L-SHRPED IMRGES:

0 L-robustness > 10%, 6 > 4E

Q L-robustness > 10%, 6 > toe
A L-robustness > 25%, 6 > 4C

X L-robustness > 25%, 6 > roc

0 0.04 0.08 0.12 0.16 0.2
C (FOURIER-MODULUS ERROR)

Fig. 14. Monte Carlo estimates of the probability that the worst-
case nearest ambiguity to 3 X 2, nonnegative, L-shaped objects with
L robustness greater than R% (R = 10 and R = 25) has a Fourier-
modulus error less than e and an object-domain error greater than
Ke (K = 4 andK = 10).

0.5 1

6 (OBJECT-DOMRIN ERROR)

(a)

0.5 1

6 (OBJECT-DOMAIN ERROR)

(b)

Fig. 13. Fourier-modulus error e versus object-domain error 6 for
worst-case nearest ambiguities to 3 X 2, nonnegative, L-shaped
objects. (a) L robustness > 10%, 3190 objects; (b) L robustness >
25%, 2714 objects.

this to occur in cases (1)-(4) for which two or more pixels
must be small simultaneously than for the L-shaped case (5)
for which only a single pixel must be small.

The worst-case nearest-ambiguity scatter plots for non-
negative, L-shaped images with L robustness greater than
10% and 25% are shown in Fig. 13. As the L-robustness
requirement is increased, many points clustered about the 6
axis disappear. (Had we been able to calculate 6 with image
shifts taken into account, we would have found these points
moving horizontally into the small 6, small e region of the
plot.) Despite the nonnegativity of f, these scatter plots are
less banded than for general 3 X 2 nonnegative objects-case
(4) in Fig. 11(b). This is verified by the estimated distribu-
tions for both taper percentages (Fig. 14). For the case of L
robustness greater than 25%, the distributions of Fig. 14
achieve a lower probability than does case (4) for values of e
less than 0.07, reflected by the small number of points near
the origin of the plots in Fig. 13. Therefore, for the low-
noise case, the L-shaped support constraint not only pre-
vents ambiguity in the absolute sense but it also makes
ambiguity less likely in the practical sense.

7. SUMMARY AND CONCLUSIONS

An ambiguous image is one whose Fourier modulus is identi-
cal to the Fourier modulus of a second image that is other
than a scaled version, a translation, or a twin of the image.
Arbitrary objects are almost never (i.e., with probability
zero) ambiguous. Nevertheless, the existence of an ambigu-
ous image close to a given object has two harmful effects: it
causes stagnation points for phase-retrieval algorithms and,
for the case of noisy Fourier-modulus data, it may cause the
solution to be ambiguous in the practical sense. Because of
the nonlinearity of the phase-retrieval problem, these issues
are difficult to characterize analytically. We investigated
the prevalence of ambiguous images for the phase-retrieval
problem, using numerical approaches. This is practical be-
cause we considered the case of small objects defined on 2 X
2 and 3 X 2 supports.
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Using both a new iterative grid-search algorithm and the
iterative Fourier-transform algorithm, multiple phase-re-
trieval experiments were performed, and stagnation points
were found that correspond to local minima in the Fourier-
domain error metric. These stagnation points were shown
to be close to ambiguous images whose Fourier moduli are
close to the modulus of the Fourier transform of the object.
The implication is that the existence of the ambiguous im-
ages causes the local minima to occur. However, the precise
relationship between the local minima and the ambiguous
images is not yet understood, and nearest ambiguities may
not be the sole cause of stagnation.

The prevalence of ambiguities close (with respect to Fou-
rier modulus) to a given object was explored by a Monte
Carlo experiment in which nearest ambiguities were found.
First, object-domain analytic expressions for the set of am-
biguous images were derived for both the 2 X 2 and 3 X 2
supports [Eqs. (37) and (38)]. For the 2 X 2 case, the set of
ambiguous images forms a three-dimensional surface em-
bedded in the four-dimensional space of 2 X 2 real-valued
images. For the 3 X 2 case, the set of ambiguous images
forms a five-dimensional surface embedded in the 6-D space
of 3 X 2 real-valued images. Next, a reduced-gradient
search technique was used to search along the surfaces of
ambiguous images to find the ambiguous image nearest a
given object with respect to Fourier modulus. Of the nearest-
ambiguity pair of images, one is usually close to the object f,
while its ambiguous counterpart is usually a worse case: it is
much farther from the given object, yet it has a Fourier
modulus identical to the ambiguous image that is close to f.
Histograms of Fourier-modulus-domain versus object-do-
main errors were accumulated in Monte Carlo experiments
involving numerous random objects and their worst-case
nearest ambiguities. Integration of the histograms, over the
points for which the object-domain error is large relative to
the Fourier-modulus error, yielded estimates of the proba-
bility that a significant ambiguity would occur within a given
Fourier-modulus error tolerance. It was found that nonneg-
ativity of the object decreased the probability of significant
ambiguity for the 3 X 2 case (as anticipated) but increased
the probability of significant ambiguity for the 2 X 2 case.
However, since the ambiguous images were allowed to have
negative values even when the objects were restricted to be
nonnegative, it is likely that the imposition of a nonnegativ-
ity constraint in a phase-retrieval algorithm would help to
avoid some of those ambiguities. L-shaped images, whose
support guarantees uniqueness in the absolute sense, were
also investigated. It was found that, for low-noise data, the
L-shaped support of the object also makes ambiguity less
likely in the practical sense.

Future work should include the application of this ap-
proach to objects with larger supports. This is important
since it is difficult to extrapolate from these results for 2 X 2
and 3 X 2 supports to the case of most interest: supports
with many pixels in each dimension. The probability of
significant ambiguity for the 3 X 2 case was of similar magni-
tude to that of the 2 X 2 case. This is probably because the
ambiguity surfaces in both cases were of dimension one less
than the dimension of the space of objects. When larger
objects are considered, however, this changes. For example,
for 3 X 3 objects

a b c

d e f ,
_g h iJ

factoring into a (3 X 2) convolved with a (1 X 2), the ambigu-
ity condition is given by the simultaneous equations

(ah-bg) 2 -(ae-bd)(dh-eg) = O (43)

and

(ah - bg)(af- cd) - (ae - bd)(ai - cg) = 0. (44)

These describe two eight-dimensional surfaces embedded in
a nine-dimensional space of 3 X 3 real-valued objects, the
intersection of which would ordinarily be expected to be a
seven-dimensional surface embedded in the nine-dimen-
sional space. The ambiguity condition for the factoring of a
3 X 3 object into a (2 X 2) convolved with another (2 X 2) is
also given by a pair of simultaneous equations describing two
eight-dimensional surfaces embedded in a nine-dimensional
space, the intersection of which would ordinarily be a seven-
dimensional surface in the nine-dimensional space. Thus
for these larger images the dimensionality of the surface of
ambiguous images is smaller relative to the space of all ob-
jects than for the 2 X 2 or 3 X 2 case; consequently one would
expect the probability of significant ambiguity to be less for
these larger images. The importance of the shape of the
support constraint (convex versus nonconvex versus sepa-
rated parts, etc.) may also reveal itself more forcefully for
larger supports. Finally, a better understanding of the pre-
cise relationship between local minima and nearest ambigu-
ous images could lead to methods for avoiding phase-retriev-
al algorithm stagnation at local minima.

APPENDIX A: PROOF THAT e < 6

By definition, laol = af, or ao = +af. The proof that e(g, f) l
6(g, f) can be given by using Parseval's theorem with the
definition of 6(g, I):

69gf) = [ceog(x, y) - [(x, y)]2/Z f2(X, y)]

= [E i~afG(u, v) - F(u, v)12/ IF(u, V)12]

(Al)

By the triangle inequality, given two vectors, vl and v2, Ivi -

v212 2 [luVl - Iv2l]2. Therefore

I+afG(u, v) - F(u, v)12
> [aflG(u, v)l - IF(u, V)1]2. (A2)

Inserting inequality (A2) into Eq. (Al), we have

6(g, f) 2 [ [afIG(u, v)I-IF(u, V)1]2/E IF(u, V)12]

- e(g, f). (A3)
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APPENDIX B: DERIVATION OF 3 X 2
AMBIGUITY CONDITION

Equation (33) gives us the following six equations:

a = gi,
b = hi + gj,
c = hj,

d =gk,
e = hk + gl,
f = hl.

Multiplying Eqs. (Bla) and (Blf) gives

af = ghil,

and multiplying Eqs. (Bic) and (Bld) gives

cd ghjk.

Combining these yields

(af - cd)2 = g2 h2(il - jk)2 .

Simply stated, all vectors y in the tangent plane T are per-
pendicular to the gradient of h(x) at x*.

In an unconstrained gradient-search method, we would
search for a minimum to the objective function E(x) in the

(Bla) direction of the negative gradient of that function, -vE(G).
(Blb) In a constrained search, however, the solution is constrained
(Bic) to a particular surface within the space, and we must alter

the direction of the search to remain on the surface. We do
(Bld) this by projecting -vE(G) onto a tangent plane of h(x) and

(Bie) moving along the plane in the direction of the projection, p.
(Blf) Because points lying along p in general will not lie upon the

constraint surface, the goal is to move along p and then to
return to the surface h(x) = 0 such that there is a sufficient

(B2) decrease in the objective function. More will be said below
about how to return to the surface from the projection onto
the tangent plane.

(B3) The solution point, t,, satisfies the following first-order
condition:

(B4)

From Eqs. (Blb), (Bic), (Ble), and (Blf) we have

(bf - ce) = h2(il - jk), (B5)

and from Eqs (Bla), (Blb), (Bid), and (Ble) we have

(ae - bd) = g2(il - jk). (B6)

Taking the product of Eqs. (B5) and (B6) yields

(ae - bd)(bf - ce) = g2h2(il - jk)2 . (B7)

From Eqs. (B4) and (B7) we arrive at the result

(af- cd)2 - (ae - bd)(bf- ce) = 0. (B8)

This equation is the condition that must be met in order for
the 3 X 2 image of Eq. (33) to be ambiguous.

From Eq. (B8) we can solve for any of the six variables in
terms of the other five. For example, by expanding and
collecting powers of b, we arrive at

b2(df) - b(aef + cde) + ace2 + (af - cd)2 = 0. (B9)

The solution of Eq. (B9), which is quadratic in b, is given by

b [e(af + cd) ± (e2 - 4df)112 (af - cd)]
2df

= I [e(f + d (e - 4dDi/2 (C - (B10)

APPENDIX C: GENERALIZED REDUCED-
GRADIENT METHOD

The generalized reduced-gradient method is a gradient-pro-
jection technique used to apply a set of constraints to a
minimization problem. The application discussed here uses
a single nonlinear homogeneous constraint, h(x) = 0, and the
discussion is presented with this assumption. We begin by
defining the tangent plane to a surface:

Given a point x* satisfying h(x*) = 0, the tangent plane T
at that point is T = {y: vh(x*) * y = 0O, where v denotes the
gradient with respect to x and -denotes the dot product.

All y satisfying vh(xt) * y = 0 (in the tangent plane at xS)
must also satisfy -VE(.s-) -y = 0.

The above definition implies that, at the solution, -vE is
parallel to vh, which in turn implies that the projection p is
zero. Note that the above definition applies to any mini-
mum and not just to the global minimum.

The search is iterative, and we define Xk as our estimate of
the solution after k iterations. The goal is to find th+1 such
that E(ik) significantly decreases at each iteration and to
continue iterating until the first-order condition above is
satisfied with a sufficient degree of confidence.

We now discuss the reduced-gradient method in more
specific terms for the case of a single homogeneous con-
straint. Let us assume we are working in an L-dimensional
space. A tangent plane to h(x) can be thought of as a surface
of dimension one less than the space in which it lies. In
order to use projection ideas from linear algebra, we define
the tangent plane as a space spanned by a set of basis vec-
tors.

A vector that is perpendicular to the tangent plane to h(x)
at a pointX = (X1 X2 . .. XL)t is

vhGx) = ( ± Oh
ax1 OX2

ah t
.. XL )

A set of L - 1 linearly independent L-dimensional basis
vectors that span the space perpendicular to vh(x) (i.e., the
tangent plane) is (assuming that Wh/Ox, t4 0)[1 =x1 )O -x2 )

Ox 1/ a ) x3 j

1 0 0...0

t
0 1 0... 0 ,b L ± -~ aO x -O X 0 ( C 2bL-_ = - ) 0 O ... 1 . (C2)

The set of basis vectors defined in Eqs. (C2) enables us to
define a projection onto the tangent plane to h(x). If we let
the b's be the columns of an L X (L - 1) matrix,

(C1)
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Z -[5& b2 ... *bL-1I (C3)

then the projection of an arbitrary L-dimensional vector, c,
onto the space spanned by the columns of Z is34

P = Z(ZZ)1'ZD. (C4)

From Eq. (C4), the projection of -vE(g) onto the tangent
plane to h(g) is just

p = -Z(ZtZ)-iZtVE(G). (C5)

(5) If [Ymi - 'm21 < 3, then 'Yk - 'ml and stop; otherwise
continue with step (6).

(6) Of-Y1 , '2 and Y3, find the two that are closest to 'yml.
Call these '(cl and 'Yc2.

(7) Set: y1-,y,1E(,y1)-(E(yc1),
724- c2, E(72) - E(W-
'(3 4- (miE(73) - E('y.1),
'Ym2 '4 'Yml-

(8) Go to step (3).

For each estimate tk of the solution we have h(ik) = 0.
The reduced-gradient method calculates Vh(gk), Zk, and
-VE(2k) and uses these with Eq. (C5) to determine the new
search direction:

Pk = -Zk(ZZkk) ZkvE(G k)- (C6)

Once Pk is determined, we must move from Xk in the direc-
tion of Pk to find the next estimate Xk+i. However, we must
have h(Gk+i) = 0, and, in general, it is not possible to find a
step size '(k 5'6 0 along Pk such that h(0k + '(kPk) = 0- It
becomes necessary to deviate from Pk to return to the surface
for our next estimate. This estimate becomes

Xk+1 = Xk + '(kPk + qk, (C7)

with

h(jk+i) = 0, (C8)

where 'k and qk are chosen such that E(gk+0) < E(x). De-
termining the scalar step size '(k and the direction back to
the surface, qN, in Eq. (C7) that minimize E(gk+1) can be a
complicated subproblem.

Rather than spending too much computation time deter-
mining the optimal 'k and qk, we opt for a simpler approach
to finding an X4+1 that produces a sufficient decrease in the
objective function. We do this by (1) selecting a value for 'k,

then (2) using Xk + '(kPk for all but one of the components of
Xh+i, and then (3) using Eq. (C8) to determine the last com-
ponent. Equation (35) is an example of Eq. (C8) for solving
for the component b. The objective function is evaluated to
determine whether there is a sufficient decrease. If we are
not satisfied with the new estimate, we choose another value
of '(k and repeat the procedure. Using this procedure, we
can think of the objective function as a function of ' and can
set 'k to the value of' ythat minimizes E('(). One could use
any of a number of standard line search techniques to esti-
mate 'k, but we used a slightly different method to estimate
this minimum and to find gk+1-

Iterative Quadratic Fit
The technique implemented to minimize E('() with respect
to'y can best be described as an iterative quadratic fit (IQF).
It uses quadratic curve fitting to approximate the minimum
of E('() iteratively and thus determine '(k. The description
of the IQF below assumes the ability to fit a quad-
ratic polynomial to three points:

(1) Initialize: '( = '(m2 = 0,7'2,7'3-
(2) Calculate E(- 1 ), E(72), and E(Y3).
(3) Calculate 'ml, the value of y that corresponds to the

minimum of the quadratic polynomial in y fit to the points
[(l, E( c t)], [72, E(72)m, [73, E(Y3)1

(4) Calculate E(,yml,).

The initial values of '2 and '(3 should be chosen based on
experimentation and observation of typical E('() versus y
curves. These values are not crucial to the success of the
quadratic fit but should be spaced well enough to give a
reasonable initial fit. The value of the termination parame-
ter # should be based on the degree of accuracy needed and
should be chosen large enough to avoid excessive iterations.

The success of the IQF depends largely on the shape of
E('(). If E('() is not fairly smooth, the IQF may not find the
actual minimum; this is not a problem if a sufficient decrease
in E is achieved. A more difficult problem occurs when the
projection onto the tangent plane extends into a region of
the 6-D space for which the equation for a return to the
surface is not defined. As an example, consider using Eq.
(35) to return to the surface by calculating b given the other
five variables. If a range of values of ' exists for which '(Pk
extends into the region where e2 - 4df < 0, then b (which is
by definition real valued) and hence E('() will not be defined
over this range. When we encountered a case such as this,
we implemented a Fibonacci line search3 4 to estimate the
minimum of E('() on the interval'( for which E(y) is defined.
It should be stressed that these potential problems arise out
of the method used here to return to the ambiguity surface,
and other methods exist that may circumvent this but that
are more computationally burdensome.

SPECIFICS TO THE NEAREST-AMBIGUITY SEARCH
Since we have discussed the constrained-minimization tech-
nique in somewhat general terms to this point, let us now
mention some details and summarize the procedure.

The gradient of E(x) of Eq. (36) can be computed by using
the following relationship 2 4 :

aE = 2MN[g(x, y) - g'(x, y)],
Og(x,yA

(C9)

where

IF(u ) vIG( )DFT~g'(x, y)I = i~`-'G(u, v)I (C10)

Since the ordering of the pixels of g(x, y) in the vector x is
defined, Eq. (C9) can be used to calculate the components of
vE(x) using two DFT's [since IF(u, v)I is given].

The various steps of the reduced-gradient constrained-
minimization algorithm are as follows:

1. Initialization

(a) Determine IF(u, v)I.
(b) Make an initial guess, go, such that h(io) = 0.
(c) Compute E(io).
(d) k=0.

2. Calculating the search direction, Pk
(a) Compute vh(gk).
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(b) Form Zk, Z4.

(c) Compute VE(Gk).
(d) ComputePk =-Zk(ZkZk) 'Zk VE(gk).

3. Iterative Quadratic Fit to find xk+l from xk and Pk
4. If [E(tk) - E(tk+l)]/E(Wk) < a,

then: Done; estimate of minimum is Xk+l.

else: (a) k - k + 1.
(b) Go to step 2.

The termination condition in step 4 above is based on a
percentage change between successive iterations. The
bound a is selected to reflect the precision of the estimate of
the minimum. While it may be tempting to use the condi-
tion that -VE is perpendicular to the tangent plane, that is,

(C11)

for some small A, it is also difficult to pick the value of that
will consistently give us the same confidence in the precision
of our estimate without choosing it so small that it causes
needless iterations in many cases.
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