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Improved bounds on object support from autocorrelation
support and application to phase retrieval
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New methods are described for determining tighter upper bounds on the support of an object, given the support of
its autocorrelation. These upper bounds are shown, in a digital experiment, to be useful as object-support
constraints used with the iterative transform algorithm for solving the phase-retrieval problem.

1. INTRODUCTION

The phase-retrieval problem is the reconstruction of an ob-
ject f(x) from the modulus IF(u) I of its Fourier transform,

F(u) = IF(u)Iexp[ib(u)] 5 =

= Jf(x)exp(-i27rux)dx, (1)

where x and u may be one-, two-, or three-dimensional coor-
dinates and f(x) may be complex valued or nonnegative real
valued, depending on the application. Reconstruction of
the object f(x) from IF(U)I is equivalent to reconstruction of
the Fourier phase A(u) from jF(u)I (hence the name phase
retrieval), and reconstruction from IF(u)I is equivalent to
reconstruction from the object's autocorrelation

r(x) = J f(x')f*(x - x)dx'

= 9- 1 [IFI2], (2)

since the autocorrelation is directly computable from IF(u) 1.
At present the phase-retrieval algorithm that best com-

bines the advantages of generality, noise tolerance, and com-
putational efficiency is the iterative transform algorithm.'-3

That (or any other) algorithm requires sufficiently strong
object-domain constraints to ensure solution uniqueness
and to achieve convergence to a solution within a reasonable
number of iterations. The two constraints most often found
to be both physically pertinent and useful to the iterative
transform algorithm are nonnegativity and object-support
constraints. The support of an object is the smallest closed
set outside which the object is zero. Often one does not
know a priori the support of an object but may know an
upper bound on the support. In that case one would use the
upper bound as a support constraint during the iterations.
Tighter (smaller) support constraints typically result in fast-
er convergence of the algorithm. This is particularly true
for the case of complex-valued objects for which nonnega-
tivity does not apply and the support constraint may be the
only constraint.4 In fact, without a tight support constraint
the reconstruction of complex-valued images is extremely
difficult.4' 5 Even with a perfectly tight support constraint
such reconstructions are extremely difficult unless the ob-

ject's support is within one of a restricted class of advanta-
geous supports. 4

Methods for estimating the support of the object from the
support of the autocorrelation are given in Ref. 6 and in a
previous paper.7 Specifically, Ref. 6 describes a method
applicable only to discrete objects (defined on a grid), and
Ref. 7 describes methods applicable to both continuous con-
vex objects and discrete objects with nonredundant spac-
ings. Also, in Ref. 7 methods for determining upper bounds
on the support of an object from the support of its autocorre-
lation are described. These upper bounds, called locator
sets, contain a translation of every support consistent with
the autocorrelation support. Since the twin image, f*(-x),
has the same autocorrelation as f(x), the locator sets have to
be large enough to contain a translation of the support of the
twin image as well as a translation of the support of the
object.

In this paper we present methods for generating tighter
upper bounds on the object's support, which we call single-
sided locator sets. They are required to contain a transla-
tion of the support of any object or its twin image (but not
necessarily both) that would give rise to a given autocorrela-
tion support. These methods are based on the geometry of
the autocorrelation support. Only one rule, stated in Theo-
rem 6 below, is applicable to all situations. However there
are a large variety of geometries that are covered by more
than one method, so that for a particular object there is
usually a fairly tight single-sided locator set.

Section 2 of this paper establishes definitions and nota-
tion and comments on the support of an autocorrelation for
the case of complex-valued objects. Section 3 contains the
methods for constructing the bounds on the object's sup-
port, stated in terms of theorems and corollaries with exam-
ples. The proofs of the theorems and corollaries are in
Appendix A. Section 4 shows an image-reconstruction ex-
ample that makes use of the support upper bounds as sup-
port constraints. Section 5 contains a summary and conclu-
sions.

2. DEFINITIONS, NOTATION, AND
BACKGROUND

Before setting out the rules for determining single-sided
locator sets, we need some definitions and notation. First,
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in order to carry out a thorough analysis, we must specify the
class of object representations. A natural class of represen-
tations to consider, though not the most general,8 is all linear
combinations of delta functions and compactly supported
complex square-integrable functions. Thus an object
representation, f, can be written as

N

fAx) =Eajb(x - Xi) + fc(X), (3)
1

where IxIN c R2, 6(x - xi) is the delta function at the point xi,
c C\10), and fc is a complex square-integrable function

with compact support. (A set is compact if it is closed and
bounded, i.e., of finite extent.) Here c denotes a subset (not
necessarily strict). For an object representation f as above,
the support, Sf, is defined by

Sf = UN Xii U SUpp(fc) (4)

where supp(fc) is the support of fc and is defined to be the
smallest closed set outside which f, is zero almost every-
where. The autocorrelation of f, f * f, is just the convolu-
tion off with its conjugate reflection. In general the support
Sf*f of f * f satisfies that

Sf*f C Sf - Sf = {x - y:x, y E S}.

compact and it contains a translation of S or -S (but not
necessarily of both) for all supports S that generate A.

3. METHODS OF DETERMINING SINGLE-
SIDED LOCATOR SETS

In Ref. 7 it was shown that, if A is an autocorrelation support
and a e A, then A n (A + a) is a locator set for A. It is
natural, for the sake of tightness, to choose an element a
from the boundary of A. Our approach to finding single-
sided locator sets is to start with A n (A + a) and intersect it
with more translations of A or else with a properly located
half-plane. Most of the rules for finding single-sided locator
sets are based on the former intersection and are fundamen-
tally based on the following theorem and its corollary. The
theorem originally appeared as a result in Eq. (13) of Ref. 7,
which was given there as rule for finding locator sets. How-
ever, this statement was false, and the rule actually finds
single-sided locator sets, not locator sets. It should be noted
that this misstatement in Ref. 7 does not affect any of the
other results in that paper.

Theorem 1. Let A be an autocorrelation support, let go be
a class of supports that generate A, and suppose that S(A) is
dominated by So. Let B be a nonempty set such that

(5)

In two special cases, we actually have equality in Eq. (5).
The first case is when f is real nonnegative.7 The second
case is when Sf and Sf*f are both convex. The latter result is
a special case of the well-known Titchmarsh-Lions theorem
in distribution theory. 9 It can also be shown that if one
considers the subclass of object representations supported
by the integer grid, Z2, then Sf - Sf = Sf*f with probability 1
(although counterexamples can be constructed). The view-
point of this paper will be to assume that Sf*f = Sf - Sf, even
though we are in the continuous-support case. Henceforth
we drop the f and look at compact sets in R2, which will be
the supports of two-dimensional objects. The goal is to find
methods or rules that give single-sided locator sets that are
as tight as possible for the object support S based only on
observing S - S.

Definitions. Let , be the class of all nonempty compact
sets in R2. A set A is an autocorrelation support if and only
if there exist S E S such that S - S = A. For any autocorre-
lation support A, we say that a set S e & generates A if A = S
- S, and we denote the class of all such generating sets by
SP(A).

We say that compact supports So and S1 are equivalent,
and we write So - S,, if there exists an x E R2 such that So +
x = S, or -So + x = S,. Note that So - S, implies that they
generate the same autocorrelation support A, i.e., So - So =
S, - S,. We are using the definitions -S = [-x:x E S) and S
+ x = ly + x:y E S1.7

Let So and S1 be two compact supports. Then we say that
So is dominated by S, if there exists an S,' c S, such that So
-S,'. If &o and ,i are both classes of compact supports, we
say that So is dominated by 91 if for all So E No there exist S,
8 fS such that So is dominated by S1.

Let A be an autocorrelation support. We say that a set L
c R2 is a locator set for A if L is compact and it contains a
translation of every compact support that generates A. We
say that a set L c R2 is a single-sided locator set for A if L is

B c n SSOS0 e Sol. (6)

Then L = n JA + b:b 8 BI is a single-sided locator set for A.
Corollary 1. Let A be an autocorrelation support and B

be a nonempty set such that, for all supports S that generate
A,

BcS-x or Bcx-S forsomexe R2 . (7)

Then L = {A + b:b E B} is a single-sided locator set for A.
The essential idea of the proof of Theorem 1 was given in

Ref. 7, and for completeness it is reproduced in Appendix A.
In order to generate single-sided locator sets, we want to find
rules, which use only the knowledge of the autocorrelation
support A, for determining sets B that satisfy the hypothesis
of Corollary 1. The basis of this determination will be to
investigate the geometry of the maximal points (defined
below) in the autocorrelation support A. Different geome-
tries will give rise to different sets B and hence to different
single-sided locator sets. First we need to define precisely
what we mean by maximal points and locally maximal
points.

Definitions. A vector u E R2 is a unit vector if lul = 1.
The inner product of two vectors x, y E R 2 is denoted by (x,
y). Now letB be an arbitrary compact set in R2. The set of
maximal points in the u direction, E(B, u), are the points x E
B such that (x, u) 2 (y, u) for ally E B. A neighborhood of
a point x e R2 is any disk of positive radius centered at x.
The set of all locally maximal points in the u direction, E1(B,
u), are the points x E B for which there exists a neighbor-
hood Vx of x such that (x, u) 2 (y, u) for all y E VX n B.

Note that E(B, u) represents, in some sense, the points in
B that are the farthest out in the u direction, and EA(B, u)
represents the points in B that are locally the farthest out in
the u direction. Also note that E(B, u) c E1(B, u). Figure 1
illustrates these definitions. Let A be an autocorrelation
support, and let S be a support that generates A, i.e., S - S =
A. Then there are some important relationships among
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U

Fig. 1. Example of maximal and locally maximal points. E(B, u).
= {xl, x2}, EI(B, u) = {xl, X21, E(B, -u) = {X3}, and EI(b, -u) = fX3, x4}.

' x, -X 2 ,
X3 -X4

-X1 -X 4

x 3 3X

. U

(a)

(b)

Fig. 2. Example of a set S such that Ei(S, u) - El(S, -u) # EI(A,
u). (a) Set S, where E(S, u) = {xl}, E(S,-u) = fX4}, E(S, u) = {xl, X31,
and EI(S, -u) = {x2, X41 (the shaded area is not considered to be part
of S); (b) set A = S - S, which is a disk, where E(A, u) = {xl-x41 =
E1 (A, u) and E1(S, u) - E1(S, -u) = Xl- X 2, XI - x 4, x 3 - X2, X3 - X4,
which is not equal to El(A, u).

E(A, u), E(S, u), and E(S, -i). In a similar manner, there
are some important relationships among EJ(A, u), E1(S, u),
and El(S, -u). These are outlined in the next result, Theo-
rem 2.

Theorem 2. Let u be a unit vector, A be an autocorrela-
tion support, and S be a support that generates A. Then

sponding sets of points in A that stick out. Our approach is
to use the points in A that stick out to infer existence of the
maximal points in S, which we can then use to form B to use
in Corollary 1 to define a single-sided locator set.

Definitions. Let v be a unit vector and c E R. Then the
half-plane above cv, H+(v, c), is defined by H+(v, c) = {x E
R2 :(x, v) > c}. If u and v are both unit vectors, then we say
that u is perpendicular to v, and write u I v, if (u, v) = 0.

Based on Theorems 1 and 2, we are now in a position to
state precisely a set of rules for finding single-sided locator
sets. As stated above, different rules are applicable depend-
ing on the various geometries of the set E(A, u) and/or EI(A,
U), with the idea that we would like to handle as many
general cases as possible. To outline the cases, we will state
rules that are applicable to the following geometries:

(i) E(A, u) n H+(v, c) consists of two points, where c E
R and u and v are unit vectors such that u I v [i.e., consists
of an endpoint of E(A, u) and its nearest neighbor in E(A,
u)].

(ii) E(A, u) consists of two points.
(iii) E(A, u) is totally asymmetric.
(iv) E(A, u) consists of three points.
(v) E(A, u) is a line segment, and A satisfies a convexity

condition.
(vi) E(A, u) is a single point.
(vii) El(A, u) has a special form.

We will now state each rule precisely in the form of theo-
rems and corollaries and show examples.

Theorem 3. Let A be an autocorrelation support, u and v
be perpendicular unit vectors, and c E R. Suppose that
E(A, u) n H+(v, c) = {a,, a2 l, where al and a2 are assumed to
be distinct. Then L = A n (A + al) n (A + a2) is a single-
sided locator set for A.

(a) D

E(A, u) = E(S, u) - E(S, -u) (8)

and

EI(A, u) c E1(S, u) - E1(S, -u). (9)

The inclusion in formula (9) cannot be strengthened to
equality, as demonstrated by the example in Fig. 2.

Based on Corollary 1 and Theorem 2, we investigate main-
ly geometric conditions on E(A, u) that imply that there
exist B c E(A, i) so that for all supports S generating A we
have

-S a3_/(b) 6-al\ a

a1 a,

B c x-E(S, -i) for some x E E(S, u) (10)

or

B c E(S, i) - x for some x 8 E(S, -u). (11)

Corollary 1 says that such a set B defines a single-sided
locator set for A. We also investigate geometric conditions
on EI(A, u) that would imply the existence of a set B satisfy-
ing analogous conditions. Basically, the maximal points in
S, which stick out most in a given direction, cause corre-

(d)

a3 a ~4

Fig. 3. Example of the two-point rule. (a) Set S, (b) set A = S - S
with E(A, u) = (al, a2l and E(A, v) = fa3, a4 l, (c) single-sided locator
set LI = A n (A + al) rn (A + a2), (d) single-sided locator set L2 = A n
(A + a3) n (A + a4 ) (indicated by the shaded areas).
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al

a 2

(b)

(c)

Fig. 4. Example of the two-point rule. (a) Set S, (b) set A = S - S
and E(A, u) = {a,, a2), (c) shaded area is the single-sided locator set L
= A n (A + al) n (A + a2), which is identical to a translation of-S.

We now want to state a rule, as Theorem 4, that is applica-
ble when the set E(A, i) satisfies a kind of total asymmetry.
Combining this result with Theorem 3 will give a general
result applicable to the case when the set E(A, i) consists of
three points. This is precisely stated in Corollary 3. How-
ever, before stating the two results, we need to define the
concept of endpoints of the set E(A, u).

Definitions. Let u and v be perpendicular unit vectors
and B be a compact set. We say that b, and b2 are the
endpoints of E(B, i) if (bl, v) < (x, v) < (b2, v) for all x E
E(B, i). Also, if b2 is as above, we say that b2 is the v-
positive endpoint of E(B, i).

Suppose that x, y E R2. Then the open and closed inter-
vals, (x, y) and [x, y], respectively, are defined by

(x,y) A Pz:z = tx + (1 -t)y, t E (0, 1)} if x dy

I ifx =yJ
(12)

and

[x, y] = jz:z = tx + (1- t)y, t E [0, 1]), (13)

where 0 denotes the empty set.
The midpoint of x and y is defined as the point (x + y)/2.
Finally, if B1 and B2 are two subsets of R2 , then B1\B 2

denotes those points in B1 that are not in B2.
Theorem 4 (Totally Asymmetric Rule). Let u be a unit

vector and A be an autocorrelation support. Suppose that
al and a2 are two distinct endpoints of E(A, i). If

al + a2 $ [E(A, u)\$al, a2)] + [E(A, u)\1al, a2)], (14)

(c) (d) (e)

Fig. 5. Example of the two-point rule. (a) Set S consisting of
discrete points; (b) setA = S - S with E(A, u) = la,, a2), E(A, v) = ja3,

a4), and E(A, w) = {a5, a6); (c) single-sided locator set L1 = A Cl (A +
al) n (A + a2); (d) single-sided locator set L2 = A n (A + a3) n (A +
a4 ); (e) single-sided locator set L3 = A rn (A + a5) n (A + a6).

An immediate corollary of Theorem 3 is the two-point
rule, i.e., if E(A, u) consists of only two points al and a2, then
L, as given in Theorem 3, is a single-sided locator set. We
now state this result precisely.

Corollary 2 (Two-Point Rule). Let A be an autocorrela-
tion support and u be a unit vector. If E(A, u) = la,, a2), then
L = A n (A + al) n (A + a2) is a single-sided locator set for A.

We give illustrative examples of the two-point rule in Figs.
3-5. In Fig. 5 the dots represent single points located at the
centers of the circles. Both Figs. 3 and 5 show the possibility
of having multiple single-sided locator sets. These exam-
ples also tempt one to see whether there might be a way to
combine the various single-sided locator sets. This is possi-
ble, and it is a special case of a more general result given
below (Theorem 8). Figure 4 shows the possibility of a
single-sided locator set's being equivalent to S, thus demon-
strating that unique reconstructions of the support are
sometimes possible.

then L = A n (nl A + a:a 8 E(A, u))) is a single-sided locator
set for A.

Note that condition (14) is equivalent to stating that the
midpoint m of al and a2 is not contained in E(A, u) and that
the only two points in E(A, i) having m as a midpoint are al
and a2; hence the heuristic terminology of total asymmetry.
We now give a corollary that follows from Theorems 3 and 4
and covers the case when E(A, u) consists of three points.

Corollary 3 (Three-Point Rule). Let A be an autocorrela-
tion support and u be a unit vector. Suppose that E(A, i) =

{al, a2, a3), where a2 8 (al, a3). Then L1 = A n (A + al) n (A
+ a2 ) and L2 = A n (A + a2) rn (A + a3 ) are single-sided
locator sets for A. If in addition a2 is not the midpoint of al
and a3 , then L3 = A n (A + al) n (A + a2) n (A + a3) is a
single-sided locator set for A.

In Figs. 6 and 7 we give illustrative examples of the three-
point rule and the totally asymmetric rule.

Now suppose that E(A, u) is a continuous line segment.
None of the previous rules applies, so in this case we are in
need of a new rule. Shortly we will state a result that says
that a single-sided locator set may be derived by intersecting
A with translations of A to an endpoint and a midpoint of
E(A, i) respectively, provided that A satisfies a convexity
condition. We first define the convexity condition and then
give an illustrative example. We then state the rule precise-
ly in Theorem 5.

Definition. Let B be a compact set and u be a unit vector.
Then B is u convex if x, y E B, and x - y li u implies that [x,
yJ c B.

We give an illustrative example of u convexity in Fig. 8.

......
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(a)

a6 
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(b)
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K(a)

0

d(B, u) = supt(x -y, u):x, y E B),

a,

a2

a3
/-.u

(b)

Fig. 6. Example of the asymmetric three-point rule. (a) Set S, (b)
set A = S-S and E(A, u) = {a1, a2, a3). In this case the single-sided
locator set L = A C (A + al) n (A + a2) n (A + a3), based on the
three-point rule where the three points are asymmetric, is identical
to a translation of the original support S.

(15)

where sup denotes supremum.
Theorem 6. Let u and v be unit vectors such that u vd +v,

and let A be an autocorrelation support. Suppose that E(A,
i) = {a}. Let d = d(A, v) and H = H+(v, -d/4) + a/2. Then
L = A n (A + a) n H is a single-sided locator set.

An example of this rule is given in Fig. 11. In this exam-
ple, the object support, S, is a disk, and the autocorrelation
support generated by S is a disk with a diameter twice that of
S. It can be shown that, for the disk, the single-sided locator
set determined by the rule in Theorem 6 and displayed in
Fig. 11 is a minimal closed single-sided locator set, i.e., there
does not exist any closed proper subset of this single-sided
locator set that is itself a single-sided locator set for A.

a, a2 a3 a4 CIS

. .1 J. if 
I *- r*@ .ne ..

* ....... .. . .

U

(a)
(a)

(b)

U

B2

(c)

Fig. 7. Example of the totally asymmetric rule. (a) Set S consist-
ing of discrete points, (b) set A = S -S and E(A, i) = (al, a2 , a3, a4,
a5), (c) a single-sided locator set L = A n [n5(A + aM)] determined by
the asymmetric rule. Note that L is the same as a translation of the
original support S except for one extra point.

Theorem 5 (u-Convex Rule). Let A be an autocorrelation
support and u be a unit vector. Let al and a2 be the end-
points of E(A, i), and let m be the midpoint of al and a2. If
A is u convex, thenL 1 = A n (A + al) Cl (A + m) andL2 = A n
(A + m) n (A + a2) are single-sided locator sets for A.

An example of the u-convex rule is given in Fig. 9. A
natural question is whether the u-convexity condition is
really needed in the hypothesis in Theorem 5; i.e., is the
result true under the weaker assumption that E(A, i) = [al,
a 2]? This question is answered in a counterexample illus-
trated in Fig. 10. In this example, E(A, i) is a line segment,
A is not u convex, and the set L1, as defined in Theorem 5, is
not a single-sided locator set. Thus the two sets L1 and L2,
as given in Theorem 5, are not necessarily single-sided loca-
tor sets based only on observing that E(A, i) is a line seg-
ment.

We now give a rule that is based on E(A, i) consisting of a
single point. In this case we can determine a single-sided
locator set for A by intersecting A with A + E(A, i) and an
appropriately located half-plane. Before stating the rule in
Theorem 6, we need a definition and some notation.

Definition. Let u be a unit vector and let B be a compact
set. Then the diameter of B in the u direction, d(B, i), is
defined by

(b)

Fig. 8. Examples of u-convex and non-u-convex sets. (a) Set B1 is
not u convex, (b) set B2 is u convex.

(a)

(b)

(c)

Fig. 9. Example of the u-convex rule. (a) Set S; (b) set A = S - S,
where al and m are an endpoint and the midpoint, respectively, of
E(A, i); (c) a single-sided locator set L = A n (A + al) rl (A + m)
determined by the u-convex rule (indicated by the shaded area).
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U

m

a,(aJ
(a)

(b)

(c)

Fig. 10. Example showing the insufficiency of E(A, u) = [al, a21-
(a) Set S; (b) set A = S -S, where al and m are an endpoint and the
midpoint, respectively, of E(A, u) = [al, a21 (the shaded regions,
which are open sets, are not part of A); (c) set L = A n (A + m) n (A
+ al). Note that L is not a single-sided locator set since no transla-
tion of S or -S is contained in L.

(a)

I
(b)

U

~V

(c)

Fig. 11. Example of the one-point rule. (a) SetS; (b) setA = S-S
and E(A, i) = {a}; (c) single-sided locator set L = A n (A + a) n H,
where H is determined by the displayed u, v, and the one-point rule
as in Theorem 6.

Note that ¶P(B) is really all ordered 4-tuplets of points that
are in the set B and are vertices of a parallelogram. We do
allow the case of three distinct collinear points to be in P(B),
say, {XI, X2, X3 }, where x2 is the midpoint of xl and X3. In this
case the representation would have to be, for example, (xi,
X 2 , X 3 , X 2 ) and not (X2 , X 1 , X 2 , X 3 ). Note that in the case of four
distinct collinear points x1 , X2 , X3 , X4, where xi + X3 = X2 + X4 ,

then (X1 , X2 , X3, X4) and (X2 , X1 , X4, X3) are both in P(B).
Theorem 7. Let u be a unit vector and A be an autocorre-

lation support. Let a' 8 E1(A, u)\E(A, i) and c (a', i).

Let I = A n H+(u, c); if

1" = {(al, a2, a3, a4 ) E 'P(I):al E E(A, i), a3 = a') = 0, (17)

then L = A n (nCA + a:a E E(A, i))) n (A + a') is a single-
sided locator set.

An example of the rule stated in Theorem 7 is given in Fig.
12. Note that, by using Theorem 7, a support equivalent to
S was reconstructed exactly, whereas when Theorem 4 was
used in Fig. 7 there was one additional point.

We now state a result about combining two or more single-
sided locator sets in order to derive a new single-sided loca-
tor set that is tighter than both of the previous single-sided
locator sets. Intuitively, if we had two single-sided locator
sets LI and L 2, we would like to intersect L1 with a transla-
tion of L2 or -L2 . The reason why we need to consider -L2
is that only a translation of S or -S must be contained in L1
and L2. However, it may be S for L1 and -S for L2 or vice
versa. Thus there is a need for a rule for determining, from
the original set A and the two single-sided locator sets,
whether to intersect L1 with a translation of L2 or -L 2 and
what the translation ought to be. We now state such a rule
in Theorem 8. However, before this, we again need a defini-
tion.

Definition. Let u and v be unit vectors such that u 5 s',
and let B be a compact set. We say that B is centered
relative to u and v if

supl(x, u):x E B) = -infl(x, u):x 8 B) = d(B, i)
2

and

supl(x, v):x E B) = -infl(x, v):x E B) = d(B, v)
2

(18)

(19)

where inf denotes infimum.
Note that, if B is centered relative to u and v, then any

nonzero translation of B is not centered. Hence for any

Up to this point we have only stated rules based on the
maximal points E(A, i). We now want to state a rule based
on the geometry of the locally maximal points, E1(A, i).

Before stating the result in Theorem 7, we need a definition
and some notation.

Definition. Let B be a compact set, and let bl, b2, b3, b4 8

B. Then we denote the ordered 4-tuplet of these points by
(b1, b2, b3, b4). Note that the ordering is important, e.g., (bl,
b2, b3, b4) = (b2, bl, b3, b4) if and only if b, = b2. The set of all
parallelograms in B, P(B), is defined as

¶P(B) = I(bl, b2 , b3 , b4 ):bi E B for i = 1, 2, 3, 4;

b, 5d bj for j = 2, 3, 4; and b, + b3 = b2 + b4). (16)

a s a, a2 a3 a4 a5

--<- -1 - Ad - y---t 
* :- .. : :* :.: 1.-. .

* . ... . .IL± L ij ..* * .
(a)

(b)

Fig. 12. Example of the rule in Theorem 7. (a) Set S consisting of
discrete points [same as Fig. 7(a)]; (b) set A = S - S and E(A, u) =
(al, a2 , a3, a4, as), where a' = a6 e E1(A, u) [actually all points in A are
in EI(A, u)]. The single-sided locator set L = A n [Cl6(A + a)], as
determined by the rule in Theorem 7, is identical to a translation of
the original object support shown in (a).
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Li
(a) (b)

U

tv

(c)
Fig. 13. Example of combining single-side locator sets. (a), (b)
Single-sided locator sets from Fig. 3; (c) a single-sided locator set L
obtained by combining the single-sided locator sets in (a) and (b),
using Theorem 8. Note that the single-sided locator set is identical
to a translation of the original support S, shown in Fig. 3(a).

(a)

:::::::. .
..... * .

(b)

2x
.... .. Z X3

*.~~X

(C)

U

tv

(d)

Fig. 14. Example of combining single-sided locator sets. (a) Set S,
consisting of discrete points (same as in Fig. 5); (b), (c) single-sided
locator sets L2 and LI from Fig. 5; (d) a single-sided locator set L
obtained by combining LI and L2, using Theorem 8. Note that L
contains only three more points, xI, x2, and X3 , than the original
support S. Since L\Jx1) - L\Jx1) = A, i.e., L\JxI) generates A, the
points x2 and X3 must be contained in any single-sided locator set.

compact set there is one and only one translation that makes
it centered.

Theorem 8. Let A be an autocorrelation support, LI and
L2 be single-sided locator sets for A, and u and v be unit
vectors such that u 3! +v. Assume that L1 and L2 are
centered relative to u and v, d(L1, u) = d(L2, u) = d(A, u)/2,
and d(L 1, v) = d(L2, V) = d(A, v)/2. Let L12 = Cl n L2 and
L12- = Cl r (-L2 ). Then

(a) Either A c L 12 - L12 or A c L1 2 - -L12-;
(b) If A ¢ L2-L 2, then Ll2- is a single-sided locator set

for A; and
(c) If A t L 12 - L 12-, then L12 is a single-sided locator

set for A.

In order to use the above rule as it now stands, one must
check by trial and error for various combinations of u and v
to see whether the hypothesis of Theorem 8 is satisfied.
Examples are given in Figs. 13 and 14. As the examples
show, this theorem may be useful in some situations. Note

that, if L is a single-sided locator set generated from LI and
L2 by Theorem 8, then Theorem 8 might possibly be applied
again, using a new unit vector w, with aiu # w #4 L v to yield a
tighter single-sided locator set.

4. IMAGE-RECONSTRUCTION EXAMPLE

Figure 15 shows an example of employing the two-point rule
(Corollary 2) to produce a support constraint for use with the
iterative Fourier-transform algorithm to reconstruct an ob-
ject from the modulus of its Fourier transform. Figure
15(A) shows the object, which consists of two separated
parts: an image of a satellite model and a narrow triangle
below it. In this case the image is known to be real valued
and nonnegative. The modulus of its Fourier transform,
shown in Fig. 15(B), is the only datum assumed to be known.
Figure 15(C) shows an estimate of the support of the object's
autocorrelation, obtained by inverse Fourier transforming
the squared Fourier modulus and thresholding the result at
0.005 times its peak value. Arrows indicate the two points
on the edge of the estimated autocorrelation support used in
the triple intersection to obtain the single-sided locator set,
which is shown in Fig. 15(D). Note that this single-sided
locator set is suggestive of the actual support of the object.
The iterative transform algorithm was employed to recon-
struct the object from its Fourier modulus, using a nonnega-
tivity constraint and the single-sided locator set estimate
shown in Fig. 15(D) as a support constraint. The initial
estimate of the object was the single-sided locator set filled
with uniformly distributed nonnegative real numbers. Ten
iterations of the hybrid input-output version of the algo-
rithm (with a feedback parameter of a3 = 0.7) resulted in the
very good image shown in Fig. 15(E). Further progress was
impeded by the fact that the estimated support constraint
was smaller than the true support of the object owing to the
finite-threshold value used to estimate the autocorrelation
support. Next the initial support constraint was enlarged
twice, each time by adding to the support any pixel whose
nearest neighbor was within the support. Enlarging of the
support constraint is performed in order to ensure that the
constraint is not inadvertently truncating part of the object.3

Another ten iterations were performed, using the enlarged
support constraint, which is shown in Fig. 15(F). The re-
constructed image, shown in Fig. 15(G), is a more faithful
representation of the object.

The small number of iterations required to reconstruct
the object demonstrates the power of the single-sided loca-
tor sets as support constraints for objects with separated
parts. By comparison, several dozen iterations are typically
required for real nonnegative objects.2

When diffraction effects are also included in the data,
then sidelobes of the impulse response require a larger
threshold to be used in the estimation of the autocorrelation
support in order to avoid counting sidelobes that are outside
the autocorrelation support as being within the autocorrela-
tion support. Then it is advantageous to employ a weight-
ing (apodization) function in the Fourier domain to reduce
sidelobes, even though it results in a loss of resolution in the
autocorrelation.

When one is dealing with complex-valued objects,4 the
autocorrelation will also be complex valued and hence
speckled. A thresholding operation on the autocorrelation

Crimmins et al.
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Fig. 15. Computer reconstruction example using single-sided locator set. (A) Object, (B) Fourier modulus, (C) thresholded autocorrelation
(estimated autocorrelation support), (D) single-sided locator set computed from (C), (E) image reconstructed from Fourier modulus with ten it-
erations of the iterative Fourier-transform algorithm using the single-sided locator set in (D) as a support constraint, (F) enlarged support
constraint, (G) image reconstructed from ten more iterations using (F) as a support constraint.

magnitude then causes locations where speckle nulls appear
to be counted as outside the autocorrelation support. This
can easily be remedied by, for example, (1) convolving the
threshold autocorrelation with a small block of two or three
pixels' diameter and (2) rethresholding at an appropriate
level.

5. CONCLUSIONS

Determination of a tight object support constraint from the
autocorrelation' function is useful for solving the phase-re-
trieval problem, i.e., reconstructing an object from the mod-
ulus of its Fourier transform. In this paper we have de-
scribed several new rules for computing single-sided locator
sets, which are upper bounds on the object support deter-
mined from the autocorrelation support. These rules gener-
ally form much tighter upper bounds on the object support
than do previously described rules7 for determining locator
sets. In order to demonstrate its effectiveness, one of the
rules was used to compute a single-sided locator set for a

digitally simulated object. It was shown to be useful as a
support constraint for reconstructing the object from the
modulus of its Fourier transform by the iterative Fourier-
transform algorithm. It speeds convergence of the algo-
rithm and helps to avoid the twin-image stagnation prob-
lem. 3

APPENDIX A

Proof of Theorem 1. Let S be a support generating A.
There exist a support So e go and x e R2 such that S + x c
So or-S + x c S0 . Suppose that the former is true. Lety e
So. Then

S + x C SO

= So -y +y

C SO - SO + y

=A+y. (Al)
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Thus, since formula (Al) is true for all y E So and since B c
So,

S + x cC nA + y:y E SOl

c nCA + y:y E Bi

= L. (A2)

In the case -S + x c So, a similar argument shows that -S +
x c L. The result now follows.

Proof of Corollary 1. Let S be a support generating A, and
suppose that condition (7) is satisfied for some x e R2. If B
c S - x, let So = S - x; and if B c x - S but B ¢ S - x, then
let So = x - S. Let go be the union of all possible So
generated in the above manner. Clearly B satisfies condi-
tion (6), and so, by Theorem 1, the result follows.

Proof of Theorem 2. Let x, y E S, and suppose that x s
E(S, i) or y i E(S, -i). Then there exists s e S such that
(s,u) > (x,iu) or (s,-i) > (y,-i). Butthisimpliesthat (s
-y, i) > (x-y, i) or (x-s, i) > (x-y, i) and hence that
x - y s E(A, i). Thus we have E(A, i) c E(S, i) - E(S,
-i).

Now letx E E(S, i) andy e E(S,-i). Then, if x',y' ES
we have

(x-y, i) = (x, i) + (y,-i)
> (x', i) + (y', -)

= (x' -y', A). (A3)

Since S - S = A, this implies x - y e E(A, i). Thus E(S, i)
- E(S, -i) c E(A, i). By combining this result with the
result in previous paragraph, we have the result stated in Eq.
(8).

Let x, y e S and assume that x t EA(S, i). Let V be a
neighborhood of x - y. Since V + y is a neighborhood of x,
there exists z E V such that z + y e S and (z + y, i) > (x, u).
But this implies that (z, i) > (x -y, i). Since z E V n (S -
y) c V n A and V is an arbitrary neighborhood of x - y, this
implies that x - y i EI(A, i).

If x, y E S and y i El(S, -i), a similar proof shows that x
- y $ El(A, i). Thus EI(A, i) c El(S, i) - E1(S, -i).

Proof of Theorem 3. Let S be a support that generates A.
By Theorem 2, al = xi - yj and a 2 = x2 - Y2, where xl, x2 e

E(S,u)andyi,y2e E(S,-i). Sinceai,a2 e E(A,u), (aj,u)
= (a2 , i). This implies that (al, v) $d (a2 , v), since aj = (aj,
u)u + (aj, v)v for j = 1, 2 and al id a2. Without loss of
generality, we can assume that (al, v) > (a2, v).

Thus either (xi, v) > (x2, v) or (Y2, v) > (Y1, v). Suppose
thattheformeristrue. Then (xi-y 2 ,v) > (x2-y2 ,v) > c,
and xl-Y 2 E E(A, i) by Theorem 2. Thus x1 - Y2 E E(A, i)
n H+(v, c). Since xl-Y2 0 x2 - Y2 = a2, we have xi - Y2 =
al, which in turn implies thaty2 = yl. Thus {0, al, a2 1 c S -

Yl- If(y2,v) > (y1,v),asimilarproofshowsthatx1 =x 2 and
in this case 10, al, a2 l c x1 - S. By Corollary 1, the result
follows.

Proof of Theorem 4. Let S be a support generating A, let
x1 and x2 be the endpoints of E(S, i), and lety1 and Y2 be the
endpoints of E(S, -i). Let v be a unit vector perpendicular
to i. Without loss of generality, we can assume that al, xl,
and Y2 are the v-positive endpoints. Then it is easy to see
that al = xi - y1 and a2 = x2 - Y2. By Theorem 2, xl - Y2 E
E(A, i) and x2 - Yie E(A, i), and note that

(xl - Y2) + (x2 - Y) = al + a2. (A4)

Since al and a 2 are the distinct endpoints of E(A, i) and both
summands on the left-hand side of Eq. (A4) are in E(A, i) by
Theorem 2, at least one of the two summands on the left-
hand side of Eq. (23) is in {a,, a2 l. Thus, by the hypothesis,
x- Y2 or x2 - yj is equal to one of the endpoints al or a2 .

If xi - Y2 = al or X2 - Y1 = a 2 , then yl = Y2, and hence E(S,
-i) = fy{l, which in turn implies that E(A, i) U 101 c S - y1 .
If x2 - -y = al or xi - Y2 = a 2 , then xi = x2, and hence E(S, i)

= {xl}. In this case E(A, i) U 101 c xi - S. By Corollary 1,
the result follows.

Proof of Corollary 3. The first result follows by Theorem
3, while the second result follows by Theorem 4.

Before giving the proof of Theorem 5, we need a definition
and several preliminary results expressed in the form of
lemmas.

Definition. If B is compact and u is a unit vector, then the
i-convex hull is defined as the smallest i-convex set that
contains B, and we denote it by C>(B).

Lemma A.1. Let B be a compact set and u be a unit
vector. Then CJ(B) exists and is given by

Cu(B) = nClC:B c C; C is u convex}. (A5)

Proof. It is easy to see that the right-hand side of Eq. (A5)
is u convex. It is also true that any u-convex set C, which
contains B, contains the right-hand side of Eq. (A5). The
result follows.

Lemma A.2. Let B be a compact set and u be a unit
vector. Then

CU(B) = UI[x, y]:x, y e B, (x - y) I i}. (A6)

Proof. Let Co be the set on the right-hand side of Eq.
(A6). Clearly, if C is any u-convex set containing B, it must
contain C0. Hence, by Lemma A.1, Co c C>(B).

To show that Cu(B) c C0 , it suffices, by Lemma A.1, to
prove that C0 is u convex. Let bl, b2 E Co be such that b, - b2
l i. Then by definition there exist xl, yl, x2, Y2 e B such
that xi - yl I i, x 2 - Y2 I i, bi E [xi, yi], and b2 E [x2 , Y21-
Thus there exist al, a2 E [0, 1] such that bj = ajxj + (1 - aj)y
forj = 1, 2. By these representations, it is easy to see that b
-yj I uiandxj-bj I uiforj= 1,2. Thus

xl-Y2 = (xl-bl) + (b1 -b2 ) + (b2 -Y 2 ) l u. (A7)

A similar argument shows that xi - X 2 , Y1 - Y2, and x2 -

are all perpendicular to i. Hence

[xl, Y2], [x, x2], [y1, Y2], [x2, y1 ] C CO. (A8)

It is also easy to show that [bl, b2] is contained in at least one
of the intervals in formula (A8). Thus [b1 , b2] c C0, and
hence C0 is u convex.

Lemma A.3. Let u be a unit vector, A be an autocorrela-
tion support, and S be a support generating A. If A is u
convex, then CJ(S) also generates A.

Proof. Since S - S = A and S c C>(S), it suffices to prove
that C>(S) - C>(S) c A. By Lemma A.2, it suffices to prove
that if x1, x2, Y1 , Y2 E S are such that xl - yl I u and x2 - Y2
l i, then [xi, yi] - [X2 , y2] c A. Without loss of generality,
we may assume that [xi, yi] - [x2 , y2] = [xi - x2, Y1 - Y2].
Butx1-x 2,Y1 -Y2e A,and(xl-x 2) - (Yl -Y2) I i,sothis
implies that [xi - x 2 , Y1 - Y2] c A by the u convexity of A.

Proof of Theorem 5. Let S be a support generating A, and
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let Si = CJ(S). Then E(S1 , i) and E(Sj, -i) are line seg-
ments, which we denote by [xi, x2] and [Yl, Y2], respectively,
where ai = xl - yl and a2 = x2-Y2. First we take the case of
Ix1 - x21 2 Iy1 - Y 21- In this case let v be a unit vector
perpendicular to u and such that x2 = xi + Tv and Y2 = Y1 -

yv, where > Žy 2 0. Then

a1 + a2m =
2

xI - Y1 + x2 -Y2

2

x -y1 + xI + 3v -y 1 + yV

2

=XI++2 yV-y 1. (A9)

But (,B + y)/2 < A3, and thus xl + [(i3 + y)/2]v E [xi, x2], which
by Eq. (A9) implies that m E S, - y1. Now let So = S, -y
and note that {0, m, all c So. In the case ly1 - Y21 2 1xI - X 21,

let So = xi - S,, and a similar argument shows that {0, m, all
C So.

Now let Ro be the class of all So generated in the above
manner. Then Xo dominates @(A) and &o c @(A) by Lemma
A.3. Also, 10, m, a,) c nClSo:So E 901 and hence, by Theorem
1, A n (A + a,) n (A + m) is a single-sided locator set.

An analogous argument shows that A n (A + m) Cl (A +
a2 ) is also a single-sided locator set.

Lemma A.4. Let S be a support, and let A be the autocor-
relation support generated by S. Then, for any unit vector
i,

d(A, i) = 2d(S, i). (A10)

Proof. The proof is immediate by Theorem 2.
Proof of Theorem 6. Let S be a support that generates A.

By Theorem 2 there exist x, y e S such that {xI = E(S, i), 1y)
= E(S,-u), and a = x-y. Since 0e A,

E[A n (A + a), i] = (al.

By the centrosymmetry of A and Eq. (All),

(All)

Combining inequalities (A14) and (A15) with the linearity of
the inner product, we have

(y' - x', v) > d, (A16)

a contradiction to Lemma A.4. Thus either S - y c L or -S
+ x c L, and we have the desired result.

Proof of Theorem 7. Let S be a support that generates A,
and let a' = x' - y' E E1(A, u)\E(A, i), where x', y' E S.
Since a' s E(A, i), either x' s E(S, i) or y' s E(S, -i) by
Theorem 2.

We first consider the case when x' $ E(S, i). Let a e E(A,
i), and let a = x - y, where x E E(S, i) and y E E(S, -i).
We claim that y = y'. In order to show this, assume that y'
5' y. Then (x-y, x-y', x'-y', x'-y) e P', which implies
that 2P' 5~ 0, a contradiction to the hypothesis. Thus y = y',
and this implies that [10, a'j U E(A, i)] c S - y'. In the case
y' s E(S, -i), a similar argument shows that [10, a'} U E(A,
i)] c x' - S. Thus, by Corollary 1, we have the desired
result.

Before giving the proof of Theorem 8, we need a lemma,
which we state and prove.

Lemma A.5. Let u and v be unit vectors such that u id +v,
and let B1 and B2 be compact sets that are both centered
relative to u and v. Also assume that d(B1, i) = d(B2 , i) and
d(Bi, v) = d(B2, v) and thatB 2 dominates B,. Then either B
c B2 or -B1 c B2-

Proof. By domination there exist xo e R2 such that B1 +
xo c B2 or-B, + x0 c B2. We want to show that x0 = 0.
Suppose that xo s, 0. Then at least one of the four inner
products of xo with i, v,-i, or-v is greater than 0. Suppose
that (xo, i) > 0. Then

supf(x + x0, u):x E B11 = (x0 , i) + 2,
2

>d(B2, it)
2

(A17)

and

infl(-x + x0, -u):x & B1 = - 2 -(x0 , i)
E[A n (A + a), -u] = 101, (A12)

and thus

d[A n (A + a), i] = d(A- u) = d(S, i). (A13)

As remarked above, in Ref. 7 it was shown thatLo = A Cl (A +
a) is a locator set for A. Thus there exist xo, yo E R2 such
that S + xo c Lo and -S + yo c Lo. On combining this with
Eqs. (All) and (A13), we have x + xo = -y + yo = a, which in
turn by algebra implies that xo = -y andyo = x. Thus S - y
and -S + x c Lo. Now suppose that both S-y and -S + x
are not contained in H. Then there exist x', y' e S such that

(x'_ y _x 2Y. v <-_ (A14)

and

(y+ x

d(B2, i)
2

(A18)

Combining inequalities (A17) and (A18) with the centered-
ness of B2 implies that B1 + xo ¢ B2 and -B, + xo ¢ B2, a
contradiction. Considering the other three possible cases,
we are able to derive the same contradiction by similar argu-
ments.

Proof of Theorem 8. Let S be a support that generates A.
Without loss of generality, we can assume that S is centered.
By Lemma A.4, d(S, i) = d(Lj, i) = d(L2, i) and d(S, v) =
d(L1 , v) = d(L 2, v). When this is combined with Lemma A.5,
either S c L, or -S c L1. Similarly, either S c L2 or -S c
L2 . Thus we have the result in part (a) of Theorem 8 by
considering each of the four possible combinations.

The result in part (b) is an immediate consequence of part
(a), and, noting that if A ¢ L12 - L12, then L12 does not
dominate S for any support S that generates A. By the
proof of part (a), this implies that L12- dominates S for all
supports S generating A.

Crimmins et al.

X - Y
,v < -A.

2 4



Vol. 7, No. 1/January 1990/J. Opt. Soc. Am. A 13

The result in part (c) of Theorem 8 follows by an argument
similar to that given for the proof of part (b).
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