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Iterative blind deconvolution algorithm
applied to phase retrieval
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The iterative blind deconvolution algorithm proposed by Ayers and Dainty [Opt. Lett. 13,547 (1988)] and improved
on by Davey et al. [Opt. Commun. 69,353 (1989)] is applied to the problem of phase retrieval, which is a special case
of the blind deconvolution problem. A close relationship between this algorithm and the error-reduction version of
the iterative Fourier-transform phase-retrieval algorithm is shown analytically. The performance of the blind
deconvolution algorithm is compared with the error-reduction and hybrid input-output versions of the iterative
Fourier-transform algorithm by reconstruction experiments on real-valued, nonnegative images with and without
noise.

1. INTRODUCTION

Blind deconvolution is the problem of finding two unknown
functions, f(x) and g(x), from a noisy measurement, c(x), of
the convolution of these functions, defined as

c(x) = . g - x')dx' + n(x)

= f(x) * g(i) + n(x), (1)

or in the Fourier domain as

C(U) = F(a)G(a) + N(a), (2)

where C, F, G, and N are the Fourier transforms of c, f, g, and
n, respectively. Ayers and Dainty' recently proposed a
practical, two-dimensional blind deconvolution algorithm
for the noise-free case, where the additive noise term n(x) =
0.

In this paper we apply the Ayers-Dainty (AD) algorithm
to the phase-retrieval problem, in which we desire to recover
an image, f(x), from the modulus, IF(a)I, of its Fourier trans-
form:

F(a) = IF(a)I exp[iip(a)] = 9rV001

= J f(x)exp[-i27r(a -x)]dx. (3)

Phase retrieval is equivalent to the reconstruction of the
Fourier phase, ~(a), from the Fourier modulus and to the
reconstruction of f(x) or i(d) from the autocorrelation func-
tion:

rx) = f(x')f*(x' - x)dx'

= f-1l[F(a)F*(a)] = Y-1[IF(U) 1
2

]. (4)

The phase-retrieval problem arises in several disciplines in-
cluding optical and radio astronomy, wave-front sensing,
holography, and remote sensing.

Comparing Eqs. (1) [with n(x) = 0] and (4), we find that
phase retrieval can be considered a special case of blind
deconvolution, in which we deconvolve f(x) and f* (-x) from
r(x). Because the AD algorithm represents a new, practical
algorithm for blind deconvolution, we will apply it to phase
retrieval and compare it with two existing phase-retrieval
algorithms. We will begin by describing the AD algorithm
and adaptations of the algorithm appropriate for phase re-
trieval. Because its structure closely resembles that of the
error-reduction (ER) algorithm commonly used for phase
retrieval,2 4 the AD algorithm is compared both analytically
and experimentally with ER. The performance of both of
these algorithms is compared with the faster hybrid input-
output (HIO) algorithm24 for real, nonnegative objects for
the cases of known and unknown support, using Fourier
intensity data with different levels of additive Gaussian
noise.

2. DESCRIPTION OF THE ALGORITHM

A. Blind Deconvolution
The AD blind deconvolution algorithm' (Fig. 1) alternates
between the object domain and the Fourier domain, enforc-
ing known constraints in each domain. Object-domain con-
straints such as support and nonnegativity are combined
with the Fourier-domain constraint of Eq. (2) to produce
new estimates of f and g, fk and Ak, respectively, at each
iteration. Note that each AD loop produces two estimates
of F (and G): (1) Fk, the Fourier transform of fk, and (2) the
estimate obtained by imposing the Fourier-domain con-
straint of Eq. (2). These two estimates are averaged by
using the scalar ,B (0 < f < 1) to form Fk, a composite
estimate of F. Ayers and Dainty proposed the following
estimate of F from Pk and Ok, the Fourier transform of gk:

if IC(a)I < noise level,

Fk(u) = Fk(u); (5a)
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Fk (a) =- I MI)
Iak(U)I1 + 2-/lpk (a)I12

(10)

where Ok is the latest estimate of G, the constant 0.2 is an
estimate of (IN12), and iPkI2 is used to estimate (IF12). A
filter similar to this was used with the AD algorithm by
Davey et al. 6 for the blind deconvolution of noisy, complex-
valued images. We have approximated (IN12) with a con-
stant based on the assumption that n(x) is a delta-correlat-
ed, Gaussian random process. If the ensemble-averaged
energy spectrum of the noise is known, it should replace a-2 in
Eq. (10).

To estimate G from C and .P, the latest estimate of F, in
Eq. (10) we replace Fk with Gk, Gk with Fk, and, following the
indexing of Fig. 1, Pk with Gk-1:

Fig. 1. AD blind deconvolution algorithm.

if IGk(a)l > IC(Z)I,

Fk(a) = (1- Fak(a) + d C(a) (5b)

if IGk(0)1 < IC()I, + (Sc)
Fk(a) Fk(C) C(a)

Rather than implementing Eqs. (5), we use a Wiener-type
filter based on the following imaging model:

cGx) = s() * f(A) + n(W), (6)

or in the Fourier domain

C(a) = S(a)F(a) + N(a), (7)

where c is the measured image, f is the object, s is the impulse
response [the Fourier transform of which is S(a), the optical
transfer function], and n is the noise. Assuming that f and n
are independent, zero-mean, Gaussian random processes,
the minimum mean-squared-error linear estimator for f(x)is5/(x) = 5J-'[P(a)J, where

P(a) = W(a)C(a), (8)

the Wiener-Helstrom filter is

W(U) = S*(a)
IS(a)I2 + (Il(a)I12)/( IF~u)1)')

G( ) ~ IF ( F(+a) C(a)k(U) = lpk(a)12 + cr2/1Ok -1 (a)'2 (11)

We have also used an even simpler Wiener-type filter,
formed by replacing the term a2/.PkI2 in the denominator of
Eq. (10) with a constant, a:

F(a) = k I(C) C(a).k Ikmu) + a,(12)

We will refer to this simpler filter as AD Filter 1, and the
filter in Eq. (10) as AD Filter 2. We make the same substitu-
tions that are made for Eq. (10) to obtain the following
expression for Gk(a) from Eq. (12):

Gk(0 = D~ (a) C(a).k(J Pk(aZ)I' + a (13)

B. Phase Retrieval
As we noted in Section 1, phase retrieval can be viewed as the
process of blindly deconvolving a function fAg) and its twin,
f*((-it). Thus for phase retrieval the noisy measurements of
r(x) and IF(W)12 take on the roles of c(x) and C(a), respective-
ly, and Fk(a) and Gk(fl) become estimates of F(a) and F*(a),
respectively. Because the two convolution factors are twins,
the AD algorithm actually produces two estimates of f per
iteration. Therefore we need only consider half of the AD
loop (Fig. 2); i.e., instead of estimating F*(a) and f*((-x) we
forego the second half of the loop and find a new estimate of
F(a) by conjugating Gk(d ), the estimate of F*(u). Replacing
C with IFI2, we conjugate Eq. (13) to obtain the AD Filter 1
phase-retrieval Fourier-domain constraint:

Fk(C) = Gk(a)
(9)

and (IN(a)12) and (IF(a)12) are the ensemble-averaged ener-
gy spectra of the noise and the object, respectively. Al-
though the images generally will not satisfy the statistical
assumptions stated above, the filter is still effective and
simple to implement. The Wiener-Helstrom filter of Eq.
(9) is often used for image restoration.

To apply Eq. (9) to the problem of estimating F from C
and G, we relate Eq. (2) to Eq. (7) [and, hence, Eq. (1) to Eq.
(6)] by allowing G(a) to play the role of S(a). The resulting
Fourier-domain constraint (with ,B = 1) is

Fk(a) IF(a)I'.

Ipk,(CZ)12
+ a

(14)

AD Filter 2 is modified in a similar manner by conjugating
Eq. (11) and substituting IFkI2 for Ik-1I12:

|F Pk (a) IF(+z)12
k(U) = JPk(aZ)J2 + a-2/JPk(aZ)J2 (15)

Note that for photon (shot) noise in the measurement of
C(a), which would have a variance proportional to the mean
of IF12, the quantity er2/IF(a)12 is equivalent to a in Eq. (14).
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Fig. 2. AD blind deconvolution algorithm applied to phase retriev-
al.

C. Comparison with Error Reduction
The flow chart in Fig. 2 of the AD algorithm applied to phase
retrieval is identical in form to the ER algorithm. The
difference between the ER algorithm and the AD algorithm
lies with the Fourier-domain constraint. In the ER algo-
rithm the Fourier-domain constraint is imposed by substi-
tuting the known modulus, IF(a)I, for IJP(a)I, the modulus of
the Fourier transform of fk(g), the estimate of the object. If
we write Pk(a) = IPh(a)l exp[idl(a)], then the Fourier-do-
main step in the ER algorithm gives

know the original object, f(x). Recalling that the estimate of
f(g) after the kth iteration is fk(g), we define the NRMS
error,

11/2

ABSERR -

where
and

(18)

x0 maximizes the cross correlation between f and Ik

Fk(a) = IF(a)Iexp[ibk(a)] = Fk(a) IF kUlI (16)

If for simplicity we assume that we are using an inverse filter
[which corresponds to the noise-free case and is obtained by
setting a = 0 in Eq. (14) or a- = 0 in Eq. (15)], then the AD
Fourier-domain constraint can be written as

IF(a)I12
(17)

Comparison of Eqs. (16) and (17) shows that, for the noise-
free case, the Fourier-domain constraint of the AD algo-
rithm is similar to that of the ER algorithm: they both
produce estimates with the same phase, and the magnitudes
of both estimates are boosted (or attenuated) where IFI/IFkl
> 1 (or < 1). Because the object-domain operations are
identical and the Fourier-domain constraints are so similar,
we expect the AD and ER algorithms to behave similarly.

3. EXPERIMENTAL SIMULATIONS

The two versions of the AD algorithm (AD Filters 1 and 2)
were compared experimentally with each other, with ER,
and with a combination of HIO and ER (HIO/ER) for two
cases: (1) a real-valued, nonnegative object with a priori
known triangular support of side 128 pixels embedded in a
256 X 256 array and (2) a real-valued, nonnegative object
with unknown support (approximately 40 X 60 pixels) in a
128 X 128 array. The triangular support in case (1) was
chosen to allow for rapid convergence even for the slower
algorithms. 7 For case (1) we also added Gaussian noise to
the Fourier intensity data. The reconstructions for case (2)
are more difficult because the support is unknown and be-
cause it is of a less-favorable shape. 7 For each case, the same
initial guess is used to begin all the algorithms.

A useful error metric for measuring the success of the
reconstruction is the normalized root-mean-squared
(NRMS) error with the original object. This error metric
takes advantage of the fact that, in a simulation like this, we

Fig. 3. Comparison of phase-retrieval using AD blind deconvolu-
tion with the HIO and ER iterative transform algorithms for a real-
valued, nonnegative object with known support and no Fourier
modulus error. Reconstructed images: (A) HIO/ER (indistin-
guishable from the original object); (B) ER; (C) AD with the Fourier
constraint of Eq. (14); (D) AD with the Fourier constraint of Eq.
(15).
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Fig. 4. ABSERR versus iteration number for the reconstructions
of Fig. 3.
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The reconstructions for case (1) with noise-free Fourier
intensity data are shown in Fig. 3 [AD Filter 1 corresponds to
Eq. (14), and AD Filter 2 to Eq. (15)]. The ER and AD
images exhibit similar striping artifacts, which are frequent-
ly seen in iterative reconstruction.4 Methods developed for
eliminating the stripes4 were not attempted here. The HIO/
ER image avoids this stagnation effect and converges more
quickly to a solution indistinguishable from the original ob-
ject. Figure 4 is a plot of ABSERR versus iteration number
for the reconstructions of Fig. 3. The AD and ER algo-
rithms stagnated after approximately 50 iterations, while
HIO/ER converged to the solution in fewer than 100 itera-
tions. Because we used filter parameters a and a2 that were

Fig. 5. Comparison of the effect of the pre-Wiener filtering of noisy
Fourier intensity data on reconstructions with the ER algorithm.
Reconstructed images after 1000 iterations: (A) 5% FME, no pre-
Wiener filtering; (B) 5% FME, pre-Wiener filtering; (C) 20% FME,
no pre-Wiener filtering; (D) 20% FME, pre-Wiener filtering.

Fig. 7. Comparison of phase retrieval using AD, HIO, and ER for a
real-valued, nonnegative object with known support and 20% FME.
Reconstructed images: (A) HIO/ER, (B) ER, (C) AD with the
Fourier constraint of Eq. (14), (D) AD with the Fourier constraint of
Eq. (15).
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Fig. 6. Comparison of phase retrieval using AD, HIO, and ER for a
real-valued, nonnegative object with known support and 5% FME.
Reconstructed images: (A) HIO/ER, (B) ER, (C) AD with the
Fourier constraint of Eq. (14), (D) AD with the Fourier constraint of
Eq. (15).
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is a scalar that can be shown to minimize ABSERR.
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Fig. 8. ABSERR versus iteration number for the reconstructions
of Fig. 7.
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with 5% and 20% FME. Because the AD algorithm has a
Wiener-type filter built into it, a less-prejudiced comparison
between algorithms is obtained if we filter the noisy Fourier
intensity before use with the ER and HIO algorithms. The
pre-Wiener-filtered modulus that is used in this case is

IP(a)I = [1 + 0-2/IF( a)InIF(a) "j (21)

Fig. 9. Comparison of phase retrieval using AD, HIO, and ER for a
real-valued, nonnegative object with unknown support and no
FME. (A) Object. Reconstructed images: (B) HIO/ER, (C) ER,
(D) AD with the Fourier constraint of Eq. (14), (E) AD with the
Fourier constraint of Eq. (15).
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Fig. 10. ABSERR versus iteration number for the reconstructions
of Fig. 9.

small (to account for computer roundoff error) for the noise-
less case, there is little difference between the two AD filters,
and the corresponding reconstructions are almost identical.
We expect the differences between the filters to become
more apparent for the case of noisy Fourier intensity data.

We now consider the same image with Gaussian noise
added to the Fourier intensity. When the noisy Fourier
intensity is denoted by IF(a)I', the Fourier-modulus error
(FME) with respect to the original Fourier intensity, IF(a)12,
is

11/2

FME - (20)

We performed reconstructions for single realizations of IF n

where a-2 is the variance of the noise added to the Fourier
intensity. Figure 5 demonstrates the effect of Eq. (21) on
ER reconstructions for the two noisy cases. The smoothing
of the pre-Wiener filter has a negligible effect for the 5%
FME data but is more significant for the 20% FME data.

The reconstructions from all four algorithms for the case
of 5% FME are shown in Fig. 6. Since the pre-Wiener
filtering of Eq. (21) was insignificant at the 5% FME noise
level, it was not used in these HIO and ER reconstructions.
The 5% level of noise has little effect on visual image quality,
and the performance of the algorithms relative to one anoth-
er is similar to that for the noiseless case. Reconstructions
with 20% FME are shown in Fig. 7. This level of noise
significantly degrades the visual image quality, and the pre-
Wiener filtering was implemented for the HIO and ER re-
constructions. The AD Filter 1 image of Fig. 7(C) has no
striping artifacts and is comparable in quality with the HIO/
ER reconstruction of Fig. 7(A), whereas AD Filter 2 stag-
nates with stripes after starting with the same initial guess.
The low-pass nature of the Wiener-type filter has a smooth-
ing effect that is evident in the AD reconstructions. The
amount of smoothing depends on the filter parameters a and
a-2 : the larger these parameter are, the larger the attenua-
tion of high frequencies and the smoother the reconstruc-
tion. In this case the two AD reconstructions achieve a
smaller ABSERR than either ER or HIO/ER (Fig. 8) but at
the expense of image sharpness. The reconstructions stag-
nate almost immediately, but a change in a after 400 itera-
tions moves the AD Filter 1 image out of stripe stagnation.
The ability to vary the built-in Wiener-type filter parame-
ters may be an advantage of the AD algorithm. The AD
algorithm also may be making better use of the Wiener filter,
and a few iterations of AD Filter 1 on the HIO/ER image of
Fig. 7(A) yields an image that is similar to that in Fig. 7(C).

Figure 9 shows the reconstructions from all four algo-
rithms for case (2), a real-valued, nonnegative image with
unknown support in a 128 X 128 array. The support was
estimated from the support of the autocorrelation, r(x), us-
ing a triple-intersection algorithm. 8 Figure 10 is a plot of
ABSERR versus iteration number for the reconstructions of
Fig. 9. The HIO/ER algorithm converged close to the solu-
tion in fewer than 200 iterations, whereas AD and ER both
converged more slowly and stagnated after approximately
400 iterations. The error of the ER reconstruction is signifi-
cantly lower than that of the AD algorithms. For this more-
difficult case, we find again that the AD and ER algorithms
perform comparably (ER somewhat better than AD), and
HIO/ER is still more effective than either.

4. CONCLUSION

We have shown that the Ayers-Dainty (AD) blind deconvo-
lution algorithm applied to phase retrieval is similar to the
error-reduction (ER) iterative Fourier-transform algorithm,
both in form and in performance. A nice feature of the AD

E JF(a)12
a

J. H. Seldin and J. R. Fienup

A F

X F



Vol. 7, No. 3/March 1990/J. Opt. Soc. Am. A 433

algorithm is a built-in Wiener-type filter, which seems to
perform slightly better than the pre-Wiener filter used with
hybrid input-output (HIO) and ER for the noisier case.
The two different Wiener-type filters considered here per-
formed comparably, and the significant difference between
them is that Filter 1 [Eq. (14)] is simpler to implement than
Filter 2 [Eq. (15)]. For the more difficult case of recon-
structing an object with unknown support, the AD algorithm
was not quite so effective as ER and did not converge close to
a solution as did the combination of HIO and ER (HIO/ER).
HIO/ER is still the most effective reconstruction algorithm
at low noise levels, and at higher levels of noise the AD
algorithm can be used in conjunction with HIO to improve
the quality of the reconstruction.
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