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Wave-front phase estimation from Fourier intensity
measurements
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A novel wave-front sensor that estimates phase from Fourier intensity measurements is described, and an explicit
expression is found and numerically evaluated for the Cramtr-Rao lower bound on integrated rms wave-front phase
estimation error. For comparison, turbulence-aberrated wave-front phases and corresponding noisy Fourier
intensity measurements were computer simulated. An iterative phase-retrieval algorithm was then used to
estimate the phase from the Fourier intensity measurements and knowledge of the shape of an aperture through
which the wave front passed. The simulation error approaches the lower bound asymptotically as the noise is
reduced.

1. INTRODUCTION

The Fourier intensity wave-front sensor, introduced in this
paper, operates by using a lens or a mirror to Fourier trans-
form the field in the sensor aperture to a measurement plane
where the intensity (squared modulus) of the Fourier trans-
form of the wave front is detected as depicted in Fig. 1. In
most cases of practical interest, the atmospheric phase is
related uniquely to the Fourier- (focal-) plane intensity mea-
surements.' The wave front may then be reconstructed
from the Fourier intensity by using an iterative Fourier-
transform (phase-retrieval) algorithm.2 3 Previously de-
scribed methods of wave-front sensing by phase retrieval4
assumed knowledge of the wave-front intensity in both the
aperture plane and the Fourier (focal) plane, whereas in this
paper we assume only knowledge of the Fourier-plane inten-
sity and of the shape of the entrance aperture.

The Cramr-Rao method can be used to find a lower
bound on the rms error of a phase estimate.5 .6 The bound
does not depend on the algorithm used for computing the
phase estimate from the measured data. It gives, instead, a
measure of estimation performance for the chosen measure-
ments and the underlying statistics that cannot be exceeded
by any algorithm.

In Section 2, the Fourier intensity wave-front sensor is
described. In Section 3, the Cram6r-Rao lower bound is
found for the Fourier intensity wave-front sensor. In Sec-
tion 4, the error lower bound is compared with the phase
estimate error obtained by reconstructing the phase from
computer-simulated Fourier intensity data. Conclusions
and suggestions for further studies are given in Section 5.

2. FOURIER INTENSITY WAVE-FRONT
SENSOR

The Fourier intensity wave-front sensor consists simply of
(1) a shaped aperture through which the wave front of inter-
est passes, (2) a Fourier-transform lens that produces the
Fourier transform of the apertured wave front in its back
focal plane, and (3) a detector array in the focal plane that

detects the intensity of that Fourier transform. The Fourier
modulus, which is the square root of the measured Fourier
intensity, and knowledge of the shape of the aperture are
then used to reconstruct the wave fronts in the aperture and
Fourier domains by the iterative (Fourier) transform algo-
rithm.2 3 7 The iterative Fourier-transform algorithm in-
volves iteratively transforming back and forth between the
Fourier domain, where the measured data are used, and the
aperture domain, where knowledge of the shape of the aper-
ture is used. Several versions of the algorithm are useful,
including the error-reduction algorithm, which has a conver-
gence proof but in practice converges slowly, and the hybrid
input-output algorithm, which has no convergence proof but
in practice converges much more rapidly. Further details
on the iterative Fourier-transform algorithm can be found in
Refs. 2, 3, and 7. The iterative Fourier-transform algorithm
attempts to find a Fourier-transform pair that is simulta-
neously consistent with both the Fourier-domain data and
the aperture-domain shape constraint (that no energy fall
outside the aperture) and thereby retrieves the wave-front
phase. It has been shown that, for certain favorable aper-
ture shapes, the algorithm in practice converges reliably to
the correct solution.3 A Fresnel transform can also be used
in place of the Fourier transform.

The Fourier intensity wave-front sensor makes no as-
sumptions about the aperture-plane intensity, nor does it
require the measurement of this intensity, as do some other
wave-front sensors.24 7 Thus the Fourier intensity wave-
front sensor is a particularly simple optical system that de-
tects the wave-front (transformed) intensity in an efficient
manner. Its principal drawback is the requirement of an
aperture shape for which the iterative Fourier-transform
algorithm works well,3 such as a polygon having no parallel
sides (a triangle being the best example) or an aperture
having two or more separated subapertures. If the desired
area of the reconstructed wave front differs greatly from any
aperture shape that is favorable for reconstruction, then
either (1) the aperture could be made of a favorable shape
that is larger than and includes the desired wave-front area
or (2) the desired wave-front area could be subdivided into
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Fig. 1. Model of the Fourier intensity wave-front se
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3. LOWER BOUND FOR THE FOURII
INTENSITY WAVE-FRONT SENSOR

In this section the lower bound for the Fouri
wave-front sensor is given. The approach used
lar to that used previously6 to analyze a shearing
eter.

If we denote the true wave-front phase by 0(x
a two-dimensional vector, and the phase estim
then the integrated mean-squared error, e2, c
estimate is

e2 E{[k(x) - (X)]2 dx,

input aperture; and zero-mean, spatially uncorrelated,
Gaussian-distributed additive noise with variance N is as-
sumed. Further explanation of Eqs. (2)-(4) is given in Ref. 6
and in Appendix A.

The inverse information kernel J"'(x, y), when evaluated
for x = y, represents a lower bound on the mean-squared

Detector error of the estimate of the phase 0 at the point x. The
(Plane of u, v) integral equation determines J-1 in terms of the covariance

K of the phase and the complicated expression [Eq. (4)] for
R, which in turn includes the detector quantum efficiency,

fnsor system. the integration time, the variance of the detector noise, the
mutual intensity of the aperture field that is due to the

le shape and object, and the wave-front sensor impulse response.
For the Fourier intensity wave-front sensor, the impulse

arately in a response is

h(u, x) = [W(x)/iXPexp(-i2iru x/F),

'R

,er intensity
here is simi-
interferom-

), where x is
ate by 0(x),
f the phase

(1)

(5)

where W(x) is a real-valued aperture mask, X is the wave-
length, and F is the lens focal length. Each point x in the
aperture plane results in a tilted plane wave in the detection
plane, with tilt proportional to x. A mask defining the
aperture is included in the analysis at this point because
aperture shape has been shown to affect estimation-algo-
rithm (phase-retrieval) performance.3

To proceed, Eq. (5) is substituted into Eq. (4). It is a good
assumption that the measurement region P (i.e., the entire
detector array) is sufficiently large that

(XJ)- 2 J exp(-i27ru x/XF)du = 6(x). (6)

where El-) denotes the expected value and A is the area of the
sensor input aperture. It can be proved that e2 has a
Cram6r-Rao lower bound, e0

2, given by5

eo= J J1l (x, x)dx. (2)
A A

The inverse information kernel J"'(x, x) is defined by the
integral equation6

J-(x, y) + f f J-1 (x, p)R(p, q)K(q - y)dpdq = K(x -y),

(3)

where

R(x, y) = (4- 2 1T/N)exp[-2K(O)]Re A A h(u, x)

X h*(u, p)M(x, p)exp[K(x - p) + K(y - q)]

X fh*(u, y)h(u, q)M*(y, q)exp[K(x - y)

- K(x - q) - K(y - p) + K(p - q)] - h(u, y)

X h*(u, q)M(y, q)exp[-K(x - y) + K(x - q)

+ K(y - p) - K(p - q)]dudPdq};

This assumption is equivalent to stating that the measure-
ment plane is large enough so that all the light in the Fourier
transform of the aperture field is detected. The simulations
(see Section 4) showed that this does not lead to unreason-
able detector areas. Using the delta functions to perform
the q integration gives

R(x, y)

= [4X27 2 /(7) 2N] W(x)W(y)exp[-2K(0) + 2K(x - y)]

X Re{J W(p)M(x, p)exp[2K(x - p) + 2K(y -p)]

X W(y - x + p)M*(, y - x + p)

X exp[-3K(y - p) - K(2x - y - p)]

- W(y + x-p)M(y, y + x-p)

X exp[-3K(x - y) - K(x + y - 2p)l}dp}.

This expression is valid for any object, aperture shape, or
atmospheric covariance, but it is also quite complicated.

To proceed further, a Gaussian atmospheric covariance,

(4)

n is the detector quantum efficiency, T is the detector inte-
gration time; K(x) is the covariance of the assumed zero-
mean, Gaussian-distributed phase O(x); h(u, x) is the coher-
ent impulse response of the wave-front sensor, where u is a
two-dimensional vector in the measurement region P; M(x,
x') is the mutual intensity of the wave front in the sensor

K(x - y) = a, 2exp(-Ix -yI 2/r. 2),

was assumed, where , 2 is the phase variance and r4, is the
correlation length of the phase. These parameters can be
related to the commonly used atmospheric coherence length
ro (Ref. 8) by using standard formulas.9 It can be shown that
ro we 1.86rlas

It was also assumed for simplicity that the extended object

(7)

(8)
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is incoherent and has a Gaussian spatial-intensity distribu-
tion. The mutual intensity is then

M(x, y) = I exp(-lx - y 2/L2), (9)

where I is the intensity and L is the field coherence length in
the sensor aperture. (The field in the aperture that is due to
an incoherent source is, by the van Cittert-Zernike theorem,
partially coherent.1 0 )

It was found by extensive numerical evaluation of Eq. (7)
that, for the most likely aperture shapes (e.g., circle, square,
triangle), a good approximation is

R(x, y) [4n2 T2 A/(X 2NJ W(X) W(y)

X exp-2 4 ,
2[1 - exp(-Ix - yJ2 /r4,

2)]I, (10)

where A = min(A, 7rL2). The aperture mask W(x) depen-
dence can also be dropped, since aperture shape does not
seem to be a major factor. A further approximation (shown
numerically to be good for Cr > 7r/3) can also be made:

R(x, y) [4n2 T2I2A/(Xfi 2 Nexp(-2o- 2IX - y 2/r 2
). (11)

(This approximation relies on the fact that, for oO > 7r/3, the
exponential has a nonnegligible value only when Ix - y2/rr , 2
is small.) R is now a function of (x - y), so Eq. (3) can be
solved by Fourier methods. 6 Equation (17) of Ref. 6 gives a
general solution. When the Fourier transforms of K(x - y)
[Eq. (20) of Ref. 6] and R(x - y) are substituted into Eq. (17)
of Ref. 6 and the angular integration is performed in the
Fourier domain [see Eq. (18) of Ref. 6], the result for the
lower bound for the Fourier intensity wave-front sensor is

eo2 = 2 1+ f exp(-f2 ) df, (12)
Jor exp-f 2[1 + (2Cr4

2 Y'])

where

plies that the product of the average aperture intensity I
with the aperture area A must be approximately equal to the
product of an average intensity IFT of the speckle cloud
times the area of a disk including most of the energy in the
speckle cloud. The radius of the disk is approximately XF/
ro, so

IA = IFTr(XF/rO)2.

Using Eq. (17) to substitute for I in Eq. (13) gives

(17)

(18)
(1.86) 4A2N

The parameter P contains the ratio n 2 T2IFT 2 /(N/2), which
is the ratio of signal power to thermal noise power. (For the
purpose of estimation theory, the signal is 77TIFT, so the
signal power is 72T2IFT2.) Since wave-front sensors are of-
ten used in low-light-level conditions, the detectors used
should ideally be shot-noise limited. P can therefore be
reinterpreted as follows: The number of detected photons
per unit area is

S = qTIF/hv, (19)

where is the detector quantum efficiency, T is the integra-
tion time, IFr is the average intensity at the detector, h is
Planck's constant, and hv is the energy of a photon. For
photon (shot) noise having Poisson statistics, the noise vari-
ance is equal to the mean number of photons, and so the
noise power is

N = nTIFr/hp. (20)

In Eq. (18), for the case of photon noise the ratio of signal
power to noise power, (TIF) 2 /(N/2), should therefore be
replaced by

P = 2 n2 T2I2A(7rro 2)2/[(XF)2N].

Although Eq. (12) can not be evaluated analytically, a
useful expression based on numerical investigations is

2 2 ln(1 + P)e 0 P 4, (14)

where

l = P/[1 + (2C4,
2 -li. (15)

Equation (14) is obtained by first replacing the exp(-f2/
2Cr4,

2) term in Eq. (12) by its average value (f in the range
from 0 to c) when weighted by f exp(-/ 2 ),

Jo exp[-f 2 (20 2) ']exp(-f 2
)fdf

1

1 + (2or 4
2 r'l

0.5

(16)

J exp(-f 2 )fdf

and then integrating the resulting expression.
In what follows we develop an alternative expression for P

in terms of photon rates with equivalent noise. As the ratio
of the phase coherence length r ( 1.86rl/u 4 ) to the sensor
aperture diameter D decreases below unity, the intensity
distribution in the measurement plane increasingly breaks
into a speckle cloud whose radius is approximately XF/rO.
Energy conservation within the Fourier intensity sensor im-

0
0 2 4 6 8 10

log PC

Fig. 2. Fourier intensity wave-front sensor normalized lower
bound e/a versus light level P for ao = r/2 and (curve A) a point
object and (curves B-E) extended objects with ratios of the field
coherence area rL2 to the sensor aperture area A of 10-1, 10-2, 10-3,
and 10-4, respectively.

(13)
1



l . . . . . . the number of detected photons per coherence cell in time T
(a) is

P, = err ,
2 TIlhv. (24)

eo The parameter P then becomes

P = 2.87o,
2 PCA /A. (25)

Note that the dependence of the lower bound on r is

0.5 through the parameter P,: the error lower bound increases
as ro decreases.

A\ By numerical integration of Eq. (12), eo was computed for

various values of a ,, P,, and Ao/A. The dependence of e0 on

light level is shown in Fig. 2, in which the normalized lower

B\ \ bound eo/ao, is plotted versus P, for the case of a point object

(L - a, Ao = A) and various extended objects. In all cases,

C\\ \ - a, 7/2 was used. As expected, the error lower bound

decreases with increasing light level per coherence cell and

0 > _< _ increases with increasing object width.. eo/Cro, and eo are

0 2 4 6 8 1 0 plotted versus P, in Figs. 3(a) and 3(b), respectively, for
various values of a, for the case of a point object. The

log PC normalized lower bound improves as Cr4, increases, but the

absolute lower bound eo becomes higher, as is expected.

2
(b) 4. COMPARISON OF ERROR BOUNDS WITH

D SIMULATED SENSOR-ALGORITHM
PERFORMANCE

0o C~ . Computer simulations of the Fourier intensity wave-front

sensor plus the iterative Fourier-transform algorithm were
performed. The Fourier intensity wave-front sensor was

XZ* \simulated by using a discrete version of Eq. (5). Point

4 \\\objects were used, and the atmospheric phase was simulat-
ed6 as in Ref. 11. The Gaussian covariance of Eq. (8) is an

A adequate approximation to the simulated phase covariance,
as shown in Fig. 4.

The generalized expressions for the Cramer-Rao lower
bound given in Section 3 were developed under the assump-
tion of zero-mean, Gaussian-distributed noise (i.e., a ther-

0
o 2 4 6 8 10 1.0

log PC

Fig. 3. Fourier intensity wave-front sensor lower bound versus Pc
for a point object and a of (curve A) 7r/2, (curve B) r, (curve C) 21r,

and (curve D) 47r. '(a) Normalized lower bound eo/aq,; (b) absolute

lower bound e. o\

Cu- 0.5 _

sIN, = fTIf/hv, (21) \
C-)

giving

p =r4nThrAov , (F) 2 (22)

(.86)
4A 2hv

Using Eq. (17) to convert IFT back to I gives 00 2 4 6 8 10

72-nTIA a2(-x 2)

= 1r 86TAhr (23) Distance, r in Sample Spacing Units

Fig. 4. Comparison of simulated atmospheric phase covariance
Further simplification can be obtained by defining an (solid curve) with Gaussian covariance (dashed curve) used in analy-

atmospheric coherence cell to be of area 7rrA,
2 and noting that sis.
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mal-noise-limited detector). The lower bound expressions
for the Fourier intensity wave-front sensor [Eqs. (12) and
(13)] were developed for Gaussian-distributed noise but
were interpreted to treat the case of Poisson-distributed
noise (i.e., a shot-noise-limited detector) in Eq. (25). Un-
correlated, Poisson-distributed (shot) noise was added to
the simulated Fourier intensity measurements.

The iterative Fourier transform algorithm, with a combi-
nation of the hybrid input-output and error-reduction ap-
proaches, was used to estimate the atmospheric phase.2 3 7

In the aperture domain, the constraint that no energy fall
outside the aperture was used. Square and triangular aper-
ture area was kept the same for both aperture shapes.
When the initial phase-estimate input to the algorithm was
random, aperture shape did affect both the rate of conver-
gence and the rms error, e, of the phase estimate. This is
probably a result of the fact that the present algorithm
converges better with some aperture shapes (triangles, for

example) than with others (squares, for example).3 This
result seems to be due to the fact that the phase-retrieval
problem is guaranteed to have a unique solution for objects
known to have a triangular shape.12 To determine the best
phase estimate that could ultimately be produced by an
algorithm of this type, another set of simulations was per-
formed, for which an initial phase estimate equal to the
actual atmospheric phase was used. The algorithm was
then allowed to converge to a phase estimate that was as
consistent as possible with the noisy measurement-plane
data and the shape constraint. In this case, the effect of the
aperture shape was not significant. This seems to indicate
that, although aperture shape is significant with regard to
the present algorithms, it may not be significant if an im-
proved algorithm is devised.

Figure 5 shows some sample simulation data for ra, = r/2,
rd = 6 samples and a triangular aperture with 64 samples
along each edge. This yields a ratio Diro 12.7, in which D

Fig. 5. Fourier intensity wave-front sensor simulation for a point object, a , = r/2, and D/ro c 12.7. Intensity in the measurement plane is
shown (A) without noise and (B and C) for lightlevelsP of 1.1 X 105 and 1.1 x 103 photons per coherence cell, respectively. Wave-frontphases
shown are (D) the actual phase and (E and F) phase estimates obtained from B and C, respectively, with a random initial phase estimate. Thephases are wrapped with -r phase (black) and +7r phase (white). Normalized errors e/lao are (E) 0.059 and (F) 0.55.
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Fig. 6. Comparison of Fourier intensity wave-front sensor lc
bound with simulation phase-estimate errors versus light level P
a point object, a = r/2 and D/ro 12.7. Curve A represents
normalized lower bound eo/Ca, . Normalized simulation errors 
are given for initial phase estimates of (curve B) the actual p1
and (curve C) a random phase.

is the length of the diagonal of the triangular aperture. I
ure 5A shows noiseless Fourier intensity data (in a 128 X
array), and Figs. 5B and 5C show the same data with s
noise for PC = 1.1 X 105 and Pc = 1.1 X 103 photons
coherence cell (of area 7rro,

2), respectively. Figure 5D shi
the actual atmospheric phase. Figures 5E and 5F sl
phase estimates from the corresponding measurement,
Figs. 5B and 5C, obtained by using random initial ph
estimates. The normalized rms errors e/l 4,- are 0.059
0.55, respectively.

Figure 6 compares the Cramer-Rao lower bounds (cu
A) with the simulation results. Actual rms errors are shc
for the cases in which the initial phase estimate was
actual phase (curve B) and a random one (curve C). As
light level increases, both rms errors approach the lo
bound asymptotically (i.e., e/eo - 1). It should be no
that this behavior depends on the interpretation of the lo
bound for Poisson noise [Eqs. (17)-(25)] and the appri
mate agreement between Eq. (8) and the simulated ph
covariance (in particular, the determination of r in
simulation data). The simulation error becomes large at
light levels because the phase-estimation algorithms did
use any information about the statistics of the atmosph
phase. The Cramer-Rao lower bounds approach the ph
variance C4 because they do assume statistical informat
The lower bounds approach zero at high light levels, but l
limit would not be achieved in practice because of a num
of effects (e.g., detector size, detector pattern noise, qua:
zation noise, finite word length for computation) that are
present in the wave-front sensor model.

5. CONCLUSIONS

In summary, the Fourier intensity wave-front sensor ol
ates by optically Fourier transforming the field in the sei

_ aperture to a detector plane. The wave-front phase is then
reconstructed from the Fourier intensity by a phase-retriev-
al algorithm. The analysis given here shows how the error
lower bound depends on the phase variance a ,

2, the light
level P, (in photons per coherence cell), and the ratio of the
field coherence length L to the aperture diameter D. The
lower bound does not depend strongly on the aperture
shape. Total aperture diameter is important because the
field over the entire aperture affects each point in the Fouri-
er plane. As expected, sensor performance improves as the
light level P, increases, as ro increases, and as the field coher-
ence length L increases (up to the aperture diameter D). An
interesting result was that the dependence on coherence
length L is equivalent to a reduction in light level P, by a
factor of (L/D) 2 [see Eq. (25)].

The Fourier intensity wave-front sensor was simulated
numerically and the iterative Fourier-transform algorithm

_ was used to obtain a phase estimate. The error lower bound
I 0 and the computer simulation errors are given in Fig' 6 for a

point object, an atmospheric phase variance Cr,, = 7r/2, and DI
ro _ 12.7. As shown, both the lower bound and the simula-

wer tion errors decrease as the number of photons per coherence
for cell, P, (i.e., the light level), increases. The simulation error
the approaches the lower bound asymptotically as P, increases.
V/ao4 Further research should include (1) the study of cases in
iase

which the extended object is coherent or partially coherent
rather than incoherent as was assumed here; (2) rederivation
of the basic equations describing the application of the

Fig- Cram6r-Rao method to wave-front sensors for the case of
128 Poisson (shot) noise; and (3) investigation of other perfor-
hot mance measures, including estimation-theory lower bounds
per other than the Cramnr-Rao bounds (e.g., the Bhattacharyya
Dws and the Barankin bounds), for evaluating wave-front sen-
low sors.
s in

Lase APPENDIX A: OUTLINE OF DERIVATION OF
and EQ. (4)

Lrve In Ref. 5 a derivation was given of the Cramr-Rao lower
)wn bound on the estimation error for one-dimensional func-
the tions. This derivation can be extended to two-dimensional
the functions such as the phase 4(x). In this appendix, an
wer outline is given to enable the interested reader to derive Eq.
ited (4). The first step is to make a Karhunen-Loeve expansion
bwer of 0(x,

Lase
the
low
not
eric
Lase
ion.
this
ber
nti-
not

per-
nsor

5(x) = I ajgj(x),
j=1

in which the functions gj(x) are the eigenfunctions of

ig (x) = K(x - y)g(y)dy

(Al)

(A2)

with eigenvalues uj.
For a general wave-front sensor, the intensity in the detec-

tor plane is

I(a, u) = E(f IA h(u, x)h*(u, y)M(x, y)

X expli[k(x) - 0(y)]}dxdy) (A3)

Cederquist et al.
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where Eq. (Al) is used to expand (x) and a is a vector
composed of the aj. Following the method described in Ref.
5, we obtain

A R(x, y)gj(x)gk(y)dxdy

=E2n2 f ff(a, u) I(a, u) dul. (A4)
N p 0a Oak J

Using the definition of I(a, u) in Eq. (A3) and the relation5

E (exp{i E aj[gj(x) - gj(y)]}) exp[-K(O) + K(x - y)]

(AS)

gives, after much algebraic manipulation of Eq. (A4), the
form of R(x, y) given in Eq. (4).
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