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A segmented-aperture telescope such as the Multiple-Mirror Telescope will suffer from phase errors unless the
segments are aligned to within a small fraction of a wavelength. Such a coherent alignment of the segments is
difficult to achieve in real time. An alternative is to record the images degraded by phase errors and to restore them
after detection by using phase-retrieval techniques. In this paper we describe the use of Gonsalves's phase-
diversity method (which was previously used to combat atmospheric turbulence) to correct imagery blurred by a
misaligned segmented-aperture telescope. Two images are recorded simultaneously: the usual degraded image in
the focal plane and a second degraded image in an out-of-focus plane. An iterative gradient-search algorithm finds
the phase error of the telescope that is consistent with both degraded images. We refer to this technique as the
method of multiple-plane measurements with iterative reconstruction. The final image is obtained by a Wiener-
Helstrom filtering of the degraded image using the retrieved phase errors. The results of reconstruction experi-
ments performed with simulated data including the effects of noise are shown for the case of random piston phase
errors on each of six segments.

1. INTRODUCTION

The trend in telescope design in recent years has favored
segmented-aperture systems. Examples of such systems
that are either functioning or in various stages of develop-
ment include the Multiple-Mirror Telescope (MMT),l the
Keck telescope, the Very Large Telescope, 3 and the Nation-
al New Technology Telescope. 4 Multiple-segment tele-
scopes have the potential to achieve resolutions far superior
to that of a single segment while avoiding the considerable
problems encountered in the fabrication of a monolithic
primary mirror large enough to achieve a comparable resolu-
tion. In order to reach the full resolution potential, howev-
er, the individual segments must be aligned to within a small
fraction of a wavelength. Thus, although mirror fabrication
tolerances are relaxed by the segmented-aperture concept,
the problem of alignment among segments is introduced.
Considerable effort has been directed toward the develop-
ment of active and passive methods for sensing piston (i.e., a
different constant phase error over each segment) and tilt
(i.e., a different linear phase error over each segment) mis-
alignments. Active methods typically involve local laser
interferometers that interfere light between adjacent seg-
ments.5 This approach requires considerable additional op-
tical hardware that is itself subject to misalignment. One
passive method relies on the presence of a bright star (with a
magnitude of 8 or 9) near the object of interest.' Phasing
between any two segments is performed by forming white-
light fringes when imaging the bright star. Unfortunately,
once the system is aligned, it must be redirected toward the
object of interest, introducing flexure effects. Observation
time is limited by alignment drift caused by thermal and
gravitational effects.

In situ alignment sensing could be performed passively for
extended objects by using a shearing interferometer, but,

again, a significant amount of additional hardware must be
devoted solely to alignment sensing.6 The use of a Hartman
sensor also has this drawback. In addition, the sensitivity of
the Hartman sensor degrades as the objects being imaged
become more extended.

In this paper we present an alternative to the methods
surveyed above. The method described can be used for both
aberration sensing and high-resolution image reconstruc-
tion. It relies on an external reference, the object being
imaged, and should therefore be more robust than local
interferometer alignment sensing or methods that rely on a
nearby bright star. The technique also works well for ex-
tended objects, with no loss of sensitivity owing to object
extent. Furthermore, the additional hardware required for
the technique is modest and includes a simple beam splitter
and a second detector array. Figure 1 depicts a cross section
of the MMT, which serves as one example of a segmented-
aperture system. Notice that a beam splitter has been in-
troduced so that a second image can be collected. The
second image is intentionally translated along the optical
axis by a distance AZ so that a known amount of defocus is
introduced. The goal is to infer the misalignment parame-
ters from the two collected images, and this is performed
with an iterative algorithm. The method is appropriately
called the method of multiple-plane measurements with it-
erative reconstruction (MMIR). Once the misalignment
parameters are known, they can be corrected actively. If
active alignment correction is unavailable or if misalignment
sensing cannot be performed fast enough to follow misalign-
ment drift rates, a Wiener-Helstrom filter can be construct-
ed to deblur the degraded imagery that is collected.

In Section 2 a mathematical model is described for the
misalignment-sensing problem, and the image-reconstruc-
tion algorithm is presented. In Sections 3 and 4 reconstruc-
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Cd(u) = E A,(u)exp~i[0k(u) + AŽ(u)]},
n=1

(5)

where the subscript d indicates that a phase diversity has
been applied to the system and Ao(u) represents the known
phase-diversity term. Because it corresponds to defocus,
A (u) will be quadratic in lul, where Jul denotes the length of
the vector u. It is important to understand that although
each fp(u) is unknown, Ao(u) is known because the exact
amount of defocus can be determined by the location of the
second image plane relative to the first. The diversity OTF
is the autocorrelation of the diversity CTF:

Sd(u) = Cd(u) * Cd(u)- (6)

Now consider the Fourier representation of the imaging
equations for the two collected images together:

Fig. 1. Cross section of the MMT adapted for multiple-plane imag-
ing.

tion results are shown for computer-simulated data for the
cases of noise-free and noisy data, respectively. In Section 5
we present conclusions that can be drawn from the comput-
er-simulation experiments.

2. FORMULATION OF THE PROBLEM AND THE
RECONSTRUCTION ALGORITHM

We begin by making the simplifying assumption that the
object or scene to be imaged is illuminated with spatially
incoherent, quasi-monochromatic light. In addition, the
imaging system is presumed to be a linear shift-invariant
system, leading to the following imaging equation:

g(x) = f(x) * s(x), (1)

where g(x) is the given image, f(x) is the object to be found,
s(x) is the point-spread function (PSF) of the system, x is a
two-dimensional vector, and the asterisk represents a two-
dimensional convolution. The PSF may have an unknown
aberration associated with it that is due to system misalign-
ment. The Fourier representation of Eq. (1) is given by

G(U) = F(u)S(u). (2)

The optical transfer function (OTF) of the system, S(u), is
found by autocorrelation of the coherent transfer function
(CTF),

S(u) = C(u) * C(u), (3)

where the star represents a cross correlation. For a seg-
mented-aperture system the CTF takes the form

N

C(u) = 1 An(u)exp[i0,,(u)I, (4)
n=1

where A,(u) is the binary aperture function representing the
nth segment, On(u) is the phase aberration associated with
the nth segment, and N is the total number of segments.
The method of MMIR requires that a second image be col-
lected. This second image is intentionally defocused and
therefore has a different CTF:

G(u) = S(u)F(u),

Gd(u) = Sd(u)F(u).

(7)

(8)

Equations (7) and (8) illustrate the problem that we wish to
solve. Both G(u) and Gd(u) are given by the image data.
S(u), Sd(u), and F(u) are unknowns that we wish to find.
Fortunately, we have additional knowledge about the rela-
tionship between S(u) and Sd(U) through our knowledge of
the phase diversity. Suppose now that we make an estimate
of the object's Fourier transform, P(u), and of the two
OTF's, 9(u) and Sd(U). The mean-squared difference be-
tween the data predicted by our estimates and that actually
collected serves as a measure of the quality of our estimates:

E = MG(u) -S(u)F(U)12 + I IGd(u) - Sd(u)PU) 2.
U U

(9)

For given 9(u) and Sd(U), it can be shown that this error
metric may be minimized by the choice of an object estimate
whose Fourier transform is given by

S*(U)G(u) + Sd*(u)Gd(U)
FIu) = I1(U)I2 + I'd(U)I2

Substitution of Eq. (10) back into Eq. (9) with appropriate
algebraic manipulations yields

IG(u)d(U) - Gd(u)o(u)12

U Is1,9(u)12 + Id(u)2
(11)

Remarkably, Eq. (11) expresses a figure of merit for the
correctness of the OTF estimates that is independent of any
object estimate. This error metric was first derived by Gon-
salves,7' 8 who used it to correct phase aberrations caused by
atmospheric turbulence for single-aperture systems.

Misalignment sensing can be accomplished as follows.
Because the phase aberrations may be parameterized (e.g.,
with piston and tilt parameters), a given parameter-set esti-
mate allows for the computation of the corresponding esti-
mates of the conventional and diversity CTF's and subse-
quently the OTF's by means of Eqs. (3)-(6). Consequently,
the error metric in Eq. (11) can be computed. This error
metric is therefore defined on a multidimensional parameter
space, the coordinates of that space being the unknown mis-
alignment parameters.

(10)
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Standard nonlinear optimization techniques can be used
to find the coordinates of the metric's global minimum,
corresponding to the actual phase-aberration parameters.
An initial estimate for the parameter set is made. In the
absence of additional information the aligned configuration
(i.e., the configuration with no phase errors) is a natural
choice. The goal is to find the parameter set for which the
error metric, or objective function [Eq. (11)], is a minimum.
We can evaluate the objective function and the gradient of
the objective function at the initial estimate. In our simula-
tions the gradient was approximated by the method of finite
differences, but an analytic expression for the gradient that
is computationally more efficient could also be used, as de-
scribed in Appendix A. The gradient provides guidance for
choosing a direction to move in parameter space that re-
duces the objective-function value. We computed this di-
rection by using the conjugate-gradient method, which is
known to have far better convergence rates than the method
of steepest descent for quadratic objective functions. 9 Once
the direction is established, a line search is performed to find
the minimum objective-function value along the search di-
rection. This is done by evaluating the objective function at
several locations along the line-search direction and per-
forming a cubic interpolation to find the minimum. This
new location in parameter space takes on the role of the
current estimate in parameter space, and the entire proce-
dure is repeated iteratively. When the change in consecu-
tive current estimates of the parameters is very small and
the norm of the gradient is small as well, the iterations are
terminated, since the algorithm has probably found a local
minimum.

The optimization procedure produces parameter esti-
mates that can be used to drive an adaptive-optics compen-
sation system. Alternatively, the knowledge of the phase
aberrations can be used to reconstruct a high-resolution
image from the raw data. We employ a Wiener-Helstrom
filter'0 to perform the object restoration:

the simulations presented here. The corresponding OTF
was created by autocorrelating the CTF, which was accom-
plished by embedding the CTF in a 128 X 128 complex array,
performing a fast Fourier transform (FFT), taking the mod-
ulus squared, and applying an inverse FFT.

The diversity CTF was formed by adding a global qua-
dratic phase to the conventional CTF, and the diversity OTF
was formed by autocorrelating the diversity CTF. In prac-
tice the quadratic phase diversity depends on the wave-
length, A, the focal length of the system, Zf, and the distance
that the diversity image is translated along the optical axis,
AZ:

Ao( ) 7AZ U12,
X\Zf2

(13)

where lul is the length of the vector u. For Eq. (13) it is
assumed that the origin of the coordinate system defining
the vector u coincides with the optical axis, that is, the origin
is located at the center of the six-segment array. The num-
ber of waves of quadratic diversity at the edge of the entire
six-segment aperture is given by

AzNumber of waves of defocus =
8X(F# )2

(14)

where F# represents the F number (focal length/diameter
ratio) of the system. In the experiments reported here we
used 0.5 and 1.0 waves of diversity at the edge of the aper-
ture. Modulation transfer functions, i.e., the moduli of the
corresponding OTF's, for aligned and misaligned systems
with and without diversity are shown in Fig. 4.

A(u) = G(M)6* (u)
1I9(U)12 + P"(u

Pf(u)

(12)

where the second term in the denominator is the ratio of the
power spectral density of the noise to that of the object class.
The reconstructed image is then given by the inverse Fourier
transform of P(u). In practice the power spectral density of
the noise is frequently assumed to be a constant. The power
spectral density of the object class is usually unavailable and
must be estimated. For the results shown in Sections 3 and
4 we simply used an appropriate constant for the ratio of
power spectra.

3. SIMULATIONS

Computer simulations were used to test the method of
MMIR. A six-segment MMT-like aperture was designed to
fit within a 64 X 64 complex array, as shown in Fig. 2.
Various amounts of piston phase were added to each of the
six segments. A random set of misalignment parameters of
particular interest is shown in Fig. 3. This particular mis-
alignment configuration, consisting of only piston terms,
was used as the actual configuration, or true solution, in all

61 Pixels
Fig. 2. Simulation of the aperture

19 Pixels

for a MMT-like system.

Segment Waves of
Number Piston

1
2
3
4
5
6

0.0
0.2
0.5
0.65
0.2
0.64

Fig. 3. Piston configuration representing a true solution for simu-
lations.
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Fig. 4. Modulation transfer functions for aligned and misaligned systems with and without phase diversity.

A 128 X 128 Voyager image of Jupiter was used to repre-
sent the true object and is shown in Fig. 5(A). First, to see
what would happen if the system were aberration free, we
simulated two data images by imaging with the conventional
OTF and its diversity counterpart for the case of an aligned
system. These images are shown in Figs. 5(B) and 5(C).
The amount of diversity used here was 0.5 wave. Figure
5(D) shows the result of applying a Wiener-Helstrom filter
to the ideal image shown in Fig. 5(B). The filtering is effec-
tive in correcting the OTF attenuation that is due to the
sparse aperture. Next, we simulated the data for the aber-
rated system. Figures 5(E) and 5(F) correspond to the con-
ventional and diversity images collected with the misaligned
system. With these two data images in place, the optimiza-
tion procedure can begin. When the procedure described in

Section 2 was applied to the two data images associated with
the misaligned system, using parameters for an aligned sys-
tem as an initial estimate, the restored misalignment param-
eters were virtually perfect (each within 10-5 wave). These
restored parameters were used to construct a Wiener-Hel-
strom filter that was used to deblur the simulated data image
shown in Fig. 5(E). The resulting restoration, shown in Fig.
5(H), is visually indistinguishable from the true object. It is
interesting to construct a Wiener-Helstrom filter for an
aligned system (assuming zero phase error) and apply it to
the images collected with the misaligned system. We call
this the naive restoration because, in the absence of knowl-
edge of the misalignment parameters, one might naively
apply this filter. The naive restoration is shown in Fig.
5(G). Clearly the image shown in Fig. 5(H) is superior to
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Fig. 5. Noiseless-data images and reconstructions: (A) original object (Jupiter), (B) image of object through aligned system, (C) diversity
image for aligned system (0.5-wave diversity), (D) Wiener-Helstrom restoration of (B), (E) image through misaligned system, (F) diversity
image for misaligned system, (G) restoration of (E) obtained by using a Wiener-Helstrom filter for an aligned system, (H) restoration of (E) ob-
tained by using a Wiener-Helstrom filter constructed with MMIR parameter estimates, and (I) restoration of (E) obtained by using a Wiener-
Helstrom filter constructed with true misalignment parameters.

those shown in Figs. 5(G) and 5(E), thus demonstrating the
utility of MMIR. Finally, Fig. 5(I) shows a restoration of
the image shown in Fig. 5(E) obtained by using the true
misalignment parameters. The result is indistinguishable
from our restoration in Fig. 5(H), since the restored mis-
alignment parameters are so close to the true misalignment
parameters.

One of the concerns with using a gradient-search algo-
rithm is the possibility of becoming entrapped in a local
minimum that is not the true solution. One way to avoid
this problem is to perform the minimization many times
with different initial estimates each time. The hope is that
at least one of the minimizations will lead to the true solu-
tion. In order to explore the need for such a strategy, the
entire parameter space was coarsely sampled. Recall that
there are six segments to which a piston aberration can be
added. Of these, however, only five are independent, since a
constant phase error over all segments will have no effect on
the imagery or the objective function. The parameter space
therefore has five dimensions. In addition, the assumption
of quasi-monochromaticity implies that each of the dimen-
sions is periodic with a period of 27r rad or 1.0 wave.

Each parameter was sampled with a sampling interval of
7r/2 rad, giving four samples per parameter for a total of 45 =
1024 samples. The objective function was evaluated at each

of the samples. These samples were then rank ordered on
the basis of their objective-function values, and several of
the sample points were used subsequently as initial esti-
mates in a minimization sequence. Of the nine initial esti-
mates, all but one led to the true solution. The details of the
ranking of the initial estimates and their Euclidian distances
from the true solution in parameter space are given in Table
1. It can be shown that, for this six-segment aperture and
for only piston errors,-the rms phase difference between two

Table 1. Multiple-Initial-Estimate Experiment
Results

Objective Euclidian Type of
Rank Order for Function Distance from Minimum
Initial Estimate (X 106) True Solution Found

1 0.17119 0.16462 Global
2 0.21210 0.29086 Global
3 0.32122 0.37363 Global
4 0.36984 0.56754 Global
5 0.53035 0.44956 Global

10 0.65025 0.79662 Global
50 1.0932 0.27767 Global

513 2.1779 0.66866 Global
1024 3.8361 0.62016 Local
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configurations is proportional to the Euclidian distance in
parameter spa(,e with a proportionality constant of J-/6.
The results in Table 1 suggest that the shape of the objective
function for this particular misalignment is relatively well
suited to gradient-search methods. A diversity of 1.0 wave
was used for this experiment.

4. SIMULATIONS WITH NOISE

It is difficult to visualize and characterize the morphology of
a multidimensional objective function that has many align-
ment parameters as the underlying independent variables.
However, it is possible to plot the error metric as a function
of a one-dimensional cut through parameter space in a speci-
fied direction. We use this probe to check how the surface
contour of the objective function changes when the data are
corrupted with additive noise.

Figure 6(A) gives a one-dimensional plot of the objective
function when a single piston parameter is varied from the
true solution. The objective function was computed by us-
ing conventional and diversity images with 1.0% additive
zero-mean Gaussian white noise, where noise is specified by
the ratio of the standard deviation of the noise to the peak
value in the noiseless focal-plane image. Whereas the gross
surface contour illustrated in Fig. 6(A) is consistent with a
well-behaved objective function, the detailed structure is
troublesome. The high-frequency structure suggests the
existence of many local minima far from the global mini-
mum, and it provokes the question of how close to the true
solution an initial estimate must be for a minimization se-
quence to find the global minimum. Figures 6(B) and 6(C)
show magnified versions of the same one-dimensional cut of
the objective function, with magnifications of 10X and 1OX,

(A)

respectively. Surprisingly there is no smoothing of the ob-
jective function at these magnifications. In other words, the
objective function appears to have a fractal-like structure in
the presence of noise. Care must be used in interpreting
these one-dimensional cuts. A local minimum in a one-
dimensional cut need not imply a local minimum in the full
multidimensional objective function. Still, the fractal-like
structure is strong evidence for the existence of many local
minima. In practice it was observed that the minimizer
stagnated away from the true solution when 1.0% noise was
added to the data. This is consistent with the conjecture
that noise creates local minima in the objective function.

Clearly the presence of noise in the data presents a prob-
lem for the MMIR procedure. We present here a simple
technique that was developed to suppress these troublesome
noise effects. Recall that the error metric is computed ac-
cording to Eq. (11) and that, of the quantities that appear in
that expression, only G and Gd are affected by noise. Fur-
thermore, since the collected images have passed through
the true OTF's of the system before the addition of noise, the
signal-to-noise ratios at the high spatial frequencies of G and
Gd will be considerably less than those at the lower spatial
frequencies. This observation suggests a simple truncation
of the summation in Eq. (11) so that the limits of the summa-
tion span only lower spatial frequencies, thus reducing the
effects of noise. A particular truncation that we used was
equivalent to performing the summation over a 24 X 24 pixel
subframe centered on the dc value. A one-dimensional cut
for the truncated error metric applied to the same noisy data
is shown in Fig. 6(D). The improvement in the shape of the
objective function is dramatic and encouraging. Notice that
the minimum along this one-dimensional cut has shifted by
approximately one thousandth of a wave. Of course it is
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Fig. 6. One-dimensional cuts of normalized objective function created by varying a single piston parameter: (A) variation over one wave with
noisy data, (B) structure at a magnification of lOX, (C) structure at a magnification of 10OX, (D) objective function resulting from truncated er-
ror metric with noisy data, and (E) objective function resulting from truncated error metric with noiseless data.
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Table 2. Reconstruction Parameters for 1 % Noisea

Segment Final Estimate True Solution
Number (wave) (wave)

1 0.0 0.0
2 0.188 0.2
3 0.486 0.5
4 0.635 0.65
5 0.208 0.2
6 0.632 0.64

a The initial estimate was zero for each segment.

difficult to infer from this how far the minimum of the
multidimensional objective function has shifted from the
true solution. That the shift is due to noise and not to the
truncation operation alone is supported by Fig. 6(E), which
shows the analogous one-dimensional cut for the truncated
error metric applied to noiseless data. Notice that the mini-
mum has not shifted from the true solution in this case.

It is interesting to note that the operation of truncation is
equivalent to low-pass filtering of both data images before
computation of an error metric. Apparently the operation

suppresses high-frequency structure imposed on the objec-
tive function by noise while still providing discrimination
between imperfect OTF estimates and the true OTF's. Fur-
thermore, the procedure actually reduces the number of
operations required to compute an error metric. Interest-
ingly enough, when the technique was used with noiseless
data and the same initial estimate that led to a local-mini-
mum solution in the multiple-initial-estimate experiment
(Table 1), the global minimum was actually achieved. In
practice, it was found necessary to use the technique to
achieve successful minimizations even in the presence of
small amounts of noise. Table 2 shows the results of a
minimization for which 1% Gaussian noise was added to both
data images. The restored parameters are each within 0.015
wave of the true solution, and the rms phase error over the
total aperture is 0.0094 wave.

A series of collected images and reconstructions similar to
those of Fig. 5, but for the 1% noise case, is given in Fig. 7. As
before, the MMIR restoration for the misaligned system
[Fig. 7(H)] compares favorably with the corresponding data
image [Fig. 7(E)] and the naive image [Fig. 7(G)]. These
images demonstrate that MMIR can be used successfully in

Fig. 7. Data images with 1% noise added and reconstructions: (A) original object, (B) image of object through aligned system, (C) diversity
image for aligned system (0.5-wave diversity), (D) Wiener-Helstrom restoration of (B), (E) image through misaligned system, (F) diversity
image for misaligned system, (G) restoration of (E) obtained by using a Wiener-Helstrom filter for an aligned system, (H) restoration of (E) ob-
tained by using a Wiener-Helstrom filter constructed with MMIR parameter estimates, (I) restoration of (E) obtained by using a Wiener-
Helstrom filter constructed with true misalignment parameters.
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the presence of noise. It must be noted, however, that the
image shown in Fig. 7(H) is not so true to the image shown in
Fig. 7(D), as was the case for the corresponding noiseless
data. In addition, Fig. 7(H) is comparable with Fig. 7(I),
which represents the restoration of the noisy data obtained
by using a filter constructed with absolute knowledge of the
alignment parameters. Noise apparently presents a limita-
tion on the fidelity of restored imagery even when the align-
ment parameters are known perfectly. This is because a loss
in the signal-to-noise ratio is always incurred by a mis-
aligned incoherent system.'" This becomes evident when
the aligned and misaligned MTF's are compared (Fig. 4).
Clearly, the misaligned MTF attenuates the higher spatial
frequencies more severely than does the aligned MTF.
Problems associated with Wiener-Helstrom filtering of the
data would be reduced considerably if MMIR were used in
an adaptive mode to correct for misalignments.

5. CONCLUSIONS

The technique of using phase diversity to infer phase aberra-
tions from two incoherent images, first developed by Gon-
salves,7' 8 is demonstrated to be effective for determining
segmented-aperture misalignment parameters. We refer to
this method as multiple-plane measurements with iterative
reconstruction (MMIR). Also demonstrated is image re-
construction by the use of the determined parameters. Seg-
mented-aperture misalignment is easily parameterized with
relatively few parameters, which helps to keep the computa-
tions required for a gradient search in parameter space man-
ageable. An analytic expression for the gradient of the ob-
jective function is derived and promises significant compu-
tational savings in special cases. Computer simulations are

dE (9d

dkmn ' u

where the dependence on u has been dropped for simplicity.
The functions G and Gd are simply the discrete Fourier
transforms of the two data images. These Fourier trans-
forms need be computed only once, and G and Gd may be
saved for repeated use. In contrast, OTF estimates 9 and 9Sd
must be recomputed for each new location in parameter
space. In order to compute a single gradient by the method
of finite differences, a total of 4(P + 1) forward or inverse
FFT's of size L X L are performed, where P is the number of
independent parameters. For the results shown here, P = 5
and L = 128. When 9, 9d, G, and Gd are combined to form
the objective-function value, some savings in storage and
computation can be realized by using the fact that these
quantities are all Hermitian and that their squared moduli
are centrosymmetric functions. Therefore only half of the L
X L complex elements for each of these quantities need to be
stored or combined.

An alternative to calculating the discrete gradient, with its
repeated calculations of the objective function, is to employ
an analytic expression for the continuous gradient. A single
term in the gradient is given by

aE E, d Cd -Gd I2 (A2)
akmn k Okmn 1912 + 19d1

=-Y a (G9d - Gd9)(G*9d* - Gd*9*)
L akmn h99 + 9d9d*

(A3)

where kmn is the mth misalignment parameter of the nth
segment. If we perform the partial derivative in Eq. (A3)
and then multiply out the resulting factors, we get an expres-
sion consisting of 32 terms. These terms collapse into the
following concise expression:

kS _ , A ) (G9* + Gd~d*) (Gd** - Gad) + c)c.

(1912 + I'dlI)'
(A4)

presented that demonstrate the MMIR technique success-
fully on a six-segment system for which only piston misalign-
ments are allowed. Results of experiments with multiple
initial estimates suggest that the surface contour of the ob-
jective function is appropriate for gradient-search methods.
Whereas noise in the data introduces a fractal-like structure
into the objective function, low-pass filtering the noisy im-
ages before computing the objective function smooths this
structure. Simulations are presented that indicate that this
prefiltering procedure makes it possible to use the MMIR
technique successfully when noise is present.

APPENDIX A: COMPUTATION OF THE
GRADIENT

The numeric computation involved in the gradient-search
algorithm is considerable. Recall that the merit function is
evaluated by performing the following computation:

E = IG~d-Gd91' (Al)
IU + 1I9dl

where c.c. denotes a complex conjugate. Notice that Eq.
(A4) is a general expression. It holds for any aberration that
can be parameterized. In addition, the dependence on the
parameter is confined to the first factor. Therefore only the
first factor needs to be computed for each parameter in the
determination of the gradient. The remaining expression
need be found only once per gradient computation.

We consider now the specific case of an aperture consist-
ing of N circular segments and evaluate the partial deriva-
tive of the OTF with respect to a parameter. The CTF for
the N-segment system can be expressed as follows:

N M

C(u) = N Circ(u-Un)exp i Z kmnom(u - un) , (A5)
n=l m=l

where Circ(u) is the pupil function of a single circular seg-
ment with radius r,

( { 1 iftlulrtrO, otherwise' (A6)

Om(u) is the mth of M orthonormal basis functions that span
the class of aberrations under consideration over a single
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segment; and kmn is the dimensionless coefficient of the mth
orthonormal basis function for the nth segment. As an
example, if the segments can be considered to be truly rigid
bodies, then these basis functions will span piston and tilt
phase aberrations. In this case there will be one piston and
two tilt basis functions so that M = 3.

The corresponding OTF is, of course,

S= C* C. (A7)

Substituting Eq. (A5) into Eq. (A7) yields

S(u) =J {> Circ(u' - un)exp[i E kmn6m(L -un)]}

N

X g E Circ(u' - Un,- U)

X exp -i E km'nOm'(u' - un'- u)du'. (A8)
m'=1 

Taking the partial derivative of Eq. (A8) with respect to the
specific parameter kpq gives

Okpq J Circ(u' - uq)iOp(u' - uq)

M 

X exp i E kmqom(u' - uq)
m=1

N

X E, CirC(u' - Un, - U)

n'=l

M M

X exp -i E' hn'n'0.(u -Un'-
m'=l

u) du'-J Circ(u' -uq -u)iO,(u' -uq -U)

M_
X exp -i Ad kmtqOm,(u' - uq - U)

m'=1

(N

X g E CirC(u' - Un)
(n=1

X exp[i E kmnom(u' - Un)}du'.
m=l

(A9)

It is useful to define the following function:

Bpq(u) = Circ(u - uq)iOp(u - Uq)exP[i E hmq m( -u

(AlO)

Equation (A9) may now be written in a more succinct form:

OS = (Bpq * C) + ( C * Bpq).
akpq

(All)

Cross correlation is not a commutative operation. Instead,
it is easy to show that

(C * Bpq)(u) = [(Bpq * C)(-u)]*- (A12)

Thus only one cross correlation needs to be performed in
order to compute Eq. (All).

In the special case for which misalignments are confined
to piston errors, the function Bpq becomes Bq = iD Circ(u -

uq)exp(ikqO), where 0 is a constant equal to the value of the
piston basis function for a single segment. The function Bq
has the interpretation of being proportional to the CTF of
the qth segment. In addition, it is a simple matter to show
that

N

Bq * C = io E exp[iO(kq - ku)]

n=1

X Circ(u - uq) * Circ(u - Un)

N

= io Z exp[i0(kq - kn)]
n=1

X (Circ * Circ)(u + u0 - uq). (A13)

Equation (A13) implies that the autocorrelation of the circle
function, Circ(u), could be calculated only once and then
stored. The quantity Bq * C can therefore be found by
adding versions of this archived function that are shifted
and multiplied by constants. This eliminates the need for
FFT's in the calculation of the partial derivative

as
akq

In this special case of only piston errors, the total forward or
inverse FFT count in finding the continuous gradient is
reduced to 4, as opposed to the 4N count required to esti-
mate the gradient by the method of finite differences. As
before, careful consideration of the quantities in Eq. (A4)
that are either Hermitian or anti-Hermitian permits a re-
duction in required storage and operations.

Although the continuous-gradient approach has not yet
been implemented, it promises considerable computational
savings over the discrete-gradient approach in the case for
which only piston misalignments are allowed.
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