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Reconstruction of a complex-valued object from the modulus
of its Fourier transform using a support constraint
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Previously it was shown that one can reconstruct an object from the modulus of its Fourier transform (solve the
phase-retrieval problem) by using the iterative Fourier-transform algorithm if one has a nonnegativity constraint
and a loose support constraint on the object. In this paper it is shown that it is possible to reconstruct a complex-
valued object from the modulus of its Fourier transform if one has a sufficiently strong support constraint.
Sufficiently strong support constraints include certain special shapes and separated supports. Reconstruction
results are shown, including the effect of tapered edges on the object's support.

INTRODUCTION

In a number of disciplines, including astronomy, x-ray crys-
tallography, electron microscopy, wave-front sensing, and
remote sensing, one encounters the phase-retrieval problem.
One wishes to reconstruct f(x, y), an object function, from
IF(u, V)l, the modulus of its Fourier transform

F(u, v) = IF(u, v)I exp[iq/(u, v)] = I[f(x, y)], (1)

where 9 denotes Fourier transform. Since the autocorrela-
tion of the object can be computed from the Fourier modulus
by [-1I[F(u, v)12], this problem is equivalent to reconstruct-
ing an object from its autocorrelation.

For successful reconstruction to be possible, one must
have sufficiently strong a priori information (constraints)
about the object to make the solution unique. Of course,
one has the omnipresent ambiguities that f(x, y), exp(iO,)f(x
- xo, y - yo), and exp(iOc)f*(-x - x0, -y - yo), where O is a
constant phase, all have the same Fourier modulus. If these
omnipresent ambiguities (phase constant, translation, and
conjugate image) are the only ambiguities, then we consider
the phase-retrieval problem to be unique and do not refer to
these ambiguities as ambiguities. For most problems of
interest (x-ray crystallography being a notable exception)
the object function has finite support. (The support is the
set of points over which the object is nonzero.) For the case
of two-dimensional (2-D) sampled objects of finite support
the solution is almost always unique (when no noise is
present).1"2 Also, for 2-D continuous objects the solution is
probably almost always unique, but the situation is less
clear. 3 '4

The support of the object appears to play the most impor-
tant role in determining whether the solution is unique. In
the one-dimensional (1-D) case the solution is almost always
unique if the object is known to have support consisting of at
least two disjoint parts satisfying a separation condition,5

despite the fact that the 1-D case is usually not unique.6

Therefore one would expect the likelihood of ambiguity in
the 2-D case to be lower for objects having supports known to
have sufficiently separated parts. For some special sup-

ports the solution can be shown to be absolutely unique as
opposed to almost always unique. Objects including refer-
ence points known to satisfy the holography condition are
unique. Sampled objects consisting of a rectangular region
of support plus a point off one corner of the rectangle (for
which one neighboring corner is nonzero) can be shown to be
(absolutely) unique.7-9 In addition, sampled objects known
to have triangular support (with nonzero corners) and some
other shapes including latent reference points are unique.9

Recently this has been generalized to show that all sampled
objects having supports whose known convex hulls are poly-
gons having no parallel sides are unique. 10'1' Another class
of unique objects includes those consisting of collections of
delta functions with separations not satisfying certain re-
dundancy conditions.'2 The library of supports for which
the solution is known to be unique is growing as we learn
more about this important constraint.

Successful reconstruction requires, in addition to a likeli-
hood of uniqueness, a phase-retrieval algorithm that is not
overly sensitive to noise and that converges to a solution
using a reasonable amount of computer time. The most
widely used phase-retrieval algorithm satisfying these re-
quirements is the iterative Fourier-transform algorithm.'3 -'6

A descendant of the Gerchberg-Saxton type of algo-
rithm,' 7"18 it involves the transformation back and forth be-
tween the Fourier domain, where the Fourier modulus data
are applied, and the object domain, where the a priori object
constraints are applied.

For the astronomy problem the only a priori constraint is
the object's nonnegativity. Since the autocorrelation of the
object can be computed from IF(u, v)I, one also knows the
support of the autocorrelation. For extended objects, from
the support of the autocorrelation one can usually determine
only upper bounds on the support of the object.'2 Therefore
the object domain constraints are nonnegativity and a loose
support constraint. These constraints have been sufficient
to reconstruct a number of computer-simulated astronomi-
cal-type objects,' 3"14"19' 20 even in the presence of a consider-
able amount of noise.13 ,15 ,21

However, for complex-valued objects the reconstruction
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problem is much more difficult. For example, the partially
reconstructed images of a complex-valued object shown by
Bates and Tan are "barely recognizable and virtually un-
recognizable." 2 2 The reason for this lack of success is well
known: the loss of the powerful constraint of nonnegativity.
However, as will be seen, there are circumstances under
which it is possible to reconstruct a complex-valued object.

In this paper we show that the iterative Fourier-transform
algorithm is also capable of reconstructing a complex-valued
image from its Fourier modulus by using only a support
constraint if the support of the object is sufficiently well
known (is sufficiently tight), is sufficiently sharp (the ob-
ject's edges are not tapered too much), and is one of several
interesting types.

ITERATIVE FOURIER-TRANSFORM
ALGORITHM

For the problem under consideration in this paper it is as-
sumed that IF(u, V)I has been measured and that the support
S of f(x,y) is known. The object f(x,y) may be real (nonneg-
ative or bipolar) or may be complex valued (with emphasis
here on the latter).

The kth iteration of the iterative Fourier-transform algo-
rithm applied to this problem consists of the following four
steps. (1) An input image, gk(x, y), is Fourier transformed,
yielding Gk(u, v) = IGk(u, v)Iexp[iUk(u, v)]; (2) a new Fourier-
domain function is formed, using the known Fourier modu-
lus IF(u, v)I with the computed phase: Gk'(u, v) E IF(u,
v)Iexp[ifk(u, v)]; (3) Gk'(u, v) is inverse Fourier transformed
to yield gk'(X, y); (4) a new input is formed by

gk+l(X, ) = gk(Xy), (X,y) G S
9gk(xy) A- gk (Xy), (X, y) E S (2)

where ,B is a constant usually chosen to be anywhere between
0.5 and 1.0 the [performance of the algorithm is not highly
sensitive to the choice of the feedback parameter ,B (Ref.
15)]. Step (4) above embodies the hybrid input-output ver-
sion of the iterative algorithm, which has been most success-
ful for other phase retrieval problems.'5 The error-reduc-
tion version of the iterative algorithm (which most closely
follows the Gerchberg-Saxton philosophy) replaces step (4)
with

gk+1(X, y) A {gk(X, y),
(x,y) E S
(x, y) E S

Other versions of the iterative algorithm are applicable as
well.15

Progress of the algorithm can be monitored by the object-
domain error metric, a normalized root-mean-squared
(nrms) error (the amount by which the output image violates
the object-domain constraint):

[ Igk/(X Y) 12 1/2

(xy)ES
Eok= . (4)

Y, Igk'(X, y) 12

L (xly)J

When using the error-reduction algorithm it is also appro-
priate to look at the Fourier-domain error metric

r, 1/2
| Z [IGk(U, v)I - IF(u, V)12]

EFk -' (u5) 
E IF(u, V)2 * (5)

(usv)J

The error-reduction algorithm can be proven to converge
in the weak sense that' 5

EF(k+l) • Eok < EFkA EO(k-l). (6)

Nevertheless, the error-reduction algorithm is usually much
less effective than the hybrid input-output algorithm for
which there is no convergence proof.' 5 The error-reduction
algorithm can be used in conjunction with the hybrid input-
output algorithm to get a better reading of the residual error
during the iterations.' 5 Furthermore, when the reconstruc-
tion problem is particularly easy, then even the error-reduc-
tion algorithm can perform adequately. The error-reduc-
tion algorithm is the same as the projection-onto-sets algo-
rithm23' 24 for this problem; however, the modulus constraint
in the Fourier domain is nonconvex, and so the error-reduc-
tion algorithm does not enjoy the strong convergence prop-
erties of projection onto convex sets.

Note that step (3) of the algorithm can be expressed as

Gk'(u, v) = Gk(u, u)[IF(u, v)I/IGk(u, v)l]. (7)

This form can be used instead of the form given in step (2)
above, but it obviously has a problem wherever Gk(u, v) = 0.
This problem has always been easily solved either by using

Gk'(U, v) = Gk(u, v)[IF(u, v)I/(Gk(u, v)I + s)], (8)

where 6 is a very small positive constant, or by directly.
setting Gk'(u, v) = IF(u, v)Iexp[ihk(u, V)], where ok(u, v) is the
phase of Gk(u, v). This has never caused any difficulties,
contrary to speculation.2 5

RESULTS OF COMPUTER EXPERIMENTS

For all the reconstruction results shown, the reconstruction
algorithm employed was the iterative Fourier-transform al-
gorithm, using only a support constraint in the object do-
main. The initial input to the algorithm was an array of
complex random numbers filling the area of the known sup-
port. In each case, first 20 iterations of the error-reduction
algorithm were performed and then several cycles of itera-
tions were performed, where one cycle of iterations is K
iterations (K = 20 or 40) of the hybrid input-output algo-
rithm with feedback parameter f3 = 0.7, followed by 10 itera-
tions of the error-reduction algorithm. Quoted values of Eo
are after error-reduction iterations or after the end of a
complete cycle.

Figures 1 and 2 show the results of computer experiments
demonstrating the reconstruction of a complex-valued ob-
ject from the modulus of its Fourier transform by using only
a support constraint and exploring the importance of a sup-
port constraint having separated parts. The objects for
these experiments were generated from a 64 X 64 portion of a
complex-valued SEASAT synthetic aperture radar (SAR)
image of an area of land. A binary mask (an array of ones
and zeros) was formed to define the desired support con-
straint. For the first case the support constraint was a pair
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Fig. 1. Examples of reconstructing complex-valued objects from the moduli of their Fourier transforms by using a support constraint. (A),
(D), (G), and (J): moduli of the complex-valued objects, each having a different support; (B), (E), (H), and (K): the moduli of the images re-
constructed by using the iterative Fourier-transform algorithm from the corresponding Fourier moduli, shown in (C), (F), (I), and (L),
respectively.

of ellipses separated vertically by a distance greater than the
sum of the vertical widths of the ellipses. This separation
condition corresponds to the 1-D separation that makes
uniqueness likely.5 If this separation condition holds, then
within the complete autocorrelation of the object the cross
correlation of the two ellipses does not overlap the autocor-
relations of the individual ellipses. The complex-valued
object, the modulus of which is shown in Fig. 1(A), was
formed by multiplying the SEASAT SAR image by the bina-
ry mask. The modulus of its Fourier transform, shown in
Fig. 1(C), Was computed from the object imbedded in a 128 X
128 array. This imbedding is done in order to avoid aliasing
in the computation of IF(u, V)12. The modulus of the com-
plex-valued image reconstructed by using the iterative Fou-
rier-transform algorithm with the Fourier modulus and the
support constraint is shown in Fig. 1(B). The reconstructed
image is essentially perfect, both in modulus and in phase
(not shown), up to an additive constant phase. Figure 2,
curve 1, shows the object domain nrms error E0, given by Eq.
(4), as a function of iteration number. The output image
looked excellent (visually indistinguishable from the origi-
nal object) after the second cycle of iterations (120 total
iterations). By iteration 820, E0 bottomed out at 3 X 10-8,

presumably limited by roundoff error. In practice, with
noise-free data one would ordinarily stop the iterations once
E0 dropped below, say, 0.001.

Figures 1(D), 1(E), and 1(F) show the moduli of the object,
the reconstructed image, and the Fourier transform, respec-
tively, for a second case, for which the support is two larger,
more closely spaced ellipses not satisfying the separation
condition of Ref. 5. Again, the reconstructed image is excel-
lent, but a larger number of iterations was required to
achieve an excellent output image (220 iterations, although
it was good by 170 iterations) than for the first case. This
can be seen from iterations 120 and 170 of Fig. 2, curve 2. E0
continued to decrease by about a factor of 2 every 100 itera-
tions and was 6 X 10-6 by iteration 1020.

Figures 1(G), 1(H), and 1(I) show the moduli of the object,
the partially reconstructed output image after 1020 itera-
tions, and the Fourier transform, respectively, for a third
case, for which the support is contiguous, formed by the
union of two overlapping ellipses. As seen from E0 shown in
Fig. 2, curve 3, this output image does not agree exactly with
the constraints and is not a solution. (Note that for this case
E0 is lower than it was for iteration 120 of the first case, for
which the reconstruction was excellent. From case to case
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E0 is often poorly correlated with how close the output image
is to the original object-it is only a measure of closeness to
agreement with the data and constraints.) The algorithm
was converging very slowly and was stopped before a solu-
tion was found. The quality of the partially reconstructed
image is very poor, although it does have some of the features
of the object. This type of object appears to be much more
difficult to reconstruct than does one with separated sup-
port.

Figures 1(J), 1(K), and 1(L) show the moduli of the object,
the reconstructed image, and the Fourier transform, respec-
tively, for a fourth case, for which the support is doughnut
shaped with an off-center hole. Although the support is
contiguous, the number of iterations required for conver-
gence, as shown in Fig. 2, curve 4, is similar to that of the
objects having separated support. The output image looked
good by iteration 120 and excellent by iteration 170. By
iteration 1020, E0 had decreased to 1.5 X 10-7. It is interest-
ing that along any 1-D cut through the center of the object,
the support does have two separated parts.

Not shown is a fifth case, for which the support was a
single ellipse-the larger of the two ellipses shown in Fig.
1(D). As in the third case above, the reconstruction was
unsuccessful after several hundred iterations. For this case
E0 is shown in Fig. 2, curve 5.

The results of Figs. 1 and 2 demonstrate that having a
support constraint consisting of (at least) two separated
parts makes the reconstruction of the object by the iterative
Fourier-transform algorithm much easier than reconstruc-
tion with only a simple connected support constraint.

The power of the separated support might arise from its
holographylike properties. If one of the separated parts is
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Fig. 2. Error E0 as a function of iteration number for reconstruction
examples. Curve 1 corresponds to the case of Figs. 1(A), 1(B), and
1(C); curve 2 corresponds to Figs. 1(D), 1(E), and 1(F); curve 3
corresponds to Figs. 1(G), 1(H), and 1(I); curve 4 corresponds to
Figs. 1(J), 1(K), and 1(L); curve 5 corresponds to the case of the
object being just the larger ellipse in Fig. 1(D).

pointlike and sufficiently separated from the other parts,
then it acts as a holographic reference point, and the object
can be easily extracted from its autocorrelation.1 6"17 Latent
reference points that do not satisfy the holography condition
may also be used for some special cases.9 One thing that a
holographic reference point does is to encode the phase of
the Fourier transform in a fringe pattern. For example, the
object

f(x,y) = Ab(x - x0, y) + fl(x, y)

has Fourier transform

F(u, v) = A exp(-i27rux 0 ) + Fl(u, v),

(9)

(10)

where Fl(u, v) = IF1(u, v)Iexp[ig1(u, v)] = Y[fl(x, y)].
Its squared Fourier modulus is

IF(u, V)l2 = IA exp(-i2ruxo) + Fl(u, V)12

= IAl2 + IF,(u, V)12 + 2IAIIFl(u, v)lcos[27ruxo + q/1(u, v)].

(11)

For separation x0 sufficiently large compared with the width
of the object, one can see the cos [ ] fringe in IF(u, V) 12, and the
spatial modulation of that fringe by the phase t'(u, v) gives
an indication of the phase. If x0 satisfies the holography
condition, then f(x, y) is trivially obtained by spatially filter-
ing the autocorrelation function, which is given by Y-'[IF(u,
v)l]. From this it is seen that the phase 4,(u, v) is obtained
by taking the phase of IF(u, V)I2 filtered by a single-sided
bandpass filter.

For the problem under consideration one does not have
holography, since neither of the separated parts fo(x, y) and
f(x, y) of

f(x,y) =f0(xy) +f,(x,y)

is necessarily a delta function, nor is the separation necessar-
ily large enough to satisfy the holography condition. (Fur-
thermore, latent reference points9 do not necessarily exist.)
Nevertheless, with sufficiently separated parts one still does
see a fringelike structure in IF(u, V)12. As one departs fur-
ther from the holography condition, both in terms of separa-
tion and in the greater extent of the smaller of the two parts,
the fringes degrade into a speckle pattern, as seen by com-
paring Figs. 1(C), 1(F), and 1(I). With a departure from the
holography condition, the ability to decipher the phase from
the degraded fringes diminishes. From the results shown in
Fig. 1 it appears that the iterative Fourier-transform algo-
rithm performs especially well when the Fourier modulus
data have any of the fringe structures described above, even
when the fringes are substantially degraded.

Note that the supports were chosen to be noncentrosym-
metric (except in the fifth case). This was done in order to
avoid a potential stagnation problem that can occur for cen-
trosymmetric supports, since in this case f*(-x - xo, -y -
yo) is consistent with the support constraint and also has the
same Fourier modulus as does f(x, y). As the iterations
progress, the partially reconstructed image g'(x, y) may pos-
sess features of both f(x, y) and f*((-x-xo,-y-yo). It may
be unable to move away from one of those equally valid
solutions toward the other, and it may stagnate in this condi-
tion. We have developed methods for overcoming this prob-
lem,'6 ,20 but reconstruction remains easier for noncentro-
symmetric supports.
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Fig. 3. Examples of reconstructing objects from the moduli of their Fourier transforms by using a triangular support constraint. (A) Object
with sharp edges and bright corners, (B) reconstructed image; (C) object with sharp edges and zeroed corners, (D) reconstructed image; (E)
object with tapered edges and zeroed corners, (F) partially reconstructed image.

Figure 3 shows the results of computer experiments dem-
onstrating the importance of the sharpness (or tapering) of
the edges of an object. Figure 3(A) shows an object having
triangular support and nonzero values in its three corners.
These conditions ensure that the object is unique among
objects having that support, and under these conditions
there is a closed-form recursive algorithm for reconstructing
it.9 For the present experiment, the image, shown in Fig.
3(B), was reconstructed by using the iterative Fourier-trans-
form algorithm (rather than the recursive algorithm). Non-
negativity was not used as a constraint, although the object
happens to be nonegative. In this case the algorithm con-
verged rapidly to the solution.

Another example of the ability to reconstruct an object
with this type of support constraint by using the iterative
Fourier-transform algorithm is shown in Ref. 28. There, the
object was a pure-phase wave front transmitted through a
triangular aperture.

Since the recursive reconstruction algorithm and the
uniqueness proof require the three corners to be nonzero, we
wanted to determine the importance of nonzero corners to
the iterative Fourier-transform reconstruction algorithm.
The same experiment was performed for the object shown in
Fig. 3(C), which is identical to the object shown in Fig. 3(A)
but with the corners zeroed out. The support constraint
used in the iterative algorithm was the same triangular sup-
port as was used for the case above. The reconstructed
image, shown in Fig. 3(D), is the correct solution, but conver-
gence was slower in this case than for the case of the object
having three bright corners. Therefore the brightness of the

corners has an effect on convergence but is not crucial as far
as the iterative algorithm is concerned (it is crucial to the
success of the recursive algorithm).

The effect of the sharpness of the edges of the object was
also investigated. A third object, having tapered edges,
shown in Fig. 3(E), was formed by multiplying the object
shown in Fig. 3(C) by a tapering function along each of its
three edges. Thus this third object has the same triangular
support as the other two cases described above, but it has
small values near the edges of the support. An attempt was
made to reconstruct the image from its Fourier modulus by
using the iterative Fourier-transform algorithm with the
triangular support constraint. The output image resulting
after several hundred iterations is shown in Fig. 3(F). Al-
though the image is easily recognizable, it has a noisy ap-
pearance. It does not represent a solution, since it is not in
perfect agreement with the data and constraints. The algo-
rithm was stagnating, and the iterations were halted before a
solution was found. This example shows that if one does not
use a nonnegativity constraint, then the sharpness of the
edges of the object is very important to the ability of the
iterative algorithm to reconstruct an image by using only a
support constraint in the object domain.

CONCLUSIONS

Previously it was shown that by using the iterative Fourier-
transform algorithm one could reconstruct a nonnegative
object from the modulus of its Fourier transform with a loose
support constraint. In general the reconstruction of com-
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plex-valued objects is considerably more difficult than for
real-valued, nonnegative objects.22 The results shown here
demonstrate the possibility of reconstructing complex-val-
ued objects if one has a tight enough support constraint that
is one of a number of special types of support constraints.
These special types of support constraints include supports
having separated parts and supports for which the object can
be reconstructed by using the recursive algorithm with la-
tent reference points; the latter class of objects includes
objects with supports whose convex hulls have no parallel
sides. One would expect to be able to find other supports as
well for which the iterative Fourier-transform algorithm
performs successfully. Simple symmetric support con-
straints such as single ellipses (circles) or rectangles do not
work well. The algorithm also works much better for ob-
jects having sharp edges than for objects having tapered
edges. Further research is being performed to examine in
more detail the effects of the shape of the support, the
amount of edge tapering, and the presence of noise on the
ability to reconstruct a complex-valued object from the
modulus of its Fourier transform by using only a support
constraint. Portions of this work were reported in Refs. 20,
29, and 30.
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