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Analytic design of optimum holographic optical elements
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A method is developed for analytically determining the holographic optical element phase function that is optimum
for transforming a set of input wave fronts into a corresponding set of output wave fronts. These sets are allowed to
be infinite in the sense that the wave-front phases can be given as functions of continuous parameters. The method
can be tolerant of specified wave-front aberrations, with the optimum amount of these aberrations determined as
part of the solution process. For many practical design problems, the phase function and its first derivatives will be
continuous. The method is applied to the design of a one-dimensional Fourier-transform holographic element with
the input wave-front angle of arrival as a continuous parameter and with the optimum distortion of the output plane
determined by the solution. The resulting design compares favorably with other work using damped-least-squares
optimization.

1. INTRODUCTION

Holographic optical elements (HOE's) have proved to be
useful for several applications. 1 Compared with conven-
tional refractive and reflective optics, they can be thinner
and more lightweight and have the potential for being very
inexpensive in mass production. They can also perform
multiple functions simultaneously (for example, focusing,
beam splitting, and spectral filtering, all in the same area of
the HOE).

A HOE can be defined by the object and reference wave
fronts that are used to construct it. If the object and refer-
ence wave fronts have phase functions q5.bj(x) and kref(x),

respectively, where x is a two-dimensional (2-D) vector in
the x-y plane, the HOE phase function 0H(X) is

X'H(X) = obj(x) - ref(X). (1)

If the HOE is illuminated by a wave front with phase Oin(x),

the phase 40 ut(x) of the output wave front will be

out(X) = Pin(x) + 'PH(X). (2)

In most applications, one can define a set of input wave
fronts and a corresponding set of desired output wave fronts.
Usually the phase of the input wave front can be written as
0in(x, a), where a is a 2-D vector parameter that may repre-
sent different points on an object or different field angles, for
example. Different values of a give different members of
the set of input wave fronts. If 00ut(x, a) is similarly de-
fined, then, for any a, the desired HOE phase function ¢(x,
a) is

0(x, a) = kOut(x, a) - Oin(x, a). (3)

For a given a, a HOE with a phase function 0(x, a) defined
by Eq. (3) will perfectly transform Oin(x, a) into f0 ut(x, a).
In general, O/(x, a) varies with a, so that a HOE with a phase
function OH(x) equal to O(x, a) for one value of a will per-
form ideally only for that value of a and will have aberra-
tions given by the difference between OH(X) and 0(x, a) for
other values of a.

A quality criterion can be used to quantify the perfor-
mance of any given HOE phase function 4H(X). For this

investigation, the criterion used was a squared-error metric,
the square of the phase difference OH(X) - ¢(x, a) integrated
and possibly weighted over the relevant values of x and a.
This commonly used criterion is closely related to the Strehl
ratio2 and correlates with the root-mean-square (rms) spot
size. The objective in HOE design is to find the optimum
HOE whose phase function H(x) minimizes the error met-
ric.

Early work in HOE design was concentrated on defining
phase functions OH(X) that would be formed from object and
reference beams [see Eq. (1)] that could easily be formed in
the laboratory and were simple to describe mathematically
(i.e., plane waves and point sources). Since each of the two
beams can be specified by three parameters, such a HOE
would possess only six degrees of freedom (neglecting such
possibilities as changing wavelengths between recording and
readout). As the field matured, the number of possible
degrees of freedom was greatly enlarged by allowing the
object and reference beams to be defined by arbitrary auxil-
iary optical systems that would produce them.3 The num-
ber of degrees of freedom possible in the HOE is then equal
to the number of degrees of freedom allowed in the design of
the auxiliary optical systems. Another step forward was
taken by allowing the object and reference beams to be
described by arbitrary mathematical functions, such as a
polynomial series, having a number of free parameters or
coefficients. 3 The number of possible degrees of freedom of
the HOE is then the number of coefficients that are associat-
ed with the mathematical function. In this case, the record-
ing wave-front descriptions are divorced from the means for
producing them in the laboratory, and so, after designing the
HOE, one must then also design optical systems, which are
likely to include computer-generated holograms, for produc-
ing the desired recording wave fronts.

In all these ways of describing wave fronts, the design
approach is to optimize an error metric over the space of
available HOE parameters by using an iterative search
method such as damped least squares. Even if the global
minimum of the error metric is found for the given set of
parameters, one could not be sure that the best possible
(optimum) HOE was found, since the optimum HOE may
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not be describable by the set of parameters used to charac-
terize and optimize the HOE.

More recently, an entirely different approach to HOE
design that is capable of finding the optimum HOE was
invented.4 It uses the fact that an analytic solution to the
optimum HOE can be found when employing a squared-
error metric. That analysis, however, permits only a finite
set of input and output wave fronts; i.e., the parameter a
takes only a finite number of discrete values. Subsection
2.A of this paper describes a method for improving perfor-
mance by allowing the parameter a to vary continuously.
Subsection 2.B discusses conditions under which the HOE
phase kH(X) and its first derivatives are continuous (as is
desirable for any HOE that is to be fabricated and to avoid
diffraction effects at discontinuities). The earlier method4

based on a finite set of wave fronts does not guarantee phase
continuity. In Subsection 2.C, the method is extended to
allow for cases in which either the input phase Oin(x, a) or the
output phase qout(x, a) is not completely specified and some
types of aberration can be permitted to exist in order to
improve performance in terms of other aberrations that are
more important to the application. A numerical example of
the method and a comparison with earlier results are given in
Section 3. Section 4 comments on another recently pub-
lished method, and conclusions are stated in Section 5.

2. THEORETICAL DEVELOPMENT

A. Basic Theory
As mentioned in the introduction, the HOE phase function
is defined as OH(X), and the desired HOE phase function for
any value of the parameter a is defined as p(x, a). Further,
define a pupil function P(x, a). The pupil function can be
simply a binary function such that P(x, a) = 1 if the point x
on the HOE is illuminated by the input wave front with
parameter a, and P(x, a) = 0 otherwise. It can also be a
continuous function to allow for weighting of different parts
of an input wave front. In all cases

0 P(x, a) S 1.

For E to be a minimum [and therefore for OH(X) to be the
optimum HOE phase]

5E = 0.

Since 50H(X) is arbitrary, Eqs. (7) and (8) imply that

J W(a)P(x, a)[IPH(x) - 0(x, a)]da = 0

(8)

(9)

for all values of x. The optimum HOE phase is therefore

J W(a)P(x, a)o(x, a)da

OH(X) = (10)

J W(a)P(x, a)da

Equation (10) is a key result, for it expresses the optimum
HOE phase in terms of a desired HOE phase that is a func-
tion of a continuous parameter a.

If one uses a computer-generated hologram as the HOE,
then 4H(X) may be encoded directly. On the other hand, if
the HOE is interferometrically recorded, then the choice of
either the object beam or the reference beam is arbitrary, as
long as Eq. (1) is satisfied; that is, while the difference be-
tween 0obj(x) and Oref(x) is fixed by Eq. (1), their sum is
arbitrary. For volume phase HOE's, this freedom allows
one to optimize the diffraction efficiency by manipulating
the Bragg angle independently of (PH(X).

B. Continuity Considerations
For Eq. (10) to be useful in practical applications, it is desir-
able that the HOE phase OH(x) and its first derivatives be

(a)

I

(4)

A second weighting function W(a) can also be defined to
vary the relative contributions to the performance criterion
of different input wave fronts. Again, in all cases,

0 S W(a) S 1. (5)

Finally, a performance criterion E can be defined as the
weighted squared-error metric

E = W(a)P(x, a)[ H(x) - P(x, a)]2dadx, (6)

where the integration in x and a may be considered to have
infinite limits and the pupil function P(x, a) can be used to
define the actual regions of integration.

A variational method 5 may be used to find the optimum
HOE phase kH(x) that minimizes E. Specifically, for a
variation 50H(x) of the HOE phase function (PH(X), the varia-
tion 5E of the criterion E is

SE = 2 J J W(a)P(x, a)[OH(x) - k(x, a)i]H(x)dadx.

(7)

-I

(b)
I

-l

x I

x I

Fig. 1. Pupil functions that give continuous (a) and discontinuous
(b) optimum HOE phase functions.
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continuous. For most practical cases, OH(X) compute
Eq. (10) will be continuous. The continuity of the ca!
which x and a are one-dimensional (1-D) parameters
P(x, a) is a binary function is analyzed here. Other case
simple extensions of this analysis.

Assume that W(a) and 0(x, a) are continuous in the rE
R where P(x, a) = 1 and that Eq. (5) holds. Assume tha
region R is such that its upper boundary is given b3
function a = fu(x) and its lower boundary is given by
fL(x), as illustrated in Fig. 1(a). Equation (10) may the
written as

ffu(x)

JfL(X)Jfu(x)
fL(X)

d by
3e in
and
s are

egion
t the
y the
a =

en be

(11)

W(a)da

If the numerator and the denominator are continuous func-
tions of x and the denominator is nonzero, then qH(X) will be
continuous for values of x in the projection of the region R
onto the x axis. The denominator will be a continuous
function of x if fL(x) and fu(x) are continuous. For example,
for W(a) = 1, the denominator will be a continuous function
of x for the region R of Fig. 1(a) but not for the region R' of
Fig. 1(b). A similar argument holds for the numerator as-
suming that 0(x, a) is continuous in the region R. Since the
functions fu(x) and fL(x) will be continuous in many practi-
cal cases, OH(X) will be also.

For many, but not all, practical cases, the first derivatives
a0H(X)/Ox and O0H(x)/Oy will again be continuous. An anal-
ysis is given here for the 1-D case. Differentiating Eq. (11)
gives

C. Optimum Aberration
In many cases of practical interest, the desired HOE phase
function 0(x, a) is not completely known. It is useful to let

0(x, a) = tko(x, a) + 01(x, a), (13)

where 00(x, a) is an initial estimate of 0(x, a) and 01(x, a) is a
function with parameters whose values are as yet unknown.
For example, if a particular kind of aberration such as distor-
tion or field curvature can be tolerated, then 01(x, a) would
embody a description of variable amounts of these tolerable
aberrations. Since one type of aberration can usually be
traded off to some extent for another type of aberration, it is
usually possible to obtain lower amounts of the aberrations
that one cares about if the tolerable errors are allowed to
increase. To take advantage of this fact, parameters de-
scribing 01(x, a) should be allowed to vary in such a way as to
optimize the performance criterion E. For example, in one
dimension, a possible choice is

M N

01(X, a) = E E C~1ijaY,
i=1 j=O

(14)

where only those coefficients c1j embodying the tolerable
errors are allowed to be nonzero. Equation (10) remains the
expression for the optimum HOE phase OH(X) but now con-
tains unknown parameters.

The values of the parameters cij that minimize E can be
found by solving the set of simultaneous linear equations

(15)O=c, i=1,M, j=O,N.
acij

dkH(X) = fu(X) W -1f1fu(x)
dx l TjLW(a)da Ildx ff'L (U.) I LfL(x)

W(a) - (x, a)da + W[fU(x)
ax

]f[xfu(x)] dfu(x) _dfLL(x) ]
dx - W f ~ ) b x f ~ ) dx I

[f r a) dfu(x) dfL(x) 
jj W(a)4(x, a~daJ WVYIU~x)J d _ WVL(X)] dx J

LffLux) x x
[ff(X)

[ff"UxX

W(a)daj

Using the same argument as in the previous paragraph,
dOH(x)/dx will be continuous if W(a), p(x, a), fj,(x), fu(x),
c30(x, Wa)/x, dfL(x)/dx, and dfu(x)/dx are continuous func-
tions of x and a.

Inserting Eq. (10) into Eq. (6), differentiating, and combin-
ing terms yields the set of M(N + 1) linear equations
M N

Z 1 aijklChl = bij, i = 1,...,M, j=O,...,N, (16)
k=1 1=0

where

f W(a 1)P(x, al)alixjdal f W(a 2)P(x, a 2)a 2kxlda 2

aijkl = f f W(a)P(x, a)a'+kXj+'dadx- dx

J W(a 3)P(x, a3)da 3

f W(oa)P(x, ail)a iXJdaJf W(a2)P(X, a2)P0(X a2)da2

bi = - f | W(a)P(x, a)ob(x, a)aixidadx + dx.

f W(a 3)P(x, a 3)da 3

(12)

and

(17)

(18)
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Using this approach, aberrations of the form of Eq. (14) are
introduced in amounts determined by the coefficients cij
such that the performance criterion E is minimized. For
example, in Eq. (14), terms that are linear in x will permit
distortion, and terms that are quadratic in x permit field
curvature. Other choices for o(x, a) can also be made, for
example, a sum of Zernike or Legendre polynominals in x.

After solving for the optimum values of the unknown
parameters, the optimum HOE phase OH(X) can be found
from Eq. (10). Using the form of Eq. (14),

- M NJ W(a)P(x, a)O o(x, a) + EECijaixj daJ W~)P~ di=a j= _

I W(ae)P(x,.ae)da

(19)

3. NUMERICAL EXAMPLE

The preceding theoretical development was applied to the
design of an optimum HOE for a 1-D Fourier-transform
system. As shown in Fig. 2, the input is a set of plane wave
fronts from an aperture of width d, a distance f from the
HOE, and centered at angle 0 with respect to the normal to
the HOE. Relative to the aperture normal, the normals to
the wave fronts will cover the range of angles from -ao to a0 .
The desired output wave front will be spherical waves con-
verging to points u = u(a) in a plane a distance f from the
HOE and parallel to it. The function u(a) will determine
where an input wave front at angle a will focus. If a ray
intercepting the HOE at x = 0 and at angle 0 is required to be
diffracted along the z axis, then the grating spacing s of the
HOE at.x = 0 is

X

sin 0

The weighting function W(a) was chosen as

W(a) = 1, (25)

and the pupil function P(x, a) was chosen to be a binary
function determined by the regions of the HOE that are
illuminated by plane waves leaving the aperture of width d
at angles in the range -a 0 to ao.

For numerical computation the values

d = 2.5 cm,

f = 50 cm,

0 = 20°,

a0 = 2.4°,

X = 514.5 nm (26)

were chosen. The resulting pupil function is shown in Fig. 3.
The coefficients aijkl and bij given by Eqs. (17) and. (18) were
computed, and Eq. (16) was solved for the parameters cij,
using IMSL, Inc., subroutine LEQ2S. The optimum values
for the cij were found to be

cl = -0.0000040 cm,

C20 = 22.1 cm,

c30 = 8.1 cm,

cl, = -0.00014,

c21 = -0.00040,

C3 = -0.20. (27)

These values were then used in Eq. (19) to determine the
optimum HOE phase OH(X).

It is convenient to compare the HOE phase OH(X) with the
phase of a conventional Fourier-transform HOE produced

(20)

A ray leaving the input aperture at angle a to the normal will
intercept the HOE at an angle 0 - a. At x = 0, it will leave
the HOE at an angle a', where, by the grating equation,

s[sin(0 - a) + sin a'] = X. (21)

It will intercept the output plane at position u(a), where,
from Eqs. (20) and (21) and the system geometry,

u(a) = f tanisin-'[sin 0 - sin(0 -a)]. (22)

Assuming that this is the desired location of the image point,
the desired HOE phase function is therefore, from Eq. (3),

k0 (X, a) = 2Zr (-[X - U(a)]2 + f2jl/2 + X sin(0 - a)) (23)

which is the difference between the phase of a spherical wave
front converging to point u(a) in the output plane and the
phase of a plane wave front incident at an angle 0 - a.

For this design, it is desired that distortion be permitted
to vary. This will allow the final focus locations to be differ-
ent from those given by the function u(a). The unknown
function , 1(x, a) was chosen to be

(24)
2r3 1 

'01(X, a) = -E > ci 1a x .
i=1 j=0

u

Fig. 2. 1-D Fourier-transform HOE system. Ray trace for input
angle a = 0 is shown.

a
B

2.4°

1.80

4 2 3 4
x (cm)

1i.20

-2.40

Fig. 3. Pupil function for numerical example. At points A and B,
the boundary functions have a discontinuous first derivative.

d
Input
Aperture Output
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3.0 This optimum result can be compared with an earlier

2.5 damped-least-squares-optimized design3 for a 2-D Fourier-
;e 2.5 9 / transform HOE. Figure 5(a) shows the two phases (both

2.0 relative to the conventional HOE phase), and Fig. 5(b) shows
their difference. The rms difference is 0.019 wavelength,

X Q 1.5 - \ / indicating close agreement between the solutions, which
a .\ gives confidence in the validity of this approach.

1.0 It is interesting to note that, for this example, the condi-
:^ 0.5 - \ / tions for continuity of H(x) are met and the plot of Fig. 4

shows a continuous H(x). However, the conditions for con-

0 -3 -2 - 0 1 2 3 tinuity of dkH(x)/dx are not met because the functions fu(x)

Position x (cm) and fL(x) have discontinuous derivatives at points A and B
Position, x (cm) in Fig. 3. The discontinuity in dkH(x)/dx is reflected in the

Fig. 4. Difference between optimum and conventional HOE c p c
phases. corresponding cusps at positions A and B in Fig. 5(b).

For further comparison, the rms wave-front error was also
computed and is plotted as a continuous curve in Fig. 6.

(a) The rms error for the damped-least-squares-optimized HOE
phase as calculated 4 for selected values of a is also shown.

3.0 - (Since these selected values of a are also values at which the

design was optimized,3 it is not surprising that the rms error
At,, 2.5 \ / is lower than that of the optimum design for two of the

c 2.0 values. It cannot, of course, be lower when integrated over
all values of a.) The rms error is similar for the two designs,

:z 1.5 - with the average value being 0.023 wavelength for the opti-
mum HOE phase and 0.033 wavelength for the damped-

I 1.0 least-squares-optimized HOE phase. As expected, the opti-

0.5 \/mum HOE design is better than the damped-least-squares-
X 0.5 - Optimized Optimum optimized HOE design. This gives experimental

o - - confirmation of the optimum HOE theory.
-3 -2 -I 0 1 2 3 The distortion Au(a) caused by 4l(x, a) will be, to first

Position, x (cm) order,

(b) 3

0Au(a) = -f E Ciloa. (29)
0.03 -=

c 0.02 For plotting purposes it is convenient to show a focus posi-
tion relative to the focus position uo(a) of an ideal Fourier-

<e 0.01 B transform system. For the ideal case, position is a linear
3 0 \ XA \ / function of spatial frequency, and so

0 

-0.01 - uo(a) = f sin a. (30)

.t -0.02 - / \ / In Fig. 7(a), uo(a), u(a), and u(a) + Au(a) are shown. Note
that the overall range is 4 cm. In Fig. 7(b), u(a) - u0(a) and

c)0.03 u(a) + Au(a) - uo(a) are shown. The range is 2.5 mm, and
, -0.04 the difference between u(a) and u(a) + Au(a) still cannot be

-3 -2 -I 0 1 2 3

Position, x (cm)
Fig. 5. (a) Optimum and optimized HOE phases (relative to con- . 0.06 -
ventional HOE phase). (b) Optimum minus optimized HOE phase.
At points A and B, the first derivative of the optimum HOE phase is -J 0 05
discontinuous. >

30.04 x\ x/

2R 0.03-
by a plane reference wave incident at an angle 0 to the HOE x x
normal and a spherical object wave converging to the point u X 0.02 -
= 0 at the center of the output plane. The conventional <

HOE phase is c 0.01

00(x, 0) = -[x sin0 - (x2 + f2)1/2]. (28) X -2.4 -1.8 -1.2 -0.6 0 0.6 1.2 1.8 2.4

Field Angle (Degrees)
The difference (H(X) - 0 0 (x, 0) is plotted in Fig. 4, showing Fig. 6. Rms phase error for optimum HOE phase function, Rms

that the optimum HOE phase is an aspheric correction to error for optimized HOE phase for selected values of the field angle
the conventional HOE phase. a are shown by X's for comparison.
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seen, as the curves overlap. In Fig. 7(c), Au(a) is plotted.
The range is 20 gim. The correction, Au(a), to u(a) is there-
fore very small. u(a) is a good initial estimate, and includ-
ing higher-order terms in a in Eq. (24) will have little effect
on the optimum HOE phase OH(X).

Note that, as pointed out in Ref. 4, permitting phase

(a) Position (cm)

2

-2

A

3.0

2.5

2.0

1.5

1.0

0.5

Quadratic

-3 -2 - I 0 1

Position, x (cm)
Fig. 8. Optimum and quadratic HOE phases
tional HOE phase).

2 3

(relative to conven-

1.2 2.4

a (M)variation with angle (the cio ai terms) and distortion (the cil
aix terms) greatly affects performance. Had those terms
not been included, the performance of the Fourier-trans-
form HOE (Fig. 6) would be many times poorer.

Position (mm)

1.5

-1.2

-0.5

-1 .0

-1.5

4. COMPARISON WITH THE KEDMI-FRIESEM
DESIGN

Kedmi and Friesem also applied the variational method to
the design of a Fourier-transform HOE.6 The resulting
design was a quadratic HOE phase function,

OH(X) = X x sin0 -2).

B and C

Position (jim)

15 T

1.2

-15 -1
Fig. 7. (a) Ideal (A), estimated (B), and optimum (C) focal posi-
tions. (b) Estimated (B) and optimum (C) focal positions relative
to ideal ones. The two curves overlap. (c) Difference between
optimum and estimated focal positions.

However, in contrast to the development described in Sec-
tions 2 and 3 of this paper, they made some simplifications
and approximations. For example, in the second paragraph
of Sec. 3 of their paper, an approximation is used for the
pupil function rather than the exact expression shown in Fig.
3 of this paper. Therefore, contrary to what they claimed,
their design cannot be optimum.

Figure 8 compares the optimum HOE phase and the qua-
dratic HOE phase for the design parameters of Section 3.
(Both are plotted relative to the conventional HOE phase, as
was done in Figs. 4 and 5.) Although it is not optimum, the
quadratic HOE phase is significantly better than the con-
ventional HOE phase and may be considered a first approxi-
mation to the optimum HOE phase. This interpretation is
borne out by the ray traces and experimental results given in
Ref. 6, which show reduced spot sizes for the quadratic-
phase HOE when compared with a conventional Fourier-
transform HOE.

5. CONCLUSION

A mathematical method has been developed that permits an
analytic solution for the optimum HOE phase function when
the desired HOE phases are defined in terms of continuous
parameters. It allows the optimum amount of specific aber-
rations in the output wave fronts to be determined as part of
the solution process. For many practical applications, the
optimum HOE phase and its first derivatives will be contin-
uous. In a specific example, the optimum HOE phase was
seen to give better performance than a HOE phase deter-

(b)

-2.4

(c)

(31)

10

5

-1

-5

-10
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mined by damped-least-squares optimization. The advan-
tage of the optimum phase method is that it can consider far
more wave fronts (essentially an infinite number) than the
previous optimization method3 without increasing computa-
tion time.

The optimum method could be used in conjunction with
an optimization method for the design of a complex optical
system involving a HOE and more conventional optical com-
ponents. The optimization method could aid in the design
of the conventional part of the system, while the HOE would
be updated by the optimum method. This would reduce the
number of variables to be optimized and could significantly
reduce overall computing time for a system design.
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