
J. R. Fienup and J. J. Miller Vol. 20, No. 4 /April 2003 /J. Opt. Soc. Am. A 609
Aberration correction by maximizing generalized
sharpness metrics

J. R. Fienup

University of Rochester, Institute of Optics, 410 Wilmot Building, 275 Hutchison Road, Rochester,
New York 14627-0186

J. J. Miller

Veridian Systems Division, P.O. Box 134008, Ann Arbor, Michigan 48113-4008

Received June 19, 2002; revised manuscript received December 2, 2002; accepted December 2, 2002

The technique of maximizing sharpness metrics has been used to estimate and compensate for aberrations
with adaptive optics, to correct phase errors in synthetic-aperture radar, and to restore images. The largest
class of sharpness metrics is the sum over a nonlinear point transformation of the image intensity. How the
second derivative of the point nonlinearity varies with image intensity determines the effects of various met-
rics on the imagery. Some metrics emphasize making shadows darker, and other emphasize making bright
points brighter. One can determine the image content needed to pick the best metric by computing the sta-
tistics of the image autocorrelation or of the Fourier magnitude, either of which is independent of the phase
error. Computationally efficient, closed-form expressions for the gradient make possible efficient search al-
gorithms to maximize sharpness. © 2003 Optical Society of America
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1. INTRODUCTION
When an imaging system experiences phase errors (aber-
rations), the impulse response of the system is blurred:
the peak value decreases, the mainlobe width increases,
and the sidelobes increase. The resultant blurred image
has reduced sharpness and contrast. It has long been
recognized that one can estimate the phase errors, and
correct them, by finding the phase-error estimate that
maximizes the sharpness of the image. This technique
has been applied not only to incoherent optical imaging1

but to coherent imaging with synthetic-aperture radar
(SAR) as well.2–4 There are many variations on what is
meant by the sharpness of the image and how one goes
about maximizing it. In this paper we restrict our atten-
tion to sharpness metrics that are given by the sum over a
nonlinear point transformation of the image intensity.
Four of Muller and Buffington’s sharpness metrics1 (num-
bers 1, 2, 5, and 7) fit this description. This paper ex-
plains how the actions of the various sharpness metrics
can be understood by examining the form of the second
derivative of the nonlinear point transformation. The
knowledge thus obtained allows us to select better met-
rics depending on expected scene content and to invent
‘‘designer metrics.’’

Section 2 explains the generalized efficient sharpening
algorithm in the context of phase-error correction for
SAR. Section 3 shows some computer simulation results
that indicate how different sharpness metrics behave for
different types of images. Section 4 discusses the effect
of the second derivative of the point nonlinearity and the
phenomenology of SAR images that influences our choices
for it. Section 5 compares results from SAR focusing
1084-7529/2003/040609-12$15.00 ©
with different metrics, including some designer metrics.
Section 6 presents conclusions.

2. SYNTHETIC-APERTURE-RADAR
FOCUSING BY EFFICIENT SHARPENING
ALGORITHM
Although image sharpening was originally conceived for
incoherent imaging systems,1 Paxman and Marron2

showed that it can be applied to coherent imaging sys-
tems as well. We consider for simplicity spotlight-mode
SAR,5 for which polar formatting has already been per-
formed. Then the signal-history data is related to the
image by a Fourier transform. Each pulse of the data
may be first Fourier transformed in the frequency dimen-
sion to arrive at the range-compressed signal history.
The phase error is typically a function of the pulse num-
ber (or the along-track, or azimuth, or ‘‘slow-time’’ coordi-
nate), so our model for the degraded range-compressed
signal history is

Gd~x, n! 5 F~x, n!exp@ife~n!#, (1)

where x is the range coordinate, n is the slow-time coordi-
nate, F(x, n) is the ideal range-compressed signal history,
and fe(n) is the one-dimensional (1-D) phase error. For
very large phase errors or large angles of data collection,
a more complicated model may be needed. For simplicity
we consider imaging in the slant-range plane. The cor-
responding degraded image is given by inverse Fourier
transforming in the azimuth dimension,
2003 Optical Society of America
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gd~x, y ! 5 FT21@Gd~x, n!#

5 ~1/N !(
x

Gd~x, n!exp~i2pny/N !, (2)

where FT represents a 1-D discrete inverse Fourier trans-
form, y is the image-domain azimuth (cross-range) coordi-
nate, and N is the number of pixels in the azimuth dimen-
sion. A phase-error estimate, f(n), is used to compute
the corrected signal history,

G~x, n! 5 Gd~x, n!exp@2if~n!#, (3)

and the corresponding complex-valued image,

g~x, y ! 5 FT21@G~x, n!#. (4)

The image intensity is

I~x, y ! 5 u g~x, y !u2. (5)

The image-sharpening approach is to iteratively choose
f(n) to maximize the sharpness of the image. We do this
in an efficient manner as follows. We define a nonlinear
point transformation on the image intensity, G@I(x, y)#,
and compute a weighted sum over all the pixels to com-
pute the sharpness metric,

SG 5 (
x,y

w~x !G@I~x, y !#. (6)

For example, Muller and Buffington’s fifth sharpness
metric1 involves raising the image to a power:

G@I~x, y !# 5 @I~x, y !#b. (7)

For SAR we may also include a function w(x) that allows
us to weight each range bin according to an estimate of
how useful it is for phase-error estimation.4 For ex-
ample, if a range bin has more energy or lower variance
than the average, it might be given more or less weight,
respectively. The sharpness metric is a function of the
phase-error estimate, so we can perform a nonlinear opti-
mization to determine the f(n) that maximizes SG . We
compute the gradient of the sharpness with respect to the
phase values as follows:

]SG

]f~n!
5 (

x,y
w~x !

]G@I~x, y !#

]I~x, y !

]I~x, y !

]f~n!
, (8)

where4

]I~x, y !

]f~n!
5

]u g~x, y !u2

]f~n!

5 ~2/N !Im@ g* ~x, y !G~x, n!exp~i2pny/N !#

(9)

and g* (x, y) is the complex conjugate of g(x, y). Per-
forming the y summation yields

]SG

]f~n!
5 ~2/N !(

x
w~x !

3 ImXG~x, n!H FTFg~x, y !
]G@I~x, y !#

]I~x, y !
G J * C.

(10)
Examples of the partial derivative of the point nonlinear-
ity are

]G@I~x, y !#

]I~x, y !
5 b@I~x, y !#b21 (11)

for the power law of Eq. (7) and

]G@I~x, y !#

]I~x, y !
5 ln@I~x, y !# 1 1 (12)

for G@I(x, y)# 5 I(x, y)ln@I(x, y)#, negative (Shannon) en-
tropy. Note that maximizing I(x, y)ln@I(x, y)#, the nega-
tive of entropy, is equivalent to minimizing entropy.6

Reference 4 considers the case of the most often used
sharpness metric, the power law with b 5 2. Other pa-
pers using sharpness metrics did not include the efficient
calculation of the gradient, thereby limiting their useful-
ness to very-low-order phase errors (e.g., quadratic or cu-
bic). The efficient calculation of the gradient requires
just two fast Fourier transforms for all N of the partial de-
rivatives.

The expressions for the sharpness metric and its gradi-
ent can be used in a nonlinear optimization algorithm,
such as conjugate gradient, to find the phase-error esti-
mate that maximizes the sharpness.

The description above treats each sample of the phase,
f(n), as an independent parameter, which can be referred
to as a nonparametric phase estimate. As an alternative,
one can express the phase error in terms of a basis-set ex-
pansion,

f~n! 5 (
j51

J

ajLj~n!, (13)

where, for example, the Lj(n) could be the first J Leg-
endre polynomials, and optimize over the coefficients aj ,
for a parametric phase estimation. Then the gradient of
the sharpness metric with respect to the coefficients is
given by the chain rule for partial derivatives,

]SG

]aj
5 (

x,y
w~x !

]G@I~x, t !#

]I~x, y !
(

n

]I~x, y !

]f~n!

]f~n!

]aj

5 ~2/N !(
n

Lj~n!(
x

w~x !

3 ImFG~x, n!XFTH g~x, y !
]G@I~x, y !#

]I~x, y !
J C* G

5 ~2/N !(
n

Lj~n!
]SG

]f~n!
, (14)

which is just the projection of the nonparametric gradient
onto the basis set.

In a typical gradient search technique, one computes
the gradient, then computes from that a search direction,
and then performs a line search to find the minimum of
the objective function along the search direction. These
three steps are repeated a few times until no further
progress is made. The dominant burden of computing
the entire gradient is two 1-D fast Fourier transforms for
each range bin: one to compute g(x, y) and the other ex-
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plicit in Eq. (10). The gradient of Eq. (14) requires the J
additional projections onto the basis set (N multiplies and
adds). The dominant burden of the line search is the
computation of g(x, y) in Eq. (6), which again requires a
1-D fast Fourier transform. Typically three evaluations
along the line search are adequate.

3. CUTS THROUGH METRIC SPACE
Given that we have an efficient gradient search algorithm
for optimizing a sharpness metric for any point nonlinear-
ity, the question is what is the best metric (point nonlin-
earity) to use. We answered this question by experi-
menting with many metrics on many types of images.
We found that which was the best metric depended on the
characteristics of the scene.

Simulations were performed starting from original im-
ages without phase errors and then adding known phase
errors. The original images for an initial set of experi-
ments are shown in Figs. 1 and 2. The random-clutter
backgrounds consist of uniformly distributed Gaussian
random numbers. A Taylor weighting function filtered
the images in the Fourier domain. Various phase errors
afe(n) were added to the phase of the signal history to
blur the imagery. The phase errors were normalized
such that the factor a is in units of radians rms (root
mean squared). The types of phase errors used were
quadratic, sixth-order (shown in Fig. 3), and random.

In a first set of experiments, we added a phase error
afe(n) to the signal history and computed the sharpness
of the resultant blurred image. The base phase error
fe(n) was normalized to have unity standard deviation.
To give an idea of the effect of a on blurring, a quadratic
phase error having standard deviation of n radians rms
causes a smearing of the image by 6A5n/p ' 4.27n reso-
lution elements. Good imagery requires satisfying the
Rayleigh 1/4-wave criterion, equivalent to 0.468 rad rms,
or the Marechal 1/14-wave rms criterion, equivalent to
0.449 rad rms. For imagery of superb quality, one might
require 1/10 those amounts of phase error. Figures 4–6
show example plots of the sharpness metrics for the sixth-
order phase error as a function of a for three different
types of scenes and for different metrics. These plots
show cuts through the multidimensional metric space,
which is a function of the vector f(n), in the direction of
the particular sixth-order phase error fe(n). They give
us a feeling for the structure of the space and allow us to
see whether local extrema might be present. If local ex-
trema exist, then the nonlinear optimization algorithm
could get trapped in one of them and stagnate without
finding the true solution. The top rows of plots show the
metrics over a very wide range of a, and each bottom row
is a version of the top row, zoomed in on the peaks of met-
rics, near a 5 0. The value of a at which a curve peaks
would indicate the residual rms error that would be
present after optimization is complete.

Note that a local maximum in one of these cuts through
the metric space does not necessarily correspond to a local
maximum in the multidimensional space; a path to the
global maximum might exist by other paths. Further-
more, a smooth curve leading monotonically to the global
maximum along one of these cuts does not necessarily
mean that an algorithm, even if starting on one of the
points on the curve, cannot get trapped in a local mini-
mum. The gradient in the multidimensional space will
almost surely stray off that cut and could lead to a local
maximum elsewhere. Despite the fact that these cuts
through the metric space prove nothing absolutely, they

Fig. 1. Simulated images of point targets plus random-clutter
background. Ratio of energy of point targets to energy of back-
ground: (a) 0, (b) 0.1, (c) 1.

Fig. 2. Simulated point targets plus random-clutter background
plus no-return area.

Fig. 3. Sixth-order phase error used for simulation experi-
ments.
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are nevertheless useful indicators of whether local
maxima or difficulties in convergence are likely to occur.

The three metrics for these plots were power laws of
the form of Eq. (7), with values of b 5 0.5, 2.0, and 5.0.
Since for b 5 0.5 the true solution (a 5 0) is at its mini-
mum, we would minimize this metric or maximize its
negative.

Figure 4 shows the case of bright point targets plus
random clutter, shown in Fig. 1, with target/clutter en-
ergy ratio of 1.0. This image is very easy to focus for any
algorithm, since bright, isolated points, often referred to
as prominent points, dominate it. All of the metrics have
single local extrema near the true solution, indicating
that a nonlinear optimization algorithm is likely to have
an easy time converging to a good estimate. The mini-
mum for b 5 2 was exactly at the true solution, and the
metric is a very smooth function, suggesting that the
searching routine would find the solution with a mini-
mum of computation. In contrast to this, for b 5 0.5, the
local global extremum is at a 5 0.055 (rad rms), and the
metric is not so smooth for larger values of a, suggesting
that the searching routine would take longer to find the
solution. For this easy object, we would expect all sharp-
ness metrics to work reasonably well but higher powers b
to work better.

Figure 5 shows the same thing for the case of target/
background ratio 5 0.01, for which the image is domi-
nated by the uniform clutter, but the bright points still
play a role. In this case the low power b 5 0.5 has many
local extrema along the cut, and the peak value is far
from the true solution, so it would perform very poorly.
For b 5 2 and 5, the peak was off by only a 5 0.01 and
0.03, respectively, but for a . 5, there are several local-
extrema. For this object, the larger powers b are neces-
sary, but they could easily have problems with local
maxima.

Figure 6 shows a case for an image in which there are
no bright points but there is a large no-return area in the
Fig. 4. Plots of sharpness metrics versus rms phase error a (in radians) for a few bright points plus clutter background, with target/
background ratio of 1.0. All are for a sixth-order polynomial phase error and for point nonlinearity G@I# 5 Ib. (a) b 5 0.5, (b) b
5 2.0, (c) b 5 5, (d)–(f ) expanded versions of (a)–(c), respectively.

Fig. 5. Same as Fig. 4, but with target/background ratio of 0.01.
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Fig. 6. Same as Fig. 4, but with no bright points and with a 128 3 128 no-return area embedded in a 384 3 384 clutter background.
image, as shown in Fig. 2. In this case b 5 5 works very
poorly, and b 5 2, while better, has the peak at a 5 1.8
and has significant local maxima. For this object, b
5 0.5 works the best, having no local minima, and has its
peak at a 5 20.075.

From these examples we see that which metric per-
forms best depends highly on the content of the scene,
with large powers of b best for images containing promi-
nent points and small powers of b best for images contain-
ing dark regions with no prominent points. In Section 4
we explain why the metrics act in this way.

4. IMPORTANCE OF THE SECOND
DERIVATIVE
The point nonlinearity G@I# determines the nature of the
objective function. A key to understanding its effect is il-
lustrated in Fig. 7, which shows a plot of a point nonlin-
earity G@I# having a positive second derivative

G9@I# 5
]2G

]I2 . (15)

As the phase-error estimate is changed, the sum of the in-
tensities remains constant, according to conservation of
energy. Suppose that we start with an image having two
pixels with the same intensity, I0 , making their average
intensity I0 . If the phase correction causes the energy
DI from one of these two pixels to be transferred to the
other, the new pixel intensities become I1 5 I0 2 DI and
I2 5 I0 1 DI, whose average value remains I0 . How-
ever, if G9@I# . 0 in the interval @I1 , I2#, then one can see
from Fig. 7 that G@I1# 1 G@I2# . 2G@I0#. That is, the
sharpness, Eq. (6), increases when the intensity values
are increasingly different from one another. More gener-
ally, suppose that G9@I# . 0 in the interval @I1 , I2#, mak-
ing G@I# a convex function in that region, and the values
I(x, y) P @I1 , I2# deviate from their mean, Ī. Then (ig-
noring the weighting function) by Jensen’s inequality7,8

we have
SG 5 (
x,y

G@I~x, y !# . MNG@ Ī#. (16)

That is, the sharpness increases when the values of the
intensity deviate from their mean. This means that
choosing a phase correction that increases sharpness will
stretch the histogram of the intensity values and increase
their contrast and standard deviation. The larger G9@I#
is, the greater will be this effect.

As illustrated in Fig. 8, for G@I# 5 I2, the classic
squared-intensity sharpness, G9@I# 5 2, a constant. This
nonlinearity gives the same weight to stretching the his-
togram for low values of I as it does for high values of I.
More generally, for G@I# 5 Ib, G9@I# 5 b(b 2 1)Ib22.
For powers b . 2, G9@I# increases with increasing I. For
b @ 2, G9@I# is much larger for larger I. This means that
the sharpness metric will give much more weight to
stretching the histogram for large values of I than for
small values of I. That is, it will give much more weight
to making the bright pixels brighter than to making the
dark pixels darker. At an extreme, as b → `, maximiz-
ing the sharpness metric will concentrate only on making
brighter the single brightest pixel (maximizing the maxi-
mum value). Conversely, for powers b , 2, uG9@I#u
5 ub(b 2 1)u/I22b decreases with increasing I. In this
case, the sharpness metric will give more weight to
stretching the histogram for smaller values of I. That is,
it will give more weight to making the dark pixels darker
than making the bright pixels brighter. For b 5 0.5, as
used in the initial experiments described earlier, G9@I#
5 22.5/I1.5, which would emphasize darkening shadows.
We would maximize the negative of this sharpness metric
since this second derivative has a negative sign. For b
5 1 1 e, where 0 , e , 1, the second derivative G9@I#
5 (1 1 e)e/I12e is positive and decreases with increasing
intensity. Figure 8 shows four different point nonlineari-
ties and their second derivatives, illustrating how the val-
ues of G9@I# differ with I for different point nonlinearities.

Included in Fig. 8 is the case of negative Shannon en-
tropy, G@I# 5 I ln(I). Its second derivative, G9@I# 5 1/I,
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is approximately equal to a constant times the second de-
rivative of G@I# 5 I11e (given above) when 0 , e ! 1,
even though the plots of these two point nonlinearities
themselves appear to be very different. Hence, if the
theory that the second derivatives drive the behavior of
sharpness maximization is correct, then the behavior of
these two point nonlinearities for sharpness maximiza-
tion should be nearly the same. As we will see later, this
is indeed the case. Later we will also refer to exponential
entropy, by which we mean G@I# 5 2I exp(12I),9 for
which G9@I# 5 2(I22)exp(12I). When I is normalized
to have values less than unity, G9@I# decreases with in-
creasing I, which, like maximizing negative Shannon en-
tropy, emphasizes darkening of shadows.

Stretching the histogram of the image is valid for
phase-error correction since the blurring that occurs be-
cause of a phase error smears out bright pixels, reducing
their intensity toward the mean, and fills in dark areas,
increasing their intensity toward the mean. SAR images
often contain extremely bright points if corner reflectors
are present in the scene. They also usually contain low-
(or no-) return areas. These include smooth objects, such
as surfaces of water or paved roads, which reflect the en-
ergy away from the SAR, and shadow areas. Since the
viewpoint of a range-angle SAR image is perpendicular to
the line of sight, image pixels behind tall three-
dimensional objects that rise above the ground plane will
be shadowed by the tall objects and will ideally have zero

Fig. 7. G@I#, the point nonlinearity of the intensity. If G9@I# is
positive, then the sharpness, the sum over G@I#, will increase as
the values of I are spread out.

Fig. 8. (a) Four point nonlinearities and (b) their second deriva-
tives.
intensity. For inverse SAR imaging of moving targets, of-
ten the background is inherently dark. Focusing an im-
age by any means will make the bright points brighter
and the dark areas darker (which is usually desirable);
and the point nonlinearity used in the image sharpening
algorithm will determine the extent to which either of
these two things is emphasized. When the image con-
tains very bright pointlike objects, then the analysis
above suggests that point nonlinearities that have G9@I#
increasing with increasing I (e.g., with higher powers b)
would perform better. However, when the image con-
tains no bright points (such as a forest or fields) and one
must rely on the shadows to create image contrast, then
the analysis suggests that point nonlinearities that have
G9@I# decreasing with increasing I (e.g., with powers b
near or below unity) would perform better.

5. DESIGNER METRICS
We have found that the second derivative of the point
nonlinearity defining a sharpness metric determines its
action on the reconstructed image. Hence one can design
a point nonlinearity to take advantage of the properties of
a specific image type. Examples are as follows. Suppose
that one expects bright points to be in the image, making
a power law, Eq. (7), with b 5 4 advantageous. How-
ever, as can be seen from Fig. 8(b), with these larger val-
ues of b, G9@I# approaches zero as I approaches zero, caus-
ing the metric to pay little attention to making the dark
pixels darker. A seeming improvement would be to add
an offset to the second derivative of the point nonlinearity,

GD19 @I# 5 ~I 2 gI0!2, (17)

which is shown in Fig. 9(a). This curve rises as it ap-
proaches zero, giving more emphasis to making shadows
darker. The corresponding point nonlinearity, gotten by
integrating twice, is

GD1@I# 5 ~1/12!~I 2 gI0!4, (18)

which is shown in Fig. 9(b). Suppose that one wants to
give even more emphasis to making shadows darker.
One could increase the second derivative near I 5 0 with
the following:

GD29 @I# 5
~I 2 gI0!2

I 1 e
, (19)

shown in Fig. 9(c). A small constant e is included in the
denominator to avoid having GD29 @I# go to infinity at I
5 0. GD2@I#, shown in Fig. 9(d), is a complicated expres-
sion involving terms in I, I2, I3, I ln(I 1 e), and ln(I
1 e). To modify this metric to further emphasize bright
points, one could use a larger power in the numerator,

GD39 @I# 5
~I 2 gI0!4

I 1 e
, (20)

which is shown in Fig. 9(e). GD3@I#, shown in Fig. 9(f ), is
a complicated expression involving terms in I, I2, I3, I4,
I5, I ln(I 1 e), and ln(I 1 e).
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Fig. 9. Examples of designer metrics and their second derivatives. (a) GD19 , (b) GD1 , (c) GD29 , (d) GD2 , (e) GD39 , (f ) GD3 (defined in the
text).
6. CONVERGENCE OF DIFFERENT METRICS
Next we show the results of computer simulation experi-
ments employing the image-sharpening metrics discussed
above. Figure 10 shows real SAR images used as the ob-
jects for these experiments. Again, a variety of phase er-
rors were added to their Fourier transforms, and the per-
formance of different metrics was compared.

Figure 11 shows an example of focusing a relatively dif-
ficult object, Trees. We used the nonparametric version
of the algorithm, not taking advantage of the fact that the
phase error was smooth. So even though the phase error
was sixth order, the algorithm would allow for correcting
a very-high-order phase error. The same thing was done
for the other examples shown later. Nevertheless, the re-
constructed image is excellent. A popular algorithm
based on prominent points10 failed for this case.

For this reconstruction example, Fig. 12 shows plots of
scaled metrics (objective functions) versus phase error for
the following algorithms: power-law sharpness with b
5 1.1 and b 5 5, and metric D1 with g 5 1 and g
5 100. Because the different metrics have values that
differ by orders of magnitude, they cannot be conve-
niently plotted together, so we plot here scaled metrics,

ES 5
S 2 So

Si 2 So
, (21)
where S is the normal sharpness metric, So is the value of
S for the original image with no phase errors, and Si is
the value of S for the initial smeared image. This scaled
metric starts at unity where S 5 Si and then, as the it-
erations progress, ideally decreases toward zero as S ap-
proaches the ideal value So . The scaled metric de-
creases monotonically with iteration number. The
appearance of plateau regions followed by sudden de-
creases occurs because of the nature of conjugate-gradient
search. The conjugate gradient implicitly accumulates
information about the second partial derivatives of the
sharpness metric with respect to the search parameters
as the iterations progress. However, at the same time
the solution is moving into a different area of parameter
space where the curvature of the metric is different, mak-
ing the second-derivative information obsolete. Conse-
quently, it is necessary to restart the conjugate gradient
(with one iteration of steepest descent) every once in a
while. At these times the sharpness metric improves
rapidly for several iterations. For these examples we re-
started the conjugate-gradient search every 50 iterations.
We define an iteration as one evaluation of the metric.
Typically three evaluations of the metric are computed for
each line search direction after the gradient and search
direction are recalculated. Occasionally the line search
that we employed, which is from the fminu optimizer in
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the Optimization Toolbox of Matlab™, takes a signifi-
cantly larger number of metric evaluations.

For some of the metrics investigated, the powers were
large enough to cause numerical problems in the optimi-
zation routines. This problem was initially addressed by
scaling the objective function and the gradients by a con-
stant, to give them values closer to unity. This yielded
much better convergence properties and alleviated some
of the numerical issues. A better fix to the problem was
to scale the complex image such that the intensity values,
when raised to the powers in the metric, would be in an
acceptable range. This prevented the sums of very large
or very small numbers from occurring. An empirical ap-
proach was taken to determine the scaling of the image
intensity that yielded metric values in the desired range.
The typical range was [1, 100]. This approach provided a
more acceptable result and was used throughout most of
the analysis.

For this example, both metrics D1 with g 5 1 and the
power law with b 5 5 converged to scaled objective func-
tions having negative values. This means that the
sharpness of the corrected image estimate is significantly
greater than the sharpness of the original (ideal) image.
The sharpness metric is the measure by which the algo-
rithm tries to focus the image. However, it is possible for
a metric to improve even though the image is becoming
increasingly blurred. One example of how this can hap-
pen is the case when the image is oversharpened. Sup-
pose that there is no weighting on the range bins and that
one range bin, x0 , contains a few relatively bright scatter-
ers. The signal history for the blurred image in that
range bin is

Gd~x0 , n! 5 F~x0 , n!exp@ife~n!#

5 uF~x0 , n!uexp@ife~n! 1 ic ~x0 , n!#, (22)

Fig. 10. Real SAR images used in simulations, taken with
Veridian/ERIM’s DCS: (a) Stadium, (b) Target, (c) Shadow, (d)
Trees.
which has phase fe(n) 1 c (x0 , n). A phase-error esti-
mate of

f~n! 5 2@ fe~n! 1 c ~x0 , n!# (23)

will cause the phase of G(x0 , n) to be zero, making
G(x0 , n) real and nonnegative. The corresponding im-
age will then be dominated by a strong delta-function-like
impulse response in the center of the range bin. That is,
the energy of that range bin, which should be distributed
among multiple scatterers, is mostly concentrated into a
single scatterer. This improper phase-error estimate will
blur the other range bins, decreasing their sharpness, but
will greatly increase the sharpness of range bin x0 . If
that range bin is bright enough, then it is possible that
the algorithm will converge to this false local extremum.
There are a variety of ways to reduce the probability of
getting trapped in such potential false solutions. For ex-
ample, one can normalize the energy of the range bins,
using the weighting function w(x), so than none of them
can dominate over all the others. Another way would be
to restrict the phase estimate to being a low-order polyno-
mial by using the parametric form of the gradient search
as in Eq. (14), at least for early iterations. For the ex-
ample shown in Fig. 12 no such measures were taken,
and the two metrics for which oversharpening happened

Fig. 11. Image-focusing example. (a) Image of Trees smeared
by 20-rad rms of sixth-order phase error, (b) image focused after
140 iterations of image sharpening with b 5 2 power-law metric.

Fig. 12. Scaled objective function versus iteration number for
Trees.



J. R. Fienup and J. J. Miller Vol. 20, No. 4 /April 2003 /J. Opt. Soc. Am. A 617
place so much emphasis on making the brightest point
brighter that they converge to an oversharpened image.

The possibility of oversharpening also means that,
when comparing sharpness metrics, one should not base
success only on the degree to which a given sharpness
metric improves. Another metric, based on the truth,
should be used. One way to do this, when the phase er-
rors are digitally simulated, is to compute the mean
squared difference between the true phase error and the
estimated phase error. The mean squared error is not
the most reliable measure of quality as perceived by a hu-
man; but, for a given phase-error type, it is highly corre-
lated with perceived image quality and is often used in
evaluating algorithm performance. This use is problem-
atical, however, when the phase error is random or the
nonparametric phase estimation is employed, because the
phase is wrapped (computed modulo 2p). There are also
problems with the fact that the metrics are insensitive
both to constant and to linear phase terms. Linear phase
terms just shift the image without smearing them. To
avoid these difficulties, we employ the invariant error
metric.11 Since the Fourier magnitude is known, the ap-
propriate invariant metric is that given in Eq. (12) of Ref.
11:

E2 5 min
a,x0 ,y0

H ( ueiag~x 2 x0 , y 2 y0! 2 f~x, y !u2

( u f~x, y !u2 J
5

rgg~0, 0 ! 1 rff~0, 0 ! 2 2 max
x0 ,y0

urfg~x0 , y0!u

rff ~0, 0 !
, (24)

where rfg is the cross correlation of f(x, y), the ideal im-
age (with no added phase errors), with g(x, y), the image
estimated after correction of the phase errors. It is a nor-
malized mean squared difference between the recon-
structed image and the ideal image, allowing for both con-
stant phase differences and linear phase differences
(image translations). We report the square root of this
metric, making it a normalized rms error.

Figure 13 shows the normalized rms errors correspond-
ing to the results given in Fig. 12. From this we see that
the two metrics which appeared to improve the most in

Fig. 13. Normalized rms error versus iteration number for
Trees.
terms of their objective functions (D1 with g 5 1 and
power law with b 5 5) in fact were performing very
poorly, their rms errors decreasing only slightly. The two
other metrics shown, D1 with g 5 100 and power law
with b 5 1.1, both converged to a much lower error and
performed relatively well.

We performed similar reconstruction experiments with
several metrics and parameters for each metric, several
phase-error types, and sizes of phase errors and for a few
types of SAR images (cultural versus rural), totaling
thousands of cases. To evaluate the relative performance
of the different metrics for so many cases, comparing plots
of rms error versus iteration number is inefficient. Also,
because searches through high-dimensional spaces can at
times be chaotic (i.e., small changes in the initial condi-
tions can result in large changes in the final result), it is
necessary to perform numerous experiments to obtain
statistically meaningful results. To compare so many
cases, we used color plots, examples of which are shown in
Fig. 14. Each colored block in a color plot represents the
residual rms error of the corrected image at a given stage
in the reconstruction process, the corresponding value of
which is given in the color bar to the right. For residual
errors much less than unity, the normalized rms error re-
ported here is approximately equal to the residual rms
phase error in radians.11 Red represents a residual error
of 0.3 or greater. Recall that a residual error of 0.45 is
needed to match the Marechal or the Rayleigh criteria, so

Fig. 14. Color plot showing performance of various metrics (see
text). (a) Target, with quadratic phase error; (b) Trees, with qua-
dratic phase error; (c) Clutter Plus Shadow, with sixth-order
phase error; (d) Clutter Plus Points, with target/clutter ratio 0.1
and quadratic phase error. Metrics for (a) and (b) (left to right):
Power law b 5 0.45, 0.6, 0.95, 1.1, 2, 2.5, 3, 4, 5; D1, D2, and
D3, g 5 0.001, 0.01, 0.1, 1, 10, 100, 1000; Shannon entropy,
exponential entropy. Metrics for (c) (left to right): Power law
b 5 1.1, 2, 2.5, 4; D1, D2, and D3, g 5 1, 10, 100, 1000;
2500, 5000; Shannon entropy, exponential entropy. Metrics for
(d) (left to right): Power law b 5 1.1, 2, 2.5, 4; D1, D2 and D3,
g 5 100, 1000; 2500, 5000; Shannon entropy.
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even this (red) level is not necessarily a bad residualphase
error. This demanding scale was used so that it could
better distinguish between the merely good and the excel-
lent results. For imagery of excellent quality, one would
want to achieve, say, 0.05, represented by deep blue.
Light violet represents negligibly small residual error.
Each column represents four or five different reconstruc-
tion experiments with initial phase errors of different
sizes, indicated by a (in radians rms), shown to the left.
In each case we ran four groups of thirty iterations each
of conjugate gradient, where we restarted with one itera-
tion of steepest descent at the beginning of each group of
iterations. The first four blocks of color in each column
represent the residual error after each of the four blocks
of iterations for a starting phase error with a
5 1. The next four blocks of color represent the residual
error for each of four blocks of iterations for the next in-
dicated starting value of a, and so on. Each column is for
a different metric or a metric with a different parameter.
For example, in Fig. 14(a), the first nine columns are for
the power law with nine different values of the power b,
the next seven columns are for designer metric D1 with
seven different values of the parameter g, and so on as in-
dicated in the figure caption. In total, Fig. 14(a) shows
the results of 160 focusing experiments (5 values of initial
a and 32 different metrics), each of which is shown at four
stages. Similar series of experiments were performed for
several different image types and for three different
phase-error types (quadratic, sixth-order, and random).
Metrics can be readily compared by seeing which column
reaches the lowest value of residual error in the shortest
time.

Figure 14(a) shows that for the case of Target, which is
easy to focus, almost all the metrics arrived at excellent
results in relatively few iterations. For the power-law
metric, powers of b near 2 performed significantly better
than smaller powers. The entropies converged more
slowly than the other metrics.

Figure 14(b) shows, for the more difficult case of Trees,
that none of the metrics yielded extremely low residual
errors. We believe that this happened because the image
with which we started had a small residual quadratic
phase error. For the metrics that worked well, the algo-
rithm converged to a better image than this original im-
age, but our residual-error calculation counted this as a
nonzero residual error. From these results we see that
for power-law sharpening, lower powers worked best and
the powers b 5 4 and above worked poorly. Other met-
rics that worked well were both entropies and all three
designer metrics with large values of g.

Figure 14(c) shows that for the most difficult case of
Clutter Plus Shadow (as in Fig. 2 but without the bright
points), the results were very mixed. Which metric
worked best depended on the size of the initial phase er-
ror, which is due to the sometimes-chaotic nature of non-
linear optimization searches. The metric that worked
best seemed to be D2, which was designed specifically to
work well with an image containing shadows. Almost as
good were the power law with a small value of b 5 1.1
and Shannon entropy. These results are consistent with
the theory of the second derivative of the point nonlinear-
ity. The metrics that worked best have relatively large
second derivatives for small values of the intensity, which
makes them concentrate on making the shadows darker,
and shadows are an important feature of this image.

Figure 14(d) shows that, for the case of Clutter Plus
Points (as in Fig. 1, with a target/clutter ratio of 0.1), the
best metrics were power law with larger values of b (52.5
or 4), D1, and D3. Again these results are consistent
with the theory of the second derivative. The metrics
that worked best have relatively large second derivatives
for large values of the intensity, which makes them con-
centrate on making the bright points brighter, and bright
points are an important feature of this image. For the
case of the same object, but with larger target/clutter ra-
tio, the same trends were observed, but all the metrics
converged to much lower residual errors. For a target/
clutter ratio above 0.3, all metrics resulted in excellent re-
constructions.

Trends similar to those shown in Fig. 14 held for all
three types of phase errors employed: quadratic, sixth-
order, and random. The metrics that worked best for the
image of Stadium were the same as those that worked
best for the image of the Target, which is to be expected
because both contain bright pointlike targets. Similarly,
the metrics that worked best for the image of the Trees
were the same as those that worked best for the image
with Shadow. Again, the best metric depended not much
on the specific details of the particular image but on the
general character or statistics of the image.

7. SIMILARITIES OF CERTAIN METRICS
Examination of Fig. 14 shows that certain pairs of metrics
tend to perform very similarly to one another. Previously
we mentioned that Shannon entropy is equivalent to a
power law with b near unity. In addition, expanding
Eqs. (17) and (18), we see that metric D1 approaches the
power law with b 5 2 when g ! 1 and also approaches
the power law with b 5 2 for g @ 1. (Note that terms
proportional to intensity I or that are constants do not
change when the phase estimate is changed, so such
terms should be ignored.) Expanding Eq. (19) and its in-
tegral taken twice, we find that metric D2 is similar to a
power law with b 5 3 for g ! 1 and to Shannon entropy,
I ln I, for g @ 1. Expanding Eq. (20) and its integral
taken twice, we find that metric D3 is similar to a power
law with b 5 5 for g ! 1 and to negative Shannon en-
tropy for g @ 1. These similarities are generally borne
out by the results seen in the reconstruction experiments,
examples of which are shown in Fig. 14. This experimen-
tal fact, that metrics having similar second derivatives
also have similar performance in a focusing algorithm,
confirms the validity of the argument that the second de-
rivative is the key to understanding metrics.

8. PHASE-ERROR-INDEPENDENT SCENE
STATISTICS
For correcting phase errors in coherent images by image
sharpening, we have established that the best sharpness
metric depends on the characteristics of the scene. An
obvious approach would be to measure the statistics of
the scene and apply a metric that is best for those scene
statistics. However, in the presence of large phase er-
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rors, it may be very difficult to determine the character-
istics of the (unsmeared) scene from a severely smeared
image of that scene. Our approach to this dilemma was
to compute the statistics of scene-related quantities that
are independent of the phase error. One of these quanti-
ties is the Fourier magnitude, which is unaffected by er-
rors in the Fourier phase. Another of these quantities is
the autocorrelation function, which is the inverse Fourier
transform of the squared Fourier magnitude. As illus-
trated in Fig. 15, a highly structured scene has an auto-
correlation that is highly structured, whereas a clutter-
like scene has an autocorrelation that is highly random.
We computed several statistics of the autocorrelation
magnitude and the Fourier magnitude and compared
them with the degree of structure of the focused scene.
For the scene statistic we used the b 5 2 power-law
sharpness as the indication of the structure in the scene.
This sharpness metric was normalized by dividing by the
square of the energy in the scene. We computed the

Fig. 15. Images and their autocorrelations. (a) SAR image of
cultural objects, (b) autocorrelation of (a), (c) SAR image of Trees,
(d) autocorrelation of (c).

Fig. 16. Autocorrelation statistics versus image sharpness.
* Kolmogorov–Smirnov; x, maximum value; s, variance.
maximum, the variance, and the Kolmogorov–Smirnov
statistic (a measure of how much the statistics differ from
Gaussian) of the Fourier magnitude and the autocorrela-
tion magnitude away from the origin (where the autocor-
relation has a delta function) and other statistics. As
shown in Fig. 16, for the autocorrelation statistics we
found that these quantities did correlate well with the ac-
tual sharpness of the (unsmeared) image. That, in turn,
correlates well with the ease of performing autofocus. As
mentioned earlier, these statistics can be used to deter-
mine which metric will perform better. In this case, per-
forming better means converging faster. Another mea-
sure of performance is, given enough time to fully
converge, the final residual error in the focused image.
By this measure we found, through extensive experi-
ments, that the lower powers and negative entropy
tended to perform better than other metrics for most
scene types.

9. CONCLUSIONS
In this paper we have explored the use of a variety of
sharpness metrics for correcting phase errors in
synthetic-aperture radar, a form of coherent imaging. It
was found that different sharpness metrics worked better
depending on the type of scene. Power-law metrics with
larger powers tend to perform better with scenes having
prominent scatterers, whereas power-law metrics with
smaller powers tend to perform better with scenes having
no prominent scatterers. A new theory for explaining
these trends was developed: The behavior of a metric is
determined by the second derivative of its point nonlin-
earity as a function of the image intensity. It was found
both theoretically and experimentally that metrics having
similar second derivatives gave similar results when used
in an image-sharpening algorithm. For example, nega-
tive Shannon entropy acts very similarly to a power law
with a power near unity. Metrics whose second deriva-
tive increases with increasing intensity emphasize mak-
ing the bright points brighter, whereas metrics whose sec-
ond derivative increases with decreasing intensity
emphasize making the shadows and low-return areas
darker. With these trends in mind, we can specify de-
signer metrics that are tuned to the characteristics of a
given image. For example, a metric designated D2 that
was designed to work best on images containing shadow
areas did in practice work particularly well on an image
containing a large shadow area. Those image statistics
can be approximately determined from the smeared im-
age by examining either the autocorrelation of the image
or the Fourier magnitude of the image, both of which de-
pend on the structure of the ideal image but are indepen-
dent of the phase error.

Portions of this work were presented in Ref. 12.
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