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Uniqueness of phase retrieval for functions with sufficiently
disconnected support
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It is shown that the phase-retrieval problem almost always has a solution unique among functions with disconnect-
ed supports satisfying a certain common separation condition.

INTRODUCTION

The problem of phase retrieval is to reconstruct a function f(x )
from the modulus IF(u)I of its Fourier transform,

F(u) = J f(x)e-iuxdx.

This is equivalent to reconstructing the phase of F(u) from
IF(u)l or to reconstructing f(x) from its autocorrelation
function, which is given by the inverse Fourier transform of
IF(u)12 . This problem arises in many fields, including as-
tronomy, x-ray crystallography, wave-front sensing, pupil-
function determination, electron microscopy, and particle
scattering. In this paper the function f is assumed to be a
square-integrable, one-dimensional, complex-valued func-
tion.

In the most general case, many different functions have the
same Fourier modulus. A solution can be obtained simply by
multiplying IFI by any measurable complex-valued function
with modulus one and taking the inverse Fourier trans-
form.

When f has compact support (i.e., f is zero outside some
finite interval), the degree of ambiguity is reduced, but there
still may be (and usually are) many other solutions that also
have compact support. Hofstetter1 and Walther2 showed that
all solutions with compact support could be obtained from any
one of them by flipping (conjugating) nonreal zeros of its
Fourier transform extended by analyticity to the complex
plane (i.e., the Laplace transform).

Greenaway 3 showed that, if F has only a finite number of
nonreal zeros and if f has disconnected support contained in
the union of two disjoint intervals, then it is almost always
essentially the only solution with support contained in the
union of those two intervals. The meaning of the terms "al-
most always" and "essentially" used here are explained later.
Bates4 also discussed the uniqueness of functions with dis-
connected support.

Crimmins and Fienup 5 showed, by a counterexample, that
Greenaway's result is not true if F has an infinite number of
nonreal zeros. This creates a problem because it has been
shown 6 that functions whose Laplace transforms have only
a finite number of nonreal zeros satisfy certain special con-
ditions. Thus the Laplace transforms of most functions

gotten more or less randomly from the real world will have an
infinite number of nonreal zeros, in which case Greenaway's
analysis does not apply.

In this paper it is shown that, if f has disconnected support
contained in the union of a sequence of intervals satisfying a
certain separation condition, then f is almost always essen-
tially the only solution with support contained in the union
of those intervals. This holds no matter how many nonreal
zeros F has.

EQUIVALENT SOLUTIONS

Let c be a real number and C be a complex number, with IC
= 1, and letg(x) = Cf(x + c) and h(x) = Cf(-x + c), where
the overbar denotes complex conjugation. If F, G, and H are
the Fourier transforms of f, g, and h, respectively, then

G(u) = CeicuF(u), H(u) = Ce-icuF(u)

Thus

IG(u)I = IF(u)l = IH(u)i.

The solutions f, g, and h are called equivalent or, in sym-
bols,

g - f / h.

If all solutions are equivalent to f, then f is said to be essen-
tially the only solution or the unique solution.

THE THEOREM

Let In, n = 1, . . . , N be a sequence of nonoverlapping closed
intervals. Define

I. -In = x- y: X E I., Y E IJ.

We will assume that the following condition is satisfied.
Separation Condition: (Im - In) n (IJ - Ih) = k for 1 <

m, n, j, k ' N; j -/ k; and (m, n) Fz (j, k), where( , ) de-
notes an ordered pair. (Note that m = n is allowed in the
above condition.)

For N = 2, this condition is equivalent to the requirement
that the lengths of the two intervals be less than the distance
between them. For an example of three intervals satisfying
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where * denotes convolution and

A(x) = f(-x).

5 10 15 20 The cross-correlation term fm(x) * 7f(x) has support con-
tained within Im - I,. Of these N2 terms, N of them have m
= n and are centered at the origin. The remaining N 2 - N
cross-correlation terms, for which m -/ n, are centered else-
where. The separation condition is equivalent to requiring
that none of those N 2 - N cross-correlation terms overlaps
with another or with the terms centered at the origin.

Let F, G, Fn, and Gn be the Laplace transforms of f, g, fn,
12-1 1312 I3-I and gn,respectively. Let Z(F) be the set of nonreal zeros ofm m '-in I F,and define Z(G), Z(Fn), andZ(Gn) similarly.
5 10 15 20 Let

(b)

Fig. 1. (a) Example of three intervals satisfying the separation
condition, (b) the autocorrelation intervals In -,n.

the separation condition, let

Ii = [1, 2], 12 = [6, 91, I3 [18, 20],

as shown in Fig. 1(a). Then, as shown in Fig. 1(b),

I-I, = [-1, 1],

2-I2 = [-3, 3],

-I3 = [-2, 2],

21-1 = [4, 8],

1-I2 = [-8, -4],

3-I2 = [9, 14],

I2 - I3 = [-14, -9],

I3 - Il = [16,19],

I - I3 = [-19, -16].

Returning to the general case, let

N
A = U In,

n=1

and let f and g be two complex-valued
functions, both of which are zero outside A.
let

square-integrable
Forn=1,... ,N,

fn(x) = Jf( ), forx E In
l0, otherwise:

N
B = n Z(Fn),

n=1

that is, B is the set of nonreal zeros common to all the Fn.
Finally, let w = u + iv be a variable in the complex plane, and
define

F*(w) = F(TT).

The functions G*, Fn, and Gn are defined similarly.
Theorem: If the supports of f and g satisfy the same sep-

aration condition defined above and fin 5 0, n = 1, . . . , N, and
if IF(u)I = IG(u)I for all real numbers u, then there exist a
real number c, a complex number C with I CI = 1, and a
strictly positive integer-valued function ae defined on a set Bo
c B, such that for N $ 2

Gn(w) = Ceicw-(w)Fn(w),

and for N = 2 either (a) holds or

G*(w) = Ceicw4fi
G*(w) = Ceicw4?@

where

n =1,..., N

1--\

I(w)= Y
Rso W/

The integer a(z) determines how many zeros at location z are
being flipped. The proof of this theorem is given in Appendix
A.

If B = 4, i.e., there are no nonreal zeros common to all the
Fn, then 4' - 1, and conclusion (a) of the theorem becomes

for x e In
otherwise

N
g(x) = E gn(x).

n=1

It is assumed that & 5 0 [i.e., fi (x) is not identically zero], n
= 1,..., N.

Note that the autocorrelation of f (x) can be expressed as
the sum of N2 cross-correlation terms,

N N

f(x) * 7(x) = E L fm(X) * n(x),
m=1 n=1

Gn(w) = CeicwFn(W),
and conclusion (b) becomes

G*(w) = CeicwF2(w),

n =1,. .. , N (a')

G*(w) = CeicwFi(w). (b')

In either case if follows that f t g if B = 0. This proves the
following corollary.

Corollary: If B = 0 and I F(u) I = I G (u) I for all real num-
bers u, then f g.

We note that, since I F(u) 12 and I G (u) 12 are analytic func-
tions, the condition that IF(u) I = I G(u) I for all real u is im-
plied by the condition that this equality hold for all u in some
open interval.

(a)

(b)

gn(X) = fg(x),

Then
N

f(x) = LZ fn(X)
n=1

i 0

1 2 113
i i i P t f i i i i i i i i i &

v)F2(W),

v)Fi(w),
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CONCLUSIONS

If f has N > 2 separated parts contained within a set A satis-
fying the separation condition and f is gotton more or less
randomly from the real world, then the set B will almost al-
ways be null. That is, it is unlikely that the Laplace trans-
forms of the separated parts of f will have nonreal zeros
common to all the parts. Thus we may conclude in this case
of functions with sufficiently separated parts that the
phase-retrieval problem almost always has a unique solution
among functions having support contained within A.

Note, however, that our earlier counterexample 5 demon-
strates that, even when the separation condition is satisfied
for f and B = s, there can be nonequivalent solutions having
supports not contained in the set A. Only by specifying a
stronger separation condition and requiring f to be real and
nonnegative can one ensure that f is unique among all non-
negative functions of compact support. Specifically, it can
be shown6 for N = 2 that if [-d, d] is the smallest closed in-
terval containing the support of the autocorrelation of f, which
support is also contained within [-d, -d/2] u (-d/3, d/3) u
[d/2, d], and if B = h, then f is unique among nonnegative
functions.

It should also be noted that, since a two-dimensional analog
of the zero-flipping theorem of Hofstetter and Walther does
not now exist, these results do not automatically extend to the
two-dimensional case. However, from other considerations,
both theoretical7 and experimentals it appears that the
probability of uniqueness is high for two-dimensional func-
tions of compact support, even when the support is not dis-
connected.

APPENDIX A. PROOF OF THE THEOREM:

Case 1: N F: 2
Define 7(x) = f (-x). Then f * f (where * denotes convolution)
is the autocorrelation of f. Since the Fourier transform of the
autocorrelation of f is I F(u) 1 2 = I G (u) 1 2, it follows that

f(x) * 7(x) = g(x) * g(x). (1)

It follows from the separation condition that, for n Fd m,

and

AW(x) * 7m(X) {= x) * 7(x),

g(x) * gm(X) = g(x) *g(x),

It then follows from Eqs. (1-3) that

fA(x) * m(X) = gn(x) *gm(x)

Since the Laplace transforms of In anc
respectively, it follows from Eq. (4) that

for x E In -Im

otherwise

for x e In -Im

otherwise

(2)

(3)
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Since it was assumed the fn : 0, it follows that Pn = 0, n =
1, . . ., N. Since all the functions appearing in Eqs. (6) and
(7) are also entire, we may divide Eq. (6) by Eq. (7) and ob-
tain

Fn2Fn2 = G n2Gn2.

Therefore, if N > 3,

FnF* = GnG*t n 1, ... ,N. (8)

Equations (8) hold also for N = 1 since FF* = GG* and, in this
case, F1 = F and G1 = G. Combining Eqs. (5) and (8),

forn,m = 1,...,N. (9)

It follows from Eqs. (8) and the zero-flipping theorem
proved by Hofstetter' and Walther2 that, for each n, 1 < n <
N, there exists a set Bn c Z(Fn) and a strictly positive inte-
ger-valued function an, defined on Bn, and a real number Cn
and a complex number Cn, with I Cn I = 1, such that

Gn(w) = Cn exp(icnw)>1n(w)Fn(w), (10)

where

a n(Z)

4n(w) = 1|
zesBn I W

It follows from Eq. (10) that

Gn(w) = -Cn exp(-icnw)@V(w)F*(w).

Now,

a W n(Z)

4L (w) = l I

a 1 -t-

and therefore

(11)

(12)

(IPn1n = 1, n = 1, . . , N. (13)

From Eqs. (9), (10), and (12), for n, m = 1, . . ., N,

Fn(w)F*(w) = Gn(w)G*(w)

= CnVm exp[i(cn - Cm)w]Pn(w)KI4 (w)Fn(w)F*(w).

Thus

1 = Cn'm exp[i(cn -Cm)W]@n(W)(m(W),

and, by Eq. (13),

Cm exp(icmw)4m(w) = Cn exp(icnw)c1n(w). (14)

for n d m. (4) Since the exponential functions appearing in Eq. (14) have

d g0 are Fn and Gn, no zeros or poles, it follows that the meromorphic functions
Iaan and 4

'm have the same zeros and poles of the same order.
Therefore

for n 3d m. (5)

If N > 3, let n1, n2, and n3 be three distinct integers >1 and
<N. Then

Bn = Bm, an = am,

and hence

FtllFyn2Fn2F*3 = Gn G*,Gn2 G*3 (6)

and Let

FnFn3 = GnlG~n.V (7) B. = Bn,

In= b4m, n, m = 1, . . . N.

ad = aen, (Dp = (Dpn, n = 1...,N.

FnF* = GnG*

FnF* = GnGA?*o m-nm
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Then, since

B. = Bn c Z(F.)

it follows that

B, g B.
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or

n = .N,

and, by Eq. (15),

F1 F' = G2G'

F2F2 = G1 G . (18b)

Also, from Eq. (14),

Cn exp(icnW) = Cm exp(icmw),

from which it follows that

Cn = Cm, cn = Cm, n, m = 1. N.

Let

C = Cn, c =cn, n 1. N.
Then, from Eq. (10),

Gn (w) = Ceicw-(w)Fn(w), n =1. N.

This completes the proof for Case I.

Case II: N = 2
Let

I th s InI) Uc i t-I2)a

It follows from the separation condition that

I n (In -Im)b = for n #d m,

and FiF* + F2F* is the restriction of FF* to I and G1G* +
G2G2 is the restriction of GG* to I. Therefore, since FF* =
GG*,

If Eqs. (17) hold, then the same argument used in the case
N Fo 2 applies, and conclusion (a) of the theorem follows. If
Eqs. (18) hold, let

H, = G2, H2 = GC, H = H1 + H2.

Then

H 1H* = FlF*, H 2 H2 = F2F*

H1H* = FiF* H1 H* = FiF*

and

HH* = FF*.

Therefore the argument used in case N 5 2 applies with G,
G,, and G2 replaced with H, H,, and H2 , respectively, and
conclusion (b) of the theorem follows. This completes the
proof.
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