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The problem of designing a flat, aspheric, holographic optical element that images a finite set of input wave fronts
into a finite set of output wave fronts is rigorously analyzed. The optimum phase transfer function of the holo-
graphic optical element is analytically determined. The optimum phase transfer function is defined as the one for
which the element has minimum mean-squared wave-front error averaged over the set of input wave fronts. It is
also shown that in general it may not be possible to obtain a low value for this average mean-squared wave-front
error by using a single holographic element. Furthermore, the performance trade-off of spherical aberration, coma,
and astigmatism versus geometric distortion is clearly indicated by example.

1. INTRODUCTION

An optical system can be thought of as a device that trans-
forms input wave fronts into output wave fronts. A simple
glass lens is an example of such a system. Today most optical
systems are composed of refractive (lenses) and reflective
(mirrors) elements, and these systems are used primarily for
imaging. The class of transformations that link the output
wave fronts to the input wave fronts in refractive-reflective
optical systems is quite limited. For example, it is not pos-
sible to design a refractive-reflective optical system for which
the output wave front is a three-dimensional image of a teapot
when the input wave front is a collimated beam. This par-
ticular input~output transformation can, however, be realized
by using a hologram. Holograms can also be made to have
transfer functions that are desirable in optical systems, in
which case they are referred to as holographic optical elements
(HOE’).! We note that the optical transfer function of a
HOE is based on diffraction phenomena, and therefore the
characteristics of these elements will be highly wavelength
dependent. Consequently, HOE’s are useful and sometimes
indispensible components of optical systems when the source
is monochromatic or when a wavelength-dependent system
is desired.

Given an arbitrary input wave front, a HOE can, in princi-
ple, be designed to transform this input wave front into an
arbitrary output wave front. In such a situation, the required
HOE recording beams would most likely be produced by
computer-generated holograms? in conjunction with con-
ventional refractive and reflective optical elements.

It is natural to characterize a HOE by its phase transfer
function. Since a conventional optical element, such as a glass
lens, cannot be similarly characterized unless it is physically
thin, the design approach described in this paper is not im-
mediately applicable to conventional optical design.

Most applications require optical systems that transform
a set of input wave fronts into another set of output wave
fronts rather than just one input wave front into just one
output wave front. For example, a Fourier-transform lens,
whether it be conventional or holographic, should map each
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input plane-wave spatial frequency into a single unaberrated
point focus in the back focal plane of the lens.2 Furthermore,
in the back focal plane the (x, y) coordinates of a point focus
and the corresponding input spatial frequency (f;, fy) should
be linearly related according to x = AFf, and f = AFf,, where
A is the wavelength and F is the focal length of the lens. It is
well known that a Fourier-transform HOE, recorded using a
single collimated beam and a single spherical converging
beam, will form an unaberrated point focus at the proper lo-
cation in the transform plane only for the single spatial fre-
quency corresponding to that of the collimated recording
beam. At other spatial frequencies (or equivalently at other
input field angles), the point focus is aberrated and improperly
located.*® In order to define performance quantitatively, it
is reasonable to consider some finite set of spatial frequencies
and to compute at each of these the wave-front error of the
Fourjer-transform HOE. This wave-front error is the
mean-squared deviation of the actual output wave front at the
back of the HOE from the desired wave front. The wave-
front errors for all the spatial frequencies can then be averaged
to arrive at a measure of the HOE’s performance. It hasbeen
demonstrated that a Fourier-transform HOE can be produced
that has a smaller average mean-squared wave-front error over
some set of field angles than the simple HOE described
above.® This higher-performance Fourier-transform HOE
is recorded by using more-complicated wave fronts than
simple collimated and spherical beams.

HOE’s produced by nonspherical recording beams (a col-
limated beam is considered to be a spherical beam of infinite
radius of curvature) have been named aspheric HOE’s.6 The
substrates on which aspheric HOE’s are recorded may be ei-
ther flat or curved.

To date, the procedure outlined below has been used to
design optical systems that contain HOE’s.8 A merit function
is specified that assigns a numerical value to the “goodness”
of the system. The merit function can include any measure
of the system performance, such as spot size, aberrations, and
ray efficiencies. The value of the merit function is nonneg-
ative. It iszero for a perfect optical system and increases as
the performance departs from the ideal. The optical system
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is defined up to a finite number of unknown parameters.
These unknown parameters typically specify such things as
the spacing between elements and the surface curvatures of
elements. The phases of both of the two recording-beam wave
fronts of the HOE determine the transfer function of the
HOE and are described by analytic expressions that also
contain unspecified parameters. These analytic expressions
are often polynomials having unspecified coefficients. Slow
spatial variations of the amplitude of a recording beam do not
appreciably affect the aberration properties of the HOE, and
so, for simplicity, the wave-front amplitudes are assumed to
be constant. The numerical value of the merit function is
evaluated by using a ray-tracing computer program, such as
the holographic optics analysis and design (HOAD) program.”8
Using computer-implemented iterative optimization tech-
niques, such as damped least squares,? in conjunction with a
ray-tracing program, one attempts to determine the unspec-
ified parameters of the system that will minimize the merit
function. Once these parameters are found, the HOE re-
cording beams are known, and optical systems must be de-
vised for producing them. The systems for forming the re-
cording beams will most likely consist of computer-generated
holograms (CGH’s) in conjunction with conventional refrac-
tive and reflective optics. CGH’s would usually be required
because of the nonspherical, nonrotationally symmetric, ar-
bitrary functional form of the recording beams. Conventional
optics would also usually be required in the recording systems
both to allow for a spatial-filtering stage (to filter out un-
wanted orders of diffraction from the CGH) and to provide
the lower-order terms, such as tilt, focus, and astigmatism,
that would require finer fringe frequencies than that which
the CGH recording device can supply.

We suggest that the following alternative two-level design
approach may be useful in some cases. Instead of updating
all the system parameters, including the HOE parameters, at
the same time at each iteration, one could do an optimization
of the HOE parameter for every update of the remaining
system parameters. This would be desirable since a HOE can
have many parameters, although it operates in only a single
surface of the optical system. In order to optimize the HOE,
it would first be necessary to do both forward and backward
ray traces through the two halves of the optical system up to
the surface of the HOE. The forward ray traces define the
wave fronts incident upon the HOE. The backward ray
traces, starting with ideal wave fronts in the back pupil of the
optical system, define the wave fronts that would ideally be
transmitted by the HOE. The problem of optimizing the
HOE is to find the parameters of the HOE that come closest
to transforming the given incident wave fronts into the re-
spective ideal transmitted wave fronts. The optimization of
the HOE parameters could employ the same types of tech-
niques described earlier for the optical system.

The design approaches described above, despite their power
and generality, do not necessarily arrive at the optimal solu-
tion. That is, the procedure may not find the recording wave
fronts for the HOE that absolutely minimize the merit func-
tion. This is a consequence of two factors. The first factor
is that the technique can consider only a subset of all possible
recording-beam wave fronts, limited by the kind and number
of parameters available. Clearly, one could include enough
parameters to account for all useful variations of recording-
beam wave fronts. The number of parameters, however,
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might be extremely large, and optimization of so many pa-
rameters would not be practical. The second factor is that
optimization routines are essentially trial-and-error proce-
dures, and there is no guarantee that such procedures will find
the best solution among some set of possible solutions, par-
ticularly if there exist local minima of the merit function.

In the remainder of this paper we propose and analyze an-
other approach to the optimization of the HOE that does not
depend on a finite number of parameters. We assume that
the HOE is part of an optical system that is completely spec-
ified (known) except for the HOE. By this new method the
HOE recording wave fronts are found that minimize a HOE
merit function absolutely. The HOE merit function in
question is a weighted mean-squared wave-front error, which
is attractive because it relates directly to a physically mean-
ingful quantity, the Strehl ratio,10 and correlates well with the
rms spot sizes for the case of imaging. As an example, we
apply the method to the design of a HOE for use as a Fou-
rier-transform lens.

2, PROBLEM STATEMENT

Suppose that we have a set of N incoming wave fronts speci-
fied by a description of their phases ¢, in(x, y) at the HOE.
The surface of the HOE lies in the x—y plane. For a flat HOE,
the relationship between the phase ¢, in(x, ¥) of an incoming
wave front at the HOE and the phase ¢, out(x, ¥) of the cor-
responding output wave front at the HOE is given by

Onout(X, ¥) = nin(x,¥) + oulx, y), 1)

where ¢y (x, ), the phase transfer function of the HOE, is
given by

¢H(x’ y) = ‘bref(x s y) (2)

and where ¢rer(x, y) and ¢obi(x, ¥) are the phases at the ele-
ment of the reference and object beams, respectively, with
which the HOE was recorded. For each of these input wave
fronts, we specify the phase ¢, (x, y) at the HOE that corre-
sponds to some desired output wave front. The problem then
is to determine the phase transfer function of the HOE, ¢y (x,
¥), so that the mean-squared wave-front error [the squared
deviation of ¢ oui(x, ¥) from ¢, (x, y)] averaged over the set
of N output wave fronts is minimum.

We define the weighted mean-squared wave-front error E?

¢0bj(xs y) -

=7 Z W, ff Pr(x,y) [bnout (%, y) = ¢nlx, y)lzdzdy,
(3a)

where P,{x, y) is a function that has a value of 1 for all points
(x, y) on the hologram illuminated by the nth input wave-
front and has a value of 0 elsewhere. W, is the weight given
to the nth wave front, and 7 is the normalizing factor:

W, f P, (x, y)dzdy| (3b)

7 471‘2
The square root of this quantity, E, is the rms wave-front
error. The problem then is to determine ¢y (x, y) so that E
is minimum. The region of the integration in Egs. (3) and in
all remaining equations in this paper is the entire x-y
plane.
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3. THE OPTIMAL SOLUTION: A NAIVE
APPROACH

Equations (1) and (3) can be combined to yield
) N
E2=q9Y W, ffP,,(x,y) [pr(x,¥) = dnnlx, y)]?dxdy,

n=1
(4)
where

dHa(x,y) é‘/’n(»’cy:}’)“"brz,in(~"c93’) (5)

is the phase transfer function of the HOE that would be op-
timum for the nth wave front. Equation (4) can be rewritten

E*=1 f f X WaPale,3) [on(x,5) = dianls, p]Pddy.

(6)

It is clear from Eq. (6) that in order to minimize E it is suffi-
cient to choose ¢y (x, v) such that

(bHJl (JC s y)]zdxd}’
(7

is minimum for all points (x,y). Now arbitrarily pick some
point (x,y). Then ¢y n(x,¥),n ., N are known con-
stants and ¢y(x, ¥) is an unknown constant. We wish to
determine ¢y (x, y) so that e%(x, ¥) is minimum. This ¢y (x,
y) can be found by differentiating e?(x, y) with respect to
#r(x,v) and setting the derivative to zero. When this is done,
it immediately follows that e2(x, y) is the minimum if

N
eXx,y) 21 gl WoP,(x,y) [n(x,y) —

N -1 N
(»bH(xvy):[;l WnPn(x)y) ' Z—:1 WnPn (x,}’)‘bH,n(I,y)-
(8)

But point (x, y) was arbitrarily chosen, and so e?(x, y) is
minimum for all points (x, y), and therefore E is minimum if
éu(x, y) is given by Eq. (8) above. Thus the optimum phase

is just the weighted average of the phases that are optimum

for the N individual wave fronts.

Although Eq. (8) is exact, it is naive in the sense that it as-
sumes that one knows the desired output wave front ¢,, used
in Eq. (5) to compute ¢y, in complete detail. As will be
shown in Section 4, by allowing a different constant additive
phase to be associated with each ¢,,, and by optimizing over
the values of those constant phases, one can arrive at a HOE
having improved performance. Furthermore, as will be
brought out in Sections 6 and 7, allowing additional degrees
of freedom in the output wave fronts by ignoring certain ab-
errations makes it possible to reduce all the other aberrations
to a greater degree.

4, THE OPTIMAL SOLUTION REVISITED

Below we investigate this result more critically. We note that
when imaging is to be performed the concept of absolute phase
of a wave front is not useful. For example, expressions (9) and
(10) below both describe a perfect spherical wave converging
to the point (xg, vs, 25):

exp {—i 27\72 [(x —x)24 (y —ys)2+ (2 = 25)2]”2]’ (9)
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exp [—i 2% [(x —x5)2+ (y = ys)2 + (2 — 25)] /2 + iv}

(10)
(v is areal constant). The absolute phases of these two wave
fronts differ by the constant -y, although the images of the two
wave fronts are identical. Let us use the notation developed

earlier and specify the desired phase of the first output wave
front by

b1z, y) = —‘% [(x = x)2 + (y = )2 + 2212 (11)

at the plane 2z — z; = zg. Now if the actual phase of the output
wave front as given by expression (10) is

-2
Grom(®,3) =[x = 224 0 =3+ 272 4,

(12)

we should conclude that the wave-front error is zero since the
images are identical. According to Eq. (3), however, the

wave-front error E; for this first output wave front is given
by

=W, f Pi(x,y) X [b1,00(x, ¥) — d1(x, y)]2dxdy

=W, f Pi(x, y)y2dxdy > 0. (13)

This problem arises because the definition of wave-front error
as given by Eq. (3) is not consistent with the physics of the
situation. A better definition of wavefront error for imaging
applications is

Eﬂ—nz W, ffP(xy)
X [¢n,out(xy y) -

where v,,n=1,..., Nisaset of real numbers chosen to re-
move any absolute phase difference between ¢, out(x, y) and
¢n(x, y). This is equivalent to saying that, for a specified
dnout(®, ¥) and ¢n(x,y),n =1,..., N, the v,’s should be
chosen so that E is minimum. Then the mean-squared
wave-front error will be

dn(x,y) + val2dxdy, (14)

E?2 nmin G(y1, Y2, -+ YN (15)

where

N
G va ) = f 5 WiPalx,)

X [bn,out(®, ¥) = dnlx, y) + vn]2dxdy. (16)

Note that the specified absolute phase of any output wave-
front ¢,(x, v) is now meaningless since changes in absolute
phase are not observable and will not affect the value of the
wave-front error as defined by Egs. (15) and (16). Similarly,
it is easy to see that the absolute phase assigned to any input
wave front is also without meaning.

Combining Eqgs. (1) and (5), we have

dnlx,y) = bulx,y) —
By using Eq. (17), Eq. (16) becomes

(/)n,out(xy y) - d)H,n(x,y)- (17)
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> W, f Pp(x,y)

Gy, ve,--.,YN) = X
X{ou(x,y) = [pmn(x,y) = v,]}2dxdy. (18)

Using the same argument that led to Eq. (8), it is easy to see
that, for fixed but arbitrary v,’s, G(v1, v, - . ., Yn) will be
minimum if

N
r(x,y) [Z WnPn(x,y)| Z_l WPz, y)

X [¢am(x,y) = vm). (19)

Thus the HOE phase ¢ (x, ¥) should be chosen according to
Eq. (19). Inserting Eq. (19) into Eq. (18), expanding, and then
combining terms, one gets

G(ve,v2, -+, YN)
ff(}: WP (2, y) (b5 (x, y) = vn]?

- lgl WP, (2, 3)|

N
X l gl W.P(x, Y)on,r(x,y) — %]Ddxdy. (20)

Now, by Egs. (15) and (16), the mean-squared wave-front
error is given by 5 times the minimum of G(y1, v2, ..., YN)-
If we can find v1 = 41, Y2 =2, ..., ¥~ = ¥~ such that G (v1,
Y2, - .., YN) is minimum, then Eq. (19) will define the phase
transfer function of the HOE that results in the minimum
mean-squared wave-front error. Our goal now is to determine
¥1, %2 ..., ¥n- Note that [see Eq. (18)]

G(’Yl) Y25 .-y ’YN) = 0. (21)

Equation (20) can be rewritten as

,YN)=c+ Z QnYn + Z Z b}k'Yj'Yk:

n=1 =

Gy, Y2 .-
(22)

where the a,,’s, bj;’s, and ¢ are real constants (see Appendix
A). It can be shown that the v,’s that minimize G(vy1,
Y2 ..., Yn) are the solutions of the N equations in N un-
knowns given below:

oG N
O=——=qa,+2% byvj, p=12...,N. (23)
9Yp j=1

(Note from Appendix A that ka = byj.) Furthermore, it can
be shown that, if y1 = 41, v2a =99, ..., Yy = ¥~ is asolution
of Egs. (23), then all solutions of Egs. (23) are of the form v
=f1+w,v2=%2+w,..., Y8 = YN + w, where w is a con-
stant. All these solutions are equally good and result in op-
timum HOE transfer functions that differ only by a constant
[see Eq. (19)].

To summarize, suppose that we have a set of N incoming
wave fronts, the nth one having phase ¢, ;,(x, y) at the HOE.
For each of these wave fronts, we specify the phase ¢, (x, y)
of the corresponding desired output wave front. The actual
phase of the nth output wave front is

(bn,out(x,y) = d’n,in(x’ y) + (bH(x’y)}
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where ¢ (x, y) is the phase transfer function of the HOE.
Then the optimum ¢y (x, y), i.e., the ¢y (x, y) that minimizes
the weighted mean-squared difference between ¢, out(x, v)
and ¢, (x, y) averaged over the set of N incoming wave fronts
(n=1,...,N),isgiven by Eq. (19), where the v,’s are a so-
lution of Egs. (23).

5. RAY TRACING AND SPOT SIZE

A discussion of the ray-trace grating equations and spot size
is appropriate at this point. We assume that a flat HOE is
recorded with an object beam (obj) and a reference beam (ref)
having phases ¢obj(x, ¥) and ¢rer(x, ¥), respectively, at the
surface of the HOE. The phase transfer function ¢z (x, y)
of the HOE is then given by Eq. (2). During a ray trace
through the HOE, an input ray (in) having phase ¢i,(x, y)
impinges upon the hologram at the coordinate (x, y) and is
diffracted by the hologram, resulting in an output ray (out).
The phase ¢out(x, ¥) and the x, y, z direction cosines I(x, v),
m(x, y), and n(x, y), respectively, of the output ray are given
by the grating equations

Pout(x, ¥) = ¢inlx, y) + ou(x,y), (24a)
Lo, ) = linlx, y) + - 28 E ), (24b)
2 ox
Mout(x, ) = Min(x, y) + — A 9¢n(x,y) ) (24¢)
2r  dy
nout.(xy y) :*:[1 - lout(xy y) - mgut(xy y)]1/2’ (24d)

where A is the input-ray wavelength. The sign choice in Eq.
(24d) is used to select either the —z direction of propagation
of the diffracted wave front or the +z direction of propagation.
In Fig. 1, the —z direction corresponds to transmission,
whereas the +z direction corresponds to reflection. The
ray-intercept coordinates of an output ray at an arbitrary
plane are determined by the ray’s x, y, z direction cosines as
given by Egs. (24b)—(24d). If 12,(x,y) + mZ,(x,v) > 1, then
the output ray is evanescent and will fail to propagate away
from the HOE.
Note that

APy (x, y) , Ao (x, y)
Ox dy

do not exist at all (x, y) since ¢g(x, y), as given by Eq. (19),
is only piecewise continuous. ¢y (x,y) would be continuous
and have first partial derivatives everywhere, however, if P;(x,
¥), Po(x, ¥),..., Pn(x, y) were continuous and had first

\LV x
mlhmated y [
wavelength A %
X"
o 5,,‘
v
Input Plime 20° N
—_— < - -— 7

~000)

l

HOE f

Output Plane

Fig. 1. Fourier-transform HOE geometry.
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partial derivatives everywhere. Asitis, P,(x,y) is continuous
and has first partial derivatives everywhere except at its
boundaries, i.e., at the transition between P, (x, y) = 0 and
P, (x,y) = 1. Theset of all points S that are boundary points
of the P, (x, y)’s occupy zero area of the HOE. Thus we can
neglect these points since they do not contribute to the inte-
gral given in Eq. (14).

By Eq. (19), using the fact that P,, (x, y) is piecewise con-
stant,

8¢H(x On(x, y) _ [Z WP (x, y)

x}:WP (x, y) 22t Y) o)
m= ax

for (x, y) ¢ S, and similarly for the partial derivative with
respect to y. Therefore the ray-intercept coordinate of an
output ray on any arbitrarily chosen plane will be independent
of the v,’s. Since ray-trace spot size is the size of the region
occupied by a set of ray intercepts, it also is independent of
the v,’s. The relationship between observed spot size and
ray-trace-predicted size is discussed below.

Ray-tracing techniques do not take into account boundary
diffraction effects and can therefore give inaccurate results
when such effects are significant. Boundary diffraction ef-
fects will result in observed spot sizes larger than those pre-
dicted by ray-tracing methods. If we consider a single HOE,
there are two principal sources of boundary effects. The first
is the finite size of the HOE, and the second is discontinuities
of the phase transfer function. Diffraction effects that are
due to the finite size of the HOE are easily evaluated. For
instance, a Fourier-transform HOE of diameter D and focal
length F, with a continuous phase transfer function, has a
diffraction-limited spot size of 1.22\F/D.3 If a ray trace
through this HOE predicts a spot size considerably smaller
than 1.22\F/D, then the observed spot size will be nominally
1.22MAF/D. 1If the ray trace predicts a spot size larger than
1.22AF/D then the actual experimentally observed spot size
will be nominally the same as that indicated by the ray trace.
In the remainder of this discussion we neglect effects that are
due to the finite size of the HOE. Diffraction effects arising
from discontinuities of the HOE’s phase transfer function are
more difficult to evaluate. They will depend on the number
of discontinuities, their locations, and their magnitudes.
Large discontinuities will likely result in large values of the
rms wave-front error E, as given by Egs. (15) and (16). Since
E does not contain all the information regarding the discon-
tinuities (i.e., the number of discontinuities, their locations,
and their magnitudes), a direct correlation between observed
spot size and E does not necessarily exist for large values of
E. As a consequence, the technique outlined in this paper
should be used with care in situations in which a HOE having
a reasonably small rms wave-front error does not exist. For
situations in which a HOE having a reasonably small rms
wave-front error does exist, the technique outlined in Section
4 will result in an optimum design.

Recall that the v, ’s can significantly affect the rms wave-
front error. This is because the vy, ’s strongly influence the
magnitude of the discontinuities of the phase function. The
boundaries of the P,’s determine the locations of the
discontinuities. These discontinuities can result in large rms
wave-front errors, even in the presence of small spot sizes
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predicted by ray-tracing methods. A careful examination of

diffraction effects would indicate that small values of E imply

small observed spot sizes and vice versa. Furthermore, small

E or small ray-trace-predicted spot sizes imply together with .
Egs. (15) and (18) that

d1(x,y) = ¢ m(x,y) + cim (26)

for all [ and m in the region where
Py(x, y)Pm(x,y) =1

(cim is a constant). Formula (26) asserts that the desired
phase transfer functions corresponding to the input wave
fronts are nearly identical up to an additive constant in the
regions where they overlap. It is easy to see that if formula
(26) is satisfied then E will be minimum, provided that ; and
~m are chosen such that v, — v, = ¢j,. Furthermore, in such
a case, the minimum value of E will be small. Choosing y; —
Ym = Cm tends to minimize the magnitude of the discon-
tinuities of the phase transfer function ¢y (x, y). In sum-
mary,

1. A small value of E indicates small observed spot sizes
and vice versa.

2. Observed spot sizes are larger than ray-trace-predicted
spot sizes.

3. Ray-trace-predicted spot sizes are independent of the
vn’s. Small ray-trace-predicted spot sizes indicate that v,’s
exist that result in a small value of E. These 7v,’s tend to
minimize the discontinuities of ¢y (x, y).

6. FOURIER-TRANSFORM LENS

In this section we describe the use of our technique to design
an optimum aspheric Fourier-transform lens. We compare
the resulting system performance with that obtained from (1)
a conventional holographic Fourier-transform lens recorded
with spherical wave fronts and (2) an aspheric HOE, both
designed with a holographic ray-tracing computer program
in conjunction with optimization routines.

Consider the geometry shown in Fig. 1. An input plane is
located 0.5 m from a flat, aspheric HOE. The input plane is
tilted 20° relative to the HOE. A transparency at the input
plane 25.4 mm on each side is illuminated by a coherent plane
wave front (A = 0.5145 um). The input transparency pro-
duces an angular spectrum of plane wave fronts (one for each
spatial-frequency component of the input) that propagate to
the HOE. We would like the HOE to focus each incident
plane wave front to a corresponding point in the output plane.
The output plane is parallel to the HOE and a distance F =
0.5 m away. Furthermore, we would like the location of the
points in the outplane to be given by

x'" = NFfy, (27a)
¥ = \Ffy, (27b)

where f- and f,- are the x and y spatial frequencies, respec-
tively (relative to the input plane), of the corresponding in-
cident plane wave fronts. Equations (27a) and (27b) specify
the output-point locations that would result when an ideal
Fourier-transform lens is used. The HOE is assumed to be
thin and consequently exhibits no volume Bragg effects.
Thus the intensity of any point in the output plane depends
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Table 1. Input Field Angles (aj, 8;), Corresponding Spatial-Frequency Components (fer1, £5r,1), and
Corresponding Nominal Output-Spot Locations for (a) Ideal Fourier-Transform HOE, (b) Conventional Fourier-
Transform HOE, and (¢) Fairchild-Fienup Aspheric Fourier-Transform HOE

(¢

(b) Fairchild-Fienup
Conventional HOE Aspheric HOE
fx /,l fy i Ideal Spot Location Spot Location Spot Location
l o B (lines/min)  (lines/mm) x” (mm) y” (mm) x” (mm) y” (mm) x”" (mm) y” (mm)
1 ~2.4° 0° —81.39 0 —20.93783 0.00000 —19.8463 0.00000 —19.8287 0.00000
2 -1.2° 0° —40.70 0 —10.47121 0.00000 -9.87993 0.00000 —9.8764 0.00000
3 0° 0° 0 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 1.2° 0° 40.70 0 10.47121 0.00000 9.80504 0.00000 9.8014 0.00000
5 2.4° 0° 81.39 0 20.93783 0.00000 19.5483 0.00000 19.5291 0.00000
6 0° —2.4° 0 —81.39 0.00000 —20.93783 0.15001 —20.9562 0.1500 —20.9396
7 Q° —1.2° 0 —40.70 0.00000 —10.97121 0.0375 —10.4735 0.0375 —10.4686
8 0° 1.2° 0 40.70 0.00000 10.47121 0.0375 10.4735 0.0375 10.4686
9 0° 2.4° 0 81.39 0.00000 20.93783 0.15001 —20.9562 0.1500 20.9396

only on the intensity of the corresponding input plane wave.!!
No effort is made to guarantee that the phase difference be-
tween two points in the output plane is the same as the phase
difference between the two corresponding plane waves dif-
fracted from the input transparency. Thus we are attempting
to design a HOE that can be used optically to determine the
Fourier spectrum of an input transparency.

Using the technique outlined in Section 4, we determined
the optimum aspheric HOE, i.e., ¢z (x, y), based on nine dif-
ferent input-plane-wave components. If we write the nor-
malized propagation vector K; of the /th plane-wave compo-
nent relative to the input plane as :

K; = (sin a;)&’ + (sin B;)(cos )y + (cos B;)(cos ay)2’,
(28)

where £/, §, and 2’ are the unit vectors along the x’, v/, and
2’ axes, respectively, then the corresponding x and y spatial
frequencies, f,-; and f,- ;, respectively, are

ferq = (sin ay)/A, (29a)
fyr1 = (sin By)(cos a;)/\. (29b)

Note that o; and §3; are the x and y propagation angles of the
{th plane-wave component with respect to the input aperture.
The nine different input-plane-wave components used are
given in Table 1. Since input transparencies will, in general,
have x and y spatial-frequency components that are simul-
taneously nonzero, a better choice of input components would
be the 17 shown in Fig. 2. However, for comparison purposes,
these nine components were chosen to be consistent with those
used by Fairchild and Fienup® in an earlier design effort. The
total area illuminated on the HOE of Fig. 2 by the nine
input-plane-wave components of Table 1 is shown in Fig. 3.
Columns a of Table 1 are the corresponding ideal point posi-
tions in the output plane as given by Egs. (27a) and (27D).
The performance of the aspheric HOE was evaluated by
tracing for each «; and $; a hexapolar array of 36 rays, with
propagation direction K;, from the input plane to the output
plane. The 36 rays originated from points in the input plane
that were spaced as shown in Fig. 4. Figure 5(a) shows the
resulting spot diagrams at the output plane for the optimum
aspheric HOE. Note that these spot diagrams are derived by
ray tracing and consequently do not include boundary dif-
fraction effects. Since the system is symmetric in the 8 an-

gular direction, we only show spot diagrams for the negative

~ values of 8. Each spot diagram shows the relative position

of each of the 36 ray intercepts at the output plane. If the
system were ideal, all 36 rays would intersect the output plane
at a single point. Many of the intercepts shown in Fig. 5(a)
are so close together in relation to the scale of the plot that
they cannot be individually resolved.

Fig. 2. Locations of 17 plane-wave spatial-frequency components
that could be used in the optimization of a practical Fourier-transform
HOE.
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Fig. 3. Region illuminated on the Fourier-transform HOE of Fig.
2 for the nine input-plane components given in Table 1.
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Fig. 4. Locations of the 36 rays at the input plane that are used to
compute the output-spot diagrams.
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Fig. 5. Spot diagrams predicted by ray tracing (note the different
scales for the different cases).

Next consider the conventional holographic Fourier-
transform lens produced by two spherical recording beams,?
as sk..v.n in Fig. 6. The performance of this conventional
holographic Fourier-transform lens was evaluated as before.
The resulting spot diagrams are shown in Fig. 5(b). For each
oy and By, columns b in Table 1 give the (x, y) intercept in the
output plane of the ray originating from the x = 0,y = 0 point
in the input plane. The surprising result seen by comparing
the spot diagrams in Figs. 5(a) and 5(b) is that the conven-
tional HOE appears to outperform the optimum aspheric
HOE. But one has to be careful in interpreting these results
since in some sense we are comparing two different systems.
This becomes readily apparent when columns a and b of Table
1 are examined. We see that, although the conventional HOE
has a smaller spot size than 1:1e¢ optimum aspheric HOE at the
nine input spatial frequenci: -, the locations of the spots in the
output plane for the conventional HOE system are in the
wrong positions. For example, the nominal spot position in
the output plane for the conventional HOE system and an
input spatial frequency of f, = —81.39 lines/mm, f, = 0

K. A. Winick and J. R. Fienup

lines/mm is, by columns b of Table 1, ¥ = —19.8463 mm, y =
0.00000 mm. But by columns a of Table 1 the desired location
is —20.93783, ¥ = 0.0 mm; thus the nominal spot location in
the output plane is off by more than a millimeter.

Here we see that, if we force the spots to be in the proper
locations for the optimum HOE, the spot sizes become very
large; significant reduction of the spot sizes is possible if one
allows distortion to exist.

The rms wave-front error E with respect to the output-spot
locations as given by columns b of Table 1 was computed for
the conventional HOE using the HOAD ray-trace program.
The results are shown in column a of Table 2. The error was
computed based on an input-ray distribution of two crossed
orthogonal fans of 11 points each, as shown in Fig. 7. Al-
though the wave-front error computed by the HOAD program
using these two orthogonal fans is not exactly the quantity E
given by Eqs. (15) and (16), it is close.

We examined the performance of an aspheric HOE de-
signed with the aid of a holographic ray-tracing computer
program in conjunction with optimization routines. This
design work was performed by Fairchild and Fienup® for the
basic system configuration shown in Fig. 1. Their record-
ing-beam geometry was that of Fig. 6, except that Fairchild
and Fienup allowed the plane reference-beam wave front to
be perturbed by the phase function

2
T" (Ca0x2 + Cox* + Cex® + Caox8 + Cony?
+ Cosy* + Cogy® + Coay® + Cax2y2 + Cyyxty?),

where x and y refer to the coordinate system in the plane of
the HOE. All10 of the Cj; coefficients were allowed to vary
during a damped-least-squares optimization. The merit
function consisted of the sum of the squares of the rms spot
size at the output plane for the nine spatial frequencies given
earlier. The spot positions were not optimized, i.e., distortion
was ignored. The resulting spot diagrams, calculated as be-
fore, are shown in Fig. 5(c). For each «; and 8;, columns ¢ of
Table 1 give the (x, y) intercept in the output plane of the ray
originating from the x = 0, ¥ = 0 point in the input plane.
Notice the geometric distortion of the image by comparing
columns ¢ and a of Table 1. Also notice that the nominal spot
positions are roughly the same as those of the conventional
HOE system (compare columns ¢ and b of Table 1).

By choosing the desired output-spot locations to be the
same as the nominal output-spot locations as given by columns

Plane Wave Reference

=
Spherical Converging Object Beam
R N 20~ \\\

//

0.5m >

Fig.6. Construction geometry for conventional Fourier-transform
HOE.
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Table 2. Input Field Angle («;, 8;) and Corresponding Approximate rms Wave-Front Error E; for (a)
Conventional Fourier-Transform HOE, (b) the Fairchild-Fienup Aspheric Fourier-Transform HOE, (c) Optimum
Aspheric Fourier Transform HOE

(b)
(a) Fairchild-Fienup (c)
Conventional HOE Aspheric HOE Optimum Aspheric HOE
l oy B [~E; (in wavelengths)] [~E; (in wavelengths)] [~E; (in wavelengths)]
1 —2.4° 0° 2.75 X 101 3.72 X 102 3.95 X 1072
2 —1.2° 0° 0.84 X 1071 2.55 X 10~2 2.75 X 102
3 0° o° 0 3.85 X 102 2.52 X 102
4 1.2° 0° 0.89 X 101 2.48 X 102 2.76 X 102
5 2.4° 0° 3.07 X 10! 3.88 X 10~2 3.99 X 102
6 0° —2.4° 2.33 X 101 4,59 X 102 5.59 X 1072
7 ‘0° —1.2° 0.71 X 10! 2.68 X 102 4.00 X 1072
8 0° 1.2° 0.71 X 1071 2.68 X 10~2 4.05 X 1072
9 0° 2.4° 2.33 X 101 4.59 X 10~2 5.59 X 1072
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Fig. 7. Locations of the 21 rays at the input plane that were used to
compute the rms wave-front error.

Fig. 8. Reference-beam phase perturbation required to produce the
optimum Fourier-transform HOE.

c of Table 1, the wave-front error of this HOE was computed
by the HOAD program, and the results are shown in column
b of Table 2. From both Table 2 and Fig. 5 it can be seen that
the Fairchild-Fienup design is several times better than the
conventional HOE.

The optimum aspheric HOE corresponding to the output-
plane spot locations given by column c of Table 1 [rather than

those given by Egs. (27a) and (27b)] was determined. This
allowed us to compare the optimum aspheric HOE with the
HOE designed by Fairchild and Fienup. However, in order
to avoid the considerable computation associated with cal-
culating the a;’s and bj;.’s of Eq. (23) by numerical integration,
we used the following simpler approach, Since for this
problem the ray-trace-predicted spot sizes are small, there
must exist y,,’s that yield a small rms wave-front error E, as
discussed earlier. These 7v,’s will tend to minimize the
magnitude of the discontinuities of the ¢ (x,y). Using for-
mula (26) and the relation v; — v, = ¢, it was easy to find
Yx»’s that resulted in discontinuities of relatively small mag-
nitudes. These v,’s were used in Eq. (19) to compute the
phase transfer function ¢g(x, y). Thus the “optimum”
aspheric HOE actually was not optimum since the v,’s as
given by Eq. (23) were not used to compute ¢z (x,y). For this
reason the rms wave-front error, given in column ¢ of Table
2, was actually a little worse than that of the design of Fair-
child and Fienup. However, as can be seen from the spot
diagrams in Fig. 5(d), the geometric §pot sizes, which are in-
dependent of the v,’s, are considerably better than those for
the design of Fairchild and Fienup.

From Eq. (2) it is seen that only the difference between the
object- and reference-beam phases determines ¢y (x, y).
Therefore ¢op;(x, y) can be chosen arbitrarily, and then Eq.
(2) determines ¢re(x, ¥). dobj(x, y) was chosen to correspond
to a spherical wave front converging to the pointx = 0,y =0
in the output plane, i.e.,

Gab(x, ) = — 27’” [2+32+ (05272 (30)

By combining Eqgs. (2), (19), and (30), ¢,ef can then be ex-
pressed as

2
Brotlx, y) = — %x[sin 209)] + dpertlx, ),  (31)

where the phase function ¢pert(x, y), the perturbation of ¢er
from a tilted plane wave, is shown in Fig. 8. Therefore this
HOE can be recorded by using the setup shown in Fig. 6,
provided that the phase perturbation shown in Fig. 8 is added
to the plane reference-beam wave front by using a com-
puter-generated hologram.
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7. ADDITIONAL COMMENTS

In this paper we have shown how to determine the phase
transfer function ¢y (x, y) of a flat aspheric HOE to minimize
the mean-squared wave-front error of the element averaged
over some finite set of input wave fronts. It should be noted
that this optimum phase transfer function, which is explicitly
given by Eq. (19), is discontinuous. The transfer function
would be continuous, however, if the Py (x,y)’s were tapered
to be continuous. This is an area of research that should be
pursued.

A consideration that has not been discussed in this paper
is that of realizability. It has not been shown that, in general,
there will exist propagating object- and reference-beam wave
fronts that will interfere to produce the desired hologram
phase transfer function (see Eq. (2)]. This was nota problem
for the simple Fourier-transform lens that we analyzed and
should not be a problem for the HOE’s having small numerical
apertures.

Another area that has not been explored is that of Bragg
efficiency in thick HOE’s. Since only the difference between
the object- and reference-beam phases affects ¢y (x, v), there
will be an infinite number of combinations of object and ref-
erence beams that yield the desired transfer function. From
among these, one should choose the combination that most
nearly satisfies the Bragg condition for all the input wave
fronts. This will ensure the highest possible diffraction ef-
ficiency for the element.

Every optical imaging element, whether it be conventional
or holographie, will exhibit to some degree the five basic
monochromatic third-order aberrations—spherical aberra-
tion, coma, astigmatism, field curvature, and distortion,0
The spherical aberration, coma, astigmatism, and field cur-
vature degrade the image by increasing the impulse-response
spot size. By using our technique, the total mean-squared
wave-front error, including distortion, is minimized. In the
examples described in Section 6, it was seen that it may be
impossible to achieve low values for all five of the monochro-
matic aberrations at once. However, by specifying the desired
output-point locations so that these locations are somewhat
distorted from those desired, the resulting optimum aspheric
HOE had greatly reduced values of the other aberrations.
Thus there is a trade-off between distortion and the other
aberrations. This trade-off can be clearly seen by writing the
desired phase ¢,(x, v} of the nth output wave front as ¢, (x,
¥; Fn), where 7, is the (x, y, z) coordinate of the corresponding
image point. Thus ¢y, (x, y) [see Eq. (5)] is now written as
O n(x, ;7). Allowing for optimization over spot positions
in the same way that we previously allowed for optimization
over the v,,’s, Eq. (15} and (20) become

22 nmin G(y1, vz, ..., YN; 1, Foy. .., FN)  (32)
and

G(Yl”YZ’-"”YN;FI:F%-'- :FN)

N N -1
= Pn s um 1
P f f (x ”(Lz:l WP (x y)]

X { g"l Wum(x;y)[¢H,m(x; YiTm) — 'Ym]]

— [P nlx, y;7n) — 'ynl)zdxdy. (33)
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Clearly, there will be some choice of Fy, To,...,Fy that
minimizes G and consequently minimizes the rms wave-front
error E. We note, however that 7y, 7o, . . . , 7y directly de-
termine the field curvature and distortion of the HOE.,
Furthermore, the 7y, 7o, . . . , v that minimizes E, and as a
result minimizes the observed spot size, will not, in general,
minimize the distortion and field curvature.

It is often possible to determine approximately the 7,
T9,...,rn that minimizes the output-spot sizes. A procedure
for doing so is outlined below along with its heuristic justifi-
cation. It is assumed that there exist some Fi1,79, ..., N such
that the output-spot sizes are small. Choose some region on
the HOE where a large number of input wave-fronts overlap.
For the HOE to perform perfectly in this overlap region, a
different phase transfer function @1 .n{x,y) would be required
for each of the input wave fraonts. Thus, if the HOE is to
perform well over this overlap region, the different phase
transfer functions must be approximately the same to within
an additive constant, i.e., there must exist r1, 72, ..., 7y such
that

Omi(x, 35 7)) = dualx, y; ) + cin, (34)

where ¢;;, is an arbitrary constant for all pairs of input wave
fronts j and % within the overlap region. Pick one of the input
wave fronts in this overlap region (assumed to be the mth) and
choose 7, to be the desired output image location for that
input wave front. From formulas (5) and (34), we want to find
the 7’s corresponding to the remaining wave fronts in the
overlap region such that

Prout(X, ¥ Tr) = dpin(2, ) + dprm(x, ¥; Fr) + Com. (35)

Formula (35) indicates that 7, is the coordinates of the point
focus formed by ray tracing the kth input wave front through
a hologram in the overlap region formed by the mth input
wave front and the corresponding desired mth output wave
front. The above procedure can be repeated in different
overlap regions until all the remaining F’s are determined.

As an example, consider the Fourier-transform lens design
of Section 6. The overlap region is taken to be some small
neighborhood about x =0,y = 0. All the input wave fronts
do not overlap in this region, but for simplicity we will assume
that they do. Choose m = 3 (e, ¢ = 0°, 3 = 0°), and for each
input wave front trace the ray to the output plane that goes
through the point x = 0,y = 0 on the HOE. The coordinates
of the intercepts of these rays on the output plane are given
by columns b of Table 1. Note from columns ¢ of Table 1 that
these intercepts agree quite well with the 7r's used in the
Fairchild-Fienup design and in our optimum design.

The paraxial approximation might also be used to handle
the 7.’s. With this approximation, the effect of changing 7,
= (X%, Y&, 21) is expressed analytically by adding to bpp(x,
¥) phase terms proportional to x,x and yry for wave-front tilt
and zx(x? + y2) for focusing. The total wave-front error could
then possibly be minimized over the parameters x, y, and
2j, in a manner similar to that used for the Yr's.

8. SUMMARY

In this paper, we have studied the problem of designing a thin,
flat aspheric holographic optical element that will image a
finite set of input wave fronts into a finite set of output wave
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fronts. We have analytically determined the phase transfer
function of the HOE that is optimum. By optimum, we mean
that such an element has minimum mean-squared wave-front
error averaged over the set of input wave fronts.

It was shown that it is not always possible to obtain a low
value for the mean-squared wave-front error. For the Fou-
rier-transform element that we studied, low values for
spherical aberration, coma, and astigmatism may be obtained
by permitting distortion. Our analysis indicates that a pre-
vious computer-optimization technique for designing aspheric
HOE?’s achieved low values for spherical aberration, coma, and
astigmatism only because it permitted distortion.

The power and the generality of computer-optimization
methods make it unlikely that these methods will ever be
completely replaced by analytic design techniques, such as
those described in this paper. Analytic techniques, however,
allow the designer to obtain a physical understanding of the
design process, and they may aid him in achieving superior
designs. »

As was noted in the introduction, conventional lenses can-
not be exactly described by a phase transfer function, and so
the design approach described here is not immediately ap-
plicable to them. However, with appropriate modifications,
weighted sums of optimal surfaces (or of approximate phase
transfer functions) could possibly be useful for conventional
lenses.

APPENDIX A
G(’Yl’ Y25 .- ’YN)

= f f (}é W, Pp(x,y)

N _
X [¢H,n(x, y)— 'Yn]2 - [;1 WP (x,y) '

X {g WP (x, y)[bm - (x,y) = %]}2) dxdy, (A1)

r=1

- gF[8 mne

X [pan2(x,y) = 2¢8n(x, ¥)Vn + Yn?]

N -1 N N
- l;l WPs(x,y)| L T WP(x,y)W,Pe(x, y)

r=1t=1

X [dm, (r, ¥)bu: (2, ) — ¢u (x,y)v:

= bme(x, ¥)v, + 'ym]} dxdy, (A2)
N N N

=const. + ¥ apYn+ X X birYjve, (A3)
n=1 j=1k=1

where

N
const. = ff{ ;1 WnPn(xr y)¢H,n2(xy y)

N -1 N N
—[gl WsPs(x»y)} > 2 WP(x,y)

r=1t=1

X tht(x’y)[¢H,r(xay)¢H,t(x’y)]] dxdy) (A4)
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an = —2W, f f Po(x, Y)émn(x, y)dxdy
N -1
+aw, ([ WSPAx,y)] Palx, )

N
X [ Z_l WP (x, ¥)bum(x, ¥)| dxdy, (A5)

and
%=Mmj'amwmw

N -1
- W W, f f Lgl WPy (x,y)

where 9, is the Kronecker delta function

Lj=k
S = .
7 {O,i # k (A7)

Note that, from Eq. (A8), bj;, = by;.
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