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Reconstruction of objects having latent reference points
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A simple recursive algorithm is proposed for reconstructing certain classes of two-dimensional objects from their
autocorrelation functions (or equivalently from the modulus of their Fourier transforms-the phase-retrieval piob-
lem). The solution is shown to be unique in some cases. The objects contain reference points not satisfying the
holography condition but satisfying weaker conditions. Included are objects described by Fiddy et al. [Opt. Lett.
8, 96 (1983)] satisfying Eisenstein's thorem.

INTRODUCTION

In a number of disciplines, including astronomy, x-ray crys-
tallography, electron microscopy, and wave-front sensing, one
encounters the phase-retrieval problem. One wishes to
reconstruct f(m, n), an object function, from IF(p, q)l, the
modulus of its Fourier transform, where

F(p, q) = IF(p, q)lexp[i4'(p, q)] = V[f(m, n)]

M-1 N-1
= E E f(m, n)exp[-i2r(mp/M + nq/N)], (1)

m=O n=O

wherem,p=0,1,...,M-landn,q=0,1, ... ,N-1. The
discrete transform is employed here since in practice one deals
with sampled data in a computer. The problem of recon-
structing the object from its Fourier modulus is equivalent to
reconstructing the Fourier phase, i(p, q), from the Fourier
modulus; since once one has the phase as well as the modulus,
one can easily compute f(m, n) by the inverse (discrete)
Fourier transform. rf(m, n), the (aperiodic) autocorrelation
of f(m, n), is given by'

M-1 N-1
rf(m, n) = E E f(j, k)f*(j-m, k-n) (2)

j=O k=0

= I-1 [I F(p, q)12], (3)

where the asterisk denotes complex conjugate. Note that the
autocorrelation is Hermitian: rf(-m, -n) = rf*(m, n). Note
also that in order to avoid aliasing during the computation of
I F(p, q) 12

, it is necessary to have f(m, n) = 0 for M/2 < m <
M - 1 and for N/2 < n < N - 1; this will be assumed
throughout this paper. Then there is no difference between
the periodic (cyclic) and aperiodic autocorrelation. (For x-ray
crystallography this is usually not the case, and the results of
this paper do not apply.) Since the autocorrelation function
is easily computed from the Fourier modulus by Eq. (3), the
phase-retrieval problem is equivalent to reconstructing an
object from its autocorrelation function.

Several phase-retrieval algorithms have been proposed, all
of them requiring some additional measurements or con-
straints on the solution. Examples include a reference point
at least one object diameter from the object 2 (giving rise to the
holography conditions), a second intensity measurement in
another plane 4' 5 (in electron microscopy or wave-front sens-

ing), nonnegativity and limited spatial extent6 -8 (in astrono-
my), atomic models9 (in x-ray crystallography), and objects
consisting of collections of points having nonredundant
spacings. 10

Here it is pertinent to review the case of holography.
Suppose that f (m, n) consists of an object of interest, g(m, n),
plus an unresolved (delta-function-like) point, referred to as
the reference point, i.e.,

f(m, n) = Ae5(m - mi, n - no) + g(m, n), (4)

where b(m, n) is a two-dimensional (2-D) Kronecker delta
function. Then the autocorrelation can be written as the sum
of four terms,

rf(m, n) = jAj 26(m, n) + rg(m, n) + Ag*(mo - m, no - n)
+ A*g(m + mi, n + no), (5)

the final term of which is the cross-correlation of the reference
point with the object of interest and is simply proportional to
a translate of the object of interest. If the distance from the
reference point to the object of interest exceeds the diameter
of the object of interest, then the fourth term in Eq. (5) is
nonoverlapping with the other terms, and the object of interest
is reconstructed by simple inspection of the autocorrelation.
Then the holography condition is satisfied.2 ,3 If the ampli-
tude and position of the reference point are unknown (except
that the reference point satisfies the holography condition),
then the object can be reconstructed only to within a complex
factor A* and to within a translation, and there would be a
twofold ambiguity as to whether the object is given by the
fourth term or the third term (the conjugate image) of Eq.
(5).

In this paper we describe an algorithm for reconstructing
certain objects having reference points that do not satisfy the
holography condition. For these cases the reference points
may be referred to as latent reference points, because they do
not immediately yield the object as would a holographic ref-
erence point; rather, a degree of development is required be-
fore their usefulness emerges.

In Section 2 the question of the uniqueness of the solution
is reviewed. In Section 3 the new reconstruction algorithm
is described as it is applied to three different classes of objects.
Additional comments on the reconstruction algorithm are
included in Section 4.
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2. UNIQUENESS OF THE SOLUTION

When one measures only the Fourier modulus, then the
uniqueness of the solution is a central question. One of course
always has the twofold (180° rotated or conjugate image)
ambiguity since l5fV(m, n)] I = 1 [f* (-m, -n)] 1; and trans-
lations of f(m, n) and the multiplication off(m, n) by a con-
stant phase factor exp(i0) (where 0 is a real constant) also have
no effect on I F(p, q) 1. If these are the only ambiguities, then
we consider the solution of the phase-retrieval problem to be
unique.

Bruck and Sodin" considered objects consisting of a rec-
tangular grid of delta functions having various complex am-
plitudes (or equivalently, a 2-D sequence), which have Fourier
transforms that can be expressed as polynomials. These are
the types of objects assumed by Eqs. (1) and (2), and we refer
to such objects as sampled objects. They showed that, for
sampled objects, a lack of uniqueness of the solution to the
phase-retrieval problem is equivalent to the factorability of
the polynomial, and therefore one-dimensional (1-D) objects
of length L have a 2L-1-fold ambiguity." This result corre-
sponds to the analogous theory for 1-D continuous functions.' 2

On the other hand, polynomials of two (or more) variables are
known to be only rarely factorable (i.e., they are usually irre-
ducible). Consequently, for 2-D sampled objects the solution
to the phase-retrieval problem is usually unique. An analo-
gous theory for 2-D continuous functions is not yet avail-
able.

Uniqueness Condition Due to Eisenstein's Theorem
Although most 2-D sampled objects are, as discussed above,
uniquely related to the modulus of their Fourier transforms,
it is of interest to know conditions that ensure uniqueness.
Such a condition was recently put forward by Fiddy et al. 13
They considered the class of sampled objects whose support
is contained in the union of a rectangle and an isolated point
(A) below and to the right of the rectangle, as shown in Fig.
1(a). By way of example, the rectangular region in Fig. 1(a)
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Fig. 1. Fiddy-Brames-Dainty 1 ' object. (a) FBD object support
having two reference points, A and B; (b) object support assumed; (c)
autocorrelation support. The object is uniquely reconstructed from
its autocorrelation function.
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contains five columns and four rows of points. The object
must also be nonzero both at point A and at point B in the
lower left corner of the rectangle. Points A and B are referred
to as the reference points, and they do not satisfy the holog-
raphy condition. If these conditions are satisfied, then the
Fourier transform of the object satisfies Eisenstein's theorem,
making it an irreducible 2-D polynomial and guaranteeing
that the solution to the phase retrieval problem is unique.
They demonstrated the power of these conditions by recon-
struction experiments using the input-output iterative Fou-
rier-transform algorithm.6' 7 First, they performed a recon-
struction experiment on the Fourier modulus of a particular
object that did not have a reference point A. After 250 iter-
ations, a poor reconstruction resulted. But when a new object
was formed by adding a reference point A off its corner making
it satisfy the conditions, then a good reconstruction was ob-
tained after only 20 iterations.' 3 Note that this does not prove
that the original object (without the point A) was nonunique:
the failure of the iterative reconstruction algorithm may only
be an indication of local minima in the error function. In fact,
when the reference point A had a small value, a poor recon-
struction was obtained in spite of the fact that irreducibility
(and uniqueness) was ensured. Only when a large value for
A was used did the reconstruction become easier.' 3 Appar-
ently the use of a large enough value for A also ensures that
there are no local minima.

3. NEW RECONSTRUCTION ALGORITHM

For certain classes of sampled objects having reference points
not satisfying the holography condition, we present a new
reconstruction algorithm having a fixed number of steps.
This new algorithm is related to the Dallas5 recursive algo-
rithm for phase retrieval from two intensity measurements
but requiring only a single intensity measurement (the Fourier
modulus) and solving the equations in a certain order such
that the problem of a growing tree of solutions 5 is avoided.
First the algorithm will be described for the type of object
described above, and later for a wider class of objects.

A. Fiddy-Brames-Dainty Objects
For mathematical simplicity, consider a sampled object whose
support is contained in the regions shown in Fig. 1(b). Its
uniqueness properties are the same as those of the objects
considered in Fig. 1(a) since the supports are mirror images
of one another. The object can be expressed as in Eq. (4) with
MO = no = 0:

f(m, n) = Ab(m, n) + g(m, n),

where g(m, n) is that part of f[(m, n) contained in the rectan-
gular region of support, and A = f(0,0) d 0. In this case, g(m,
n) is zero outside 1 ' m ' J and 1 ' n < K; and it is assumed
that f(J,1) =g(J,1) =B # 0,andg(m,K) X0 foratleastone
value of m. We will refer to objects satisfying these con-
straints as Fiddy-Brames-Dainty (FBD) objects having FBD
regions of support.

The autocorrelation, rf (m, n), of f[(m, n) is given by the four
terms of Eq. (5) with mo = no = 0, the supports of which are
contained in the sets of points illustrated in Fig. 1(c). From
this figure, it can be clearly seen that the rightmost column
and the uppermost row of rfi(m, n) are simply equal to A*g(m,
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n = 1,... ,K,

m = 1,... ,J.

Therefore, for m = J and for n = K, one can reconstruct g(m,
n) to within a constant factor A* by simple inspection of rf(m,
n). In effect, the holography condition is in force for the row
and column opposite reference point A, and that row and that
column are reconstructed by using reference point A.

The value of A can be obtained as follows: From Eq. (2),
it is seen that there is only one nonzero term in the summation
for the upper left corner point in the autocorrelation:

rf(-J + 1, K - 1) = g(1, K)g*(J, 1) = B*g(1, K). (8)

Also, from Eqs. (6) and (7),

rf J, 1) = A*g(J, 1) = A*B, (9)

rf(1, K) = A*g(1, K). (10)

Combining Eqs. (8)-(10) yields, assuming that rf(-J + 1, K
- 1) Fd 0,

IAl 2
- rf(J,1)rf*(1,K) (11)

Since without loss of generality we can arbitrarily fix the phase
of any one point in f(m, n), we set the phase of A equal to zero;
A is then given unambiguously by the positive square root of
Eq. (11). If rf(-J + 1, K - 1) = 0, then one can obtain a
similar expression for IA 12 using the first nonzero point, rf (m,
K - 1), to the right of rf(-J + 1, K - 1). Since A is known,
g (J n) and g(m, K) can be determined unambiguously from
Eqs. (6) and (7). Note that B = g(J, 1) = rf(J, 1)/A*.

Having the values of the top row and rightmost column of
g(m, n), one can then solve for the leftmost column in the
second step of the algorithm. From Eq. (2), the point of the
autocorrelation just below rf(-J + 1, K - 1) has only two
nonzero terms,

rf(-J + 1, K - 2) = g(1, K)g*(J, 2) + g(1, K - 1)g*(J, 1).

(12)

Solving,

g(l, K - 1) = [rf (-J + 1, K - 2) - g(l, K)g*(J, 2)]/B*,
(13)

where g(J, 1) = B. Since all the quantities of the right-hand
side of Eq. (13) are known and B 5 0, one can unambiguously
compute g(l, K-1). Similarly, the next lower point in the
autocorrelation is given by

rf (-J + 1, K- 3) = g(1, K)g*(J, 3) + g(1, K - 1)g*(J, 2)
+ g(l, K-2)g*(J, 1). (14)

Since all the quantities in this linear equation are known ex-
cept for g(1, K - 2), and since g(J, 1) # 0, one can solve un-
ambiguously for g(l, K - 2). In a similar fashion, one can
recursively solve for all the values g(l, n) (the first column on
the left) using the values of rf(-J + 1, n - 1) in this second
step of the reconstruction. In a sense the column m = 1 was
solved using the latent reference point B, which required the
solution of column m = J before it could become effective.

Having the first column on the left and the first column on
the right of g(m, n), one can then solve for the second column
on the right in the third step, using A as the latent reference

(6) point. From Eq. (2), the points of the autocorrelation in
column (J - 1) are given by

rf(J, n) = A*g(J, n),

rf(m, K) = A*g(m, K),
Krf(J-1,n)=g(J-1,n)A*+ E g(J,k)g*(1,k-n),

k=n+l

(15)

forn = 1,...,K -1. Since,foranyn,g(J-1,n) istheonly
unknown in Eq. (15), and since A 5 0,g(J - 1, n) is uniquely
determined from Eq. (15). Thus the values of g(m, n) in
column (J - 1) are reconstructed using the values in column
(J - 1) of the autocorrelation.

The reconstruction algorithm continues in the manner
described above. In the fourth step, one can recursively solve
for g(2, n) using the latent reference point B and the values
ofrf(-J+2,n-1),n =K-1,K-2,.. .,2,1. Inthefifth
step, one can solve for g(J - 2, n) using the latent reference
point A and the values of rf(J - 2, n), n = 1,.. ., K - 1. One
continues the procedure until all the columns of g(m, n) are
reconstructed, giving a complete and unambiguous recon-
struction of g(m, n), and therefore of f(m, n).

If g(1, K) ,^ 0, then one can alternatively use that point as
B and perform the reconstruction as described above, but
reversing the roles of the rows and columns.

It was recently noted that Eisenstein's theorem allows for
the rectangular region of support (see Fig. 1) to be extended
over (in the same column as) point A. However, in that case,
there is no simple recursive algorithm for reconstructing the
object.

B. Support Uniqueness for Fiddy-Brames-Dainty
Objects
In the reconstruction method described above, it was im-
plicitly assumed that the support of the object function was
known. However, as will be shown by what follows, such an
assumption is not necessary, since an FBD object can be
shown to be an FBD object from its autocorrelation. In order
to use theorems10 relating to reconstructing the support of an
object from the support of its autocorrelation function, during
the discussion of the object and autocorrelation supports we
assume that the object function is real and nonnegative. (It
might happen that what follows may, with appropriate mod-
ifications, also be true for complex-valued objects; but this
would require further development.)

Given only the support of the autocorrelation, one can
usually only put an upper bound on the support of the
object.' 0 Such upper bounds, sets that can contain translates
of the supports of all possible solutions, we refer to as locator
sets. One such locator set is the intersection of the autocor-
relation support with a translate of itself, where the translate
is such that the center of the second autocorrelation support
is within the first autocorrelation support.10 Assuming that
rf (-J + 1, K - 1) 0 0, and translating the one autocorrelation
support so that it is centered at (-J + 1, K - 1), one arrives
at the locator set shown in Fig. 2 for the case of the FBD object
support shown in Fig. 1(b). In addition, since the autocor-
relation is 2J + 1 pixels wide and 2K + 1 pixels high, the object
must be J + 1 pixels wide and K + 1 pixels high. Since the
object support must be contained within the locator set shown
in Fig. 2, which is J + 2 pixels wide and K + 2 pixels high, the
object support must include either the lower left point or the
upper right point but not both. Keeping either one of these
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shown that for this particular object shape the boundaries can
be reconstructed in a simple way,14 assuming A, B, C #s 0.
Since the vector spacings between points A and B, B and C,
and C and A are each unique, from the corner points in the
autocorrelation, as shown in Fig. 4(b), we have

Fig. 2. Locator set containing all possible solutions, used to show
that the support solution is unique.
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Fig. 3. Alternative case. (a) Object support; (b) autocorrelation
support; (c) locator set.

two points and discarding the other, one is left with the sup-
port of the object (or the 1800 rotated version-the twofold
ambiguity). Suppose, on the other hand, that rj(-J + 1, K
- 1) = 0. For example, suppose that the object support is that
shown in Fig. 3(a). Then the autocorrelation support is that
shown in Fig. 3(b). A locator set, formed by taking the in-
tersection of this autocorrelation support with one translated
to be centered at the first nonzero point in row (K - 1), is
shown in Fig. 3(c). As in the case of Figs. 1 and 2, since the
autocorrelation is 2K + 1 pixels high, the object must be K +
1 pixels high, and therefore either the lower right or the upper
left point (but not both) in Fig. 3(c) must be within the object
support. Suppose we take the lower left point as being within
the object (choosing the upper right point will result in the
1800 rotated solution). Then, since the autocorrelation is 2J
+ 1 pixels wide and therefore the object must be J + 1 pixels
wide, the object must be contained within the first J + 1 col-
umns on the left of Fig. 3(c), which is just the support of the
object as shown in Fig. 3(a). From these examples it can be
seen that, in general, if the object is an FBD object, then its
support can be reconstructed from the autocorrelation func-
tion, from which it is also evident that the object has an FBD
support.

C. Triangular Objects
Other types of objects, in addition to FBD objects, can be re-
constructed by the recursive method. In this and the next
section the reconstruction of two other classes of objects are
shown. Consider, for example, objects whose support is
contained in the triangular shape shown in Fig. 4(a). As-
suming that the object's support is known a priori, it has been

r(0, K) = f(0, K)f*(0, 0) = CA*,

r(J, -K) = f (J, O)f*(0, K) = BC*,

r(J, 0) = fGI, O)f*(0, 0) = BA*.

Combining these gives

r*(0, K)r(J, 0)

r(J,-K)

(16a)

(16b)

(16c)

(17)

Without loss of generality the phase of A can be chosen to be
zero, and then A is given by the positive square root of Eq.
(17). Then we can also compute

B = r(J, O)/A*,

C = r(0, K)/A*.

(18a)

(18b)

Then the values of the leftmost column of the object are given
by

f(0, n) = r(-J, n)/B*,

the values of the bottom row are given by

f(m, 0) = r(m, -K)/C*,

and the values of the diagonal are given by

f(m, K-m) = r(m, K - m)/A*.

(19)

(20)

(21)

From this point one could determine the remainder of the
object by solving systems of equations, 5" 4 but an easier way
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Fig. 4. Triangular-shaped object. (a) Object support; (b) autocor-
relation support. The object is uniquely (among triangular-shaped
solutions) reconstructed from its autocorrelation function.
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Fig. 5. Specific triangular-shaped object. (a) The object; (b) a
second nontriangular-shaped solution; (c) the common autocorrela-
tion function; (d) the function used to synthesize objects shown in (a)
and (b).

is possible if one cleverly chooses the order in which the
equations are solved. In particular, only one linear equation
with one unknown at a time need be solved, and the solution
at each step is unique, if one solves in the following order. In
a similar manner as was done for the FBD objects, solve for
the points in column m = 1 using B as a latent reference point,
and solve for the points in row n = 1 using C as a latent ref-
erence point. Next solve for the points in column m = 2 using
B as a latent reference point, and solve for the points in row
n = 2 using C as a latent reference point. This procedure is
continued until all of f[(m, n) is reconstructed. Other or-
derings for the recursive solution of the equations are also
possible.

The solution given above for the triangular-shaped object
is unique among objects having that support but may not be
unique among all objects. Momentarily restricting f (m, n)
to the case of nonnegative objects, one can use the autocor-
relation support tri-intersection reconstruction for convex
sets10 to show that there exists a family of object supports that
have autocorrelation supports equal to the one shown in Fig.
4(b). One member of that family is the original object support
shown in Fig. 4(a). Another member is an object support
resembling the autocorrelation support shown in Fig. 4(b) but
only half its size. For these latter members there is no simple
recursive reconstruction algorithm as there is for the trian-
gular-shaped object.

Further insights can be obtained by analyzing a simple case.
A case for which there are exactly two different solutions (not
counting 1800-rotated versions) can be obtained by starting
with nonsymmetric functions hl(x, y) and h2(x, y) whose
Fourier transforms are nonfactorable and generating a first
object, which is hl(x, y) convolved with h2(x, y), and a second
object, which is hl(x, y) convolved with h2 (-x, -y) (i.e., the
cross correlation). 1 5 Two such objects, their common auto-
correlation function, and the h1 (x, y) = h2(x, y) used to gen-
erate them are shown in Figs. 5(a) through 5(d), respectively.
In this case one obtains the "unique" solution shown in Fig.
5(a) if triangular support is assumed, and the "unique" solu-
tion shown in Fig. 5(b) if the only other possible support is
assumed.

Since relatively few 2-D objects have factorable Fourier
transforms, the ambiguous example shown in Fig. 5 is unusual.
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If one started with a random object having the same support
as the object in Fig. 5(b), and if one incorrectly assumed that
the object had the same triangular support as the object in Fig.
5(a), then one would obtain what at first glance would appear
to be a triangular-shaped solution. In the process of calcu-
lating the solution one would use only the points on the pe-
rimeter of the autocorrelation function, with which the "so-
lution" would be consistent. However, on further inspection
one would usually find that the triangular-shaped solution is
inconsistent with the interior points of the autocorrelation
function. Only in the unlikely event that the original object's
Fourier transform is factorable would the triangular-shaped
solution be completely consistent with the autocorrelation
function. Therefore if the given autocorrelation function
admits to a possible solution by the recursive method, then
one should reconstruct the solution with the assumed support,
then compute its autocorrelation function and compare it with
the given autocorrelation function to determine whether the
assumed support is valid.

D. Another Case
For a final example, consider objects contained within the
support shown in Fig. 6(a). Comparing it with Fig. 1(b), it
would be a FBD object if it were not for the fact that B = 0.
Assuming that the support of the object is known, it can be
reconstructed by the following recursive steps if points A and
B' 5 0 and if either point C'or C" # 0. Firstf(J, 2),.. .,f(J,
K) and f(2, K), .. ., f(J - 1, K) are solved using A as the ref-
erence point. A can be determined from an equation similar
to Eqs. (11)and (17). Next C' =f(1, K-1), then f(1, K-2),
... I then f(1, 2) are solved using B' as the latent reference
point. Next f(J - 1,1) is solved using C' or C" as the latent
reference point. Next f(1, 1) is solved using B' as the latent
reference point. Next f(J - 1, 2), . .. , f(J - 1, K - 1) are
solved using A as the latent reference point. Then the pattern
repeats: solve for f(2, K - 1),. .. ,f(2, 2) recursively using B',
then solve for f(J - 2, 1) using C' or C", then solve for f(2, 1)

C" C'
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0 0 0 0 0
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Fig. 6. Another case related to FBD objects. (a) Object support;
(b) alternative support reconstruction; (c) autocorrelation support.
The object is reconstructed from its autocorrelation function, with
two solutions.
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using B', then solve for f (J - 2, 2),. . . , f (J - 2, K - 1) using
A, etc., until all the columns are solved.

The solution for this object is unique among objects having
support contained within the support shown in Fig. 6(a).
However, another support may also be possible. In a manner
similar to that used in connection with Figs. 1-3, the possible
support solutions can be narrowed down to those of Fig. 6(a)
and Fig. 6(b), given the autocorrelation support shown in Fig.
6(c). For the support shown in Fig. 6(b) one can reconstruct
the object unambiguously by solving a proper sequence of
equations using latent reference points A, B, C, C', and D.
Therefore, given the autocorrelation function whose support
is shown in Fig. 6(c), at most two (and more probably only one)
solutions are possible, and each can be reconstructed using
a simple recursive algorithm depending on the support shown
in either Fig. 6(a) or 6(b).

4. CONCLUSIONS

A simple recursive algorithm has been devised for recon-
structing an object from its autocorrelation function (or its
Fourier modulus). It works for several types of sampled
objects having latent reference points, including those satis-
fying the conditions described by FBD. The manner in which
the algorithm results in a unique solution constitutes a proof
of uniqueness for FBD objects (but not necessarily for all
objects whose Fourier transforms satisfy Eisenstein's theo-
rem). One of the principal lessons learned here is that the
detailed shape of the boundary of an object plays a crucial role
in determining the uniqueness of the solution to the phase-
retrieval problem.

One might be able to use this method for continuous objects
(as opposed to inherently sampled objects) if a dense enough
sampling of the autocorrelation is available.5

Since the algorithm involves repeatedly taking differences
and dividing by the values of the latent reference points, it
may be sensitive to noise and may require latent reference
points having large values for an accurate reconstruction.
(This may be related to the fact that a large value of A was
required for a successful reconstruction using the iterative
Fourier-transform algorithm.'3 ) Not all the (nonsymmetric)
points in the autocorrelation are used by this algorithm; im-
proved accuracy should be expected if the reconstruction al-
gorithm were modified to use also those additional points.
Those additional points may also be used to distinguish
whether assumptions about the support of the object (when
more than one support solution is possible) are valid. For the
best results one should finish the reconstruction by using the
output of this reconstruction method as the initial input to
the iterative Fourier-transform algorithm,6' 7 which finds a
solution that is most consistent with both the measured data
and the a priori constraints.

The reconstruction algorithm proposed here is applicable

J. R. Fienup

to only a relatively small number of types of objects. How-
ever, the approach of carefully selecting the order in which the
equations are solved should be helpful in the more general use
of Dallas's method by limiting the growth of the tree of solu-
tions. 5
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