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Reconstruction of the support of an object from the support
of its autocorrelation
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The phase-retrieval problem consists of the reconstruction of an object from the modulus of its Fourier transform
or, equivalently, from its autocorrelation. This paper describes a number of results relating to the reconstruction
of the support of an object from the support of its autocorrelation. Methods for reconstructing the object's support
are given for objects whose support is convex and for certain objects consisting of collections of distinct points. The
uniqueness of solutions is discussed. In addition, for the objects consisting of collections of points, a simple
method is shown for completely reconstructing the object functions.

1. INTRODUCTION

In astronomy, x-ray crystallography, and other disciplines one
often wishes to reconstruct an object from its autocorrelation
or, equivalently, from the modulus of its Fourier transform
(i.e., the phase-retrieval problem).' It is also useful to be able
to reconstruct just the support of the object (the set of points
over which it is nonzero). In some cases, for example, to find
the relative locations of a collection of pointlike stars, the
object's support is the desired information. In addition, once
the object's support is known, the reconstruction of the object
by the iterative method2 is simplified. Therefore we are
motivated to find a quick way to determine the support of the
object from the support of its autocorrelation.

In the general case there may be many solutions for the
object's support, given the autocorrelation support. In the
following sections, a method for generating sets containing all
possible solutions is given. In addition, for the special case
of convex sets a method for generating a family of support
solutions is described. For the special case of objects con-
sisting of sets of discrete points, this method is shown to yield
a unique support solution unless the vector separations of the
points in the object satisfy certain redundancy types of con-
ditions. If, instead of manipulating the autocorrelation sup-
port, one uses the autocorrelation function, then for the same
objects one can reconstruct the object itself.

2. DEFINITIONS AND BACKGROUND

The results shown in this paper apply to functions on Eu-
clidean spaces of any number of dimensions except where
otherwise noted. For simplicity we consider only objects
represented by real, nonnegative functions, f (x) > 0, where
x e EN (N-dimensional Euclidian space). The support S of
a nonnegative function f (x) is the smallest closed set such that
the integral of f (x) over the complement of S in EN is zero.
[Roughly speaking, S is the set on which f (x) > 0.1 In this
paper we consider only functions with compact (i.e., closed and
bounded) support. If f (x) is a finite positive linear combi-
nation of translates of the delta function, then S is a finite
set.

We will be making use of linear operations on sets. Let X
and Y be subsets of EN. Then the addition of two sets and
multiplication by scalars is defined by

aX+bY= lax+by:x EXandy E Y}, (la)

where a and b are real numbers. Similarly, the addition of
a point (which can be thought of as a vector) x E EN to a set
is defined by

ax + bY=- lax + by:y e YI, (lb)

where again a and b are real numbers. Whereas these linear
operations on sets enjoy some of the properties expected from
addition and from multiplication by a scalar, other properties
do not hold. For example, for a real number a and for sets X,
Y. and Z, (X + Y) + Z = X + (Y + Z); a(bX) = (ab)X; and
a(X + Y) = aX + aY. However, (a + b)X does not equal aX
+ bX except for special cases. The role of zero in this case is
played by the set of t0} consisting of the single point 0 =
(0,...,0) e EN. WehaveX+ 01=Xanda{0=hl0I. ButX
- X does not equal 10 unless X consists of a single point.
The autocorrelation of f(x) iS3

f * f(x) = f Nf(y)f(Y + x)dy

= SENf(Y)f(y -x)dy.

(2a)

(2b)

The autocorrelation of f(x) is equal to the inverse Fourier
transform of the squared modulus of the Fourier transform
of f (x). Note that the autocorrelation is (centro-) symmetric:
f * f (-x) = f * f (x). It is most illuminating to interpret Eq.
(2a) as a weighted sum of translated versions of f (x). That
is, in the integrand of Eq. (2a), f (y) acts as the weighting factor
for f (y + x), which is f (x) translated by -y. If the support S
of a nonnegative integrable function f(x) is compact and if A
is the support of its autocorrelation function f * f (x), then

A= U (S-y)
yeS

=S -S = Ix -y:x,y e SI. (3)
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Fig. 1. (a) Set S, (b) three of the translates of S that make up A, (c)
autocorrelation support A = S - S.

(0,1) I

(1,0)

Fig. 2. A symmetric set that is not an autocorrelation support.

The proof of Eq. (3) is in Appendix A. Note that A is sym-
metric:

-A = A, (4)

where -A = j-x:x c Al. In addition,

0 eA (5)

as long as S is nonempty. To illustrate the interpretation of
an autocorrelation support, consider the case of the two-
dimensional support S shown in Fig. 1(a), having the form of
a triangle with vertices at points a, b, and c. The autocorre-
lation support A can be thought of as being formed by suc-
cessively translating S so that each point in S is at the origin
and by taking the union of all these translates of S. Figure
1(b) shows three such translates, (S - a), (S - b), and (S -

c). The rest of A is filled in, as shown in Fig. 1(c), by including
all (S-y) such that y E S.

We are concerned with the following problem. Given a
symmetric set A = EN, find sets S c EN that satisfy A = S
- S.

Sets S, and S2, which are subsets of EN, are equivalent,

S1 -S2, (6a)

if there exists a vector v E EN such that

S2 =V + S1 = IV + 3x:x E S1i, (6b)

where j = + 1 or = -1. From Eq. (3) it is easily seen that

b
S

In many cases A is ambiguous, and so it would be useful to
define a set that contains all possible solutions to the equation
A = S-S. A set L c EN is defined as a locator set for A if
for every closed set S c EN satisfying A = S - S, some
translate of S is a subset of L, i.e., there exists a vector v such
that

v+SqL. (9)

There are many ways to generate locator sets. For example,
for v E S,5 - v c S - S = A, and so A itself is a locator set.
The smaller the locator set, the more tightly it bounds the
possible solutions and the more informative it is. Conse-
quently, we wish to find locator sets that are as small as pos-
sible. A smaller locator set than A is

L = A n H, (10)

where H is any closed half-space of EN with the origin on its
boundary. To see this, choose v & S such that S - v g H.
Then since S-v c A, it follows that S-v c L = AfnH. A
locator set that is often still smaller can be shown to be

L = 1/2P, (11)

where P is any N-dimensional parallelepiped (in two dimen-
sions: parallelogram) containing A.

if S1 is a solution to S - S = A, and if S2  S,, then S2 is also
a solution. If S, is a solution and all other solutions are
equivalent to S,, then the solution is said to be unique and A
is said to be unambiguous; if there exist any nonequivalent
solutions, then the solutions is nonunique and A is ambigu-
ous. For example, in one dimension the set of points A = 1-1,
0, 1i is unambiguous, having the unique solution S = 10, 1i;
whereas the set of points A = 1-3,-2, -1, 0, 1, 2, 31 is ambig-
uous, having nonequivalent solutions S, = 10, 1, 3} and S 2 =

10, 1, 2, 3}-
Not all symmetric sets that contain 0 are necessarily auto-

correlation supports, as the following example shows. As
shown in Fig. 2, let A = I(0, 0), (1, 0), (-1, 0), (0, 1), (0, -1)}.
Because of the point (1, 0), a solution must include two points
separated by (1, 0). Similarly, because of the point (0, 1), a
solution must include two points separated by (0, 1).
Therefore the solution must have at least three distinct non-
collinear points. Of the three possible pairings of the three
points, one has a separation along (1, 0), a second has a sepa-
ration along (0, 1), and the third pair of points must have a
separation vector that is not on the horizontal or vertical axes.
However, all points in A are on the horizontal or vertical axes,
and therefore there is no solution for A = S - S in this
case.

A set X is convex if for all x, y e X,

tx + (1 - t)y e X (7)

for all t e fO, 1] (that is, if all points on the line segment be-
tween x and y are contained in X). The convex hull of a set
X, denoted by c.hull(X), is given by the smallest convex
subset of EN containing X. Thus X is convex if and only if
X = c.hull(X). If S is convex, then A = S - S is also convex.
More generally,

c.hull(X - X) = c.hull(X) - c.hull(X). (8)

3. LOCATOR SETS

* -
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Fig. 3. Locator sets. (a) Set S, (b) A = S -S, (c) locator set L = 1/2P,
(d) formation of L = A n (w + A), (e) and (f) two other members of
the family of locator sets.

A particularly interesting locator set is given by the fol-
lowing intersection of two autocorrelation supports. If w e
A, then

L = An(w + A) (12)

is a locator set for A. Note that L is symmetric about the
point w/2. The proof that this is a locator set is as follows:
Suppose that S satisfies A = S - S. Since w E A, there exist
u,v e S suchthatw = u-v. Considerz e S-v. Thenz
= s - v, where s e S, z = s - v e A, and z = s - u + (u - v)
=s-u.+weA+w. ThereforezeAn(A + w) = L, and
therefore S - v E L.

Naturally, the most interesting (smallest) locator sets
generated by this method of intersecting two autocorrelation
supports are obtained by choosing w to be on the boundary
of A. By choosing different points w e A, a whole family of
locator sets can be generated by this method.

The locator set defined by Eq. (12) can be shown to be a
special case of the following more general locator set. Let W
be a set contained in some S' S for every set S satisfying S
- S = A. That is, W is an intersection of translates of all
possible solutions. Then

L= n (w+A)
we W

0 e S'. Hence we can use W = (0, w), which reduces Eq. (13)
to Eq. (12).

Example 1
Consider the set S shown in Fig. 3(a), which consists of two
balls joined by two thin rods, and its autocorrelation support
A = S -S, shown in Fig. 3(b). An example of a locator set 1/2 P
is shown in Fig. 3(c); it is suggestive of the approximate size
of S but not of any of the details of the shape of S. Figure 3(d)
shows the generation of the locator set L =A (w + A) for
a particular point w e A. Figures 3(e) and 3(f) show two other
members of this family of locator sets generated with two
other points w e A. These locator sets generated by inter-
secting two autocorrelation supports are suggestive of the
shape of the solution (or solutions). This is especially true
if one realizes that any solution must be contained within some
translate of each of these locator sets. Unfortunately, for the
general case, it is difficult to narrow down the solution any
further: a way to combine the information from two or more
of the family of locator sets has not been devised for the gen-
eral case. However, as will be shown in the sections that fol-
low, for special classes of sets much more can be done.

Example 2
Consider the set A consisting of a circle of radius 1. Figures

4(a)-4(c) show the locator sets A n H, 1/2P, and A n (w + A),
respectively. In addition, Fig. 4(d) shows still another locator
set for A, a circle of radius 1/-\'-, which is due to Jung's the-
orem.4 The areas of the four locator sets are 7r/2 L 1.571 for
the half circle, 1.000 for the square (parallelogram) with sides
of length 1, 27r/3 - 2 1.228 for the intersection of two
circles, and 7r/3 1.047 for the circle of radius 1/V3. Con-
sequently, 1/2 P has the smallest area of the locator sets con-
sidered in this case. In other cases, such as in Example 1
above, A n (w + A) may have a smaller area than 1/2P. For
example, the locator set shown in Fig. 3(e) has a smaller area
than the locator set shown in Fig. 3(c). Furthermore, as was

I I

(b)(a)

(13)

is a locator set for A. The proof is as follows: Suppose that
S - S = A andSS '-S'with W s S'. ThenS'-p c A for
every p e S'. Hence

s' n (p+A)s n (p+A).
pES' pEW

-N
N1

/

(14) t

Although Eq. (13) has the potential for producing partic-
ularly small locator sets, its practicality is limited by the fact
that W is defined by all possible solutions to S - S = A, but
that is what is assumed to be unknown. Nevertheless, one can
make some use of Eq. (13). For example, if S - S = A and w
E A, then there exists a translate S' of S such that w E S' and

)
I

//

( (d)

Fig. 4. Locator sets (shaded areas) for the circle. (a) A n H, (b) the
square 1/2P, (c) A n (w + A); (d) circle of radius 1/V4.
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mentioned earlier, locators of the form A n (w + A) tend to
be more suggestive of the shape of the possible solutions.

4. CONVEX SETS

A number of interesting results hold for objects having convex
support. In the following, statements are made about the
uniqueness of convex solutions to A = S - S for convex sets
A, and methods of determining solutions are given.

All convex symmetric sets A have at least one solution

S = 1/2A = {x/2:x e Al. (15)

The proof is as follows: Let u, v E %/2A. Then 2u E A, 2v E

A, and -2v e A. Therefore u - v = 1/2(2u) + 1/2(-2v) E A,
since A is convex, and so (1/2A) - (1/2A) c A. Now let v e A.

Then v/2 e 1/2A and -v/2 e 1/2A. Therefore v = (v/2) -

(-v/2) e (1/2A) - (1/2A), and so A - (l/2A) - (1/2A). Therefore,
for convex A,

A = (1/2A) - (12A). (16)

For the one-dimensional convex case the result is trivial:
the autocorrelation support A is just a line segment, and a
unique solution is given by S = 1/2A, which is just a segment
of the line half of the length of the line segment A. An
equivalent result for the one-dimensional convex case is the
solution

S = A n (w + A), (17)

where w is on the boundary of A (at one end of line segment
A), or, in symbols, w e d(A).

4A. Autocorrelation Tri-Intersection for Convex Sets
For the two-dimensional convex case, we have the following
result: Let A s E2 be a closed convex symmetric set (-A =

A) with nonnull interior, and let

w1 E 0(A), w2 E d(A) n 0 (wl + A). (18)

Furthermore, let

B = An(wi + A) f(w 2 + A). (19)

Then B is a solution to A S - S, that is,

A =B-B. (20)

The proof of this result is in Appendix B. Since w I can be any
point on the boundary of A, Eq. (19) results in a family of so-
lutions.

Example 3
Consider the set S shown in Fig. 5(a), which is the convex hull
of the set shown in Fig. 3(a). Its autocorrelation support A

= S - S [which is the convex hull of Fig. 3(b)] is shown in Fig.
5(b). The parallelogram shown in Fig. 3(c) is a locator set for
A. A member of the family of locator sets A n (w + A) is
shown by the intersection of A and w + A in Fig. 5(c). A
member of the family of solutions B is shown by the inter-
section of the three sets A n (wi + A) n (w2 + A) in Fig. 5(d).
Two other examples of B obtained by using different points
w1 and W2 are shown in Figs. 5(e) and 5(f).

4B. Three-Dimensional Intersections of Convex Sets
For convex sets, since in one dimension the intersection of two
sets [Eq. (17)] results in the solution, and since in two di-

(e)

(d) (f)

Fig. 5. Autocorrelation tri-intersection solution for convex sets. (a)
Set S, (b) A = S - S, (c) formation of locator set L =A n (w + A), (d)
formation of solution B = A n (w, + A) n (W2 + A), (e) and (f) two
other solutions of the form B.

mensions the intersection of three sets [Eq. (19)] results in
solutions, one might hope that in three dimensions the set

C =A fn (w+A) n (w 2+A) n (w 3 +A) (21)

would be a solution to S - S = A, where w, e 0(A), w2 E d(A)
n 0(w, + A), and W3 E d(A) n 0(wi + A) n 0(w 2 + A). Un-
fortunately, this is generally not the case.

A counterexample to C - C = A is the following: Consider
S equal to a sphere of diameter 1, then A = S - S is a sphere
of radius 1 centered at the origin. Figures 6(a) and 6(b) show
planar cuts through the centers of S and A, respectively.
Figure 6(c) shows a planar cut through A () (w1 + A) n (W2
+ A) through the three points, 0, Wi, and w2. A n (wl + A)
n (w2 + A) has two vertices, one in front of the plane of the
page and one behind the plane of the page, both at distance
1 from the center of each of the three intersecting spheres.
Taking the intersection of this with (W3 + A), which is cen-
tered at one of the two vertices, gives us C, which is similar to
a regular tetrahedron (it has the same vertices) but having
spherical surfaces of radius 1 and centers at the opposite
vertices in place of the four plane faces of a tetrahedron.
Looking for a moment at the tetrahedron T having the same
vertices as C (i.e., the convex hull of points 0, W1, w2 and w3
having edges of length 1), we see that T - T is a cuboctahe-
dron, which has eight triangular faces and six square faces.
Since T c C, then T-T c C-C. The surfaces of C-C can
be subdivided into 14 patches associated with the 14 faces of
the cuboctahedron. It can be shown that the eight patches
associated with the triangular faces coincide exactly with the
surface of the sphere A of radius 1. However, the six patches
corresponding to the square faces do not. For example, the

(a)

(b)

Wc)
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(a)

(b)

(d)

(c)
Fig. 6. Sphere/circle example. (a) Set S, (b) A = S -S, (c) B = A
o (w, + A) n (w2 + A), (d) another solution for the circle combining
the solutions (a) and (c).

distance from the origin to the center of each of those six
patches is equal to the distance between the centers of two
nonadjacent edges of C. This distance can be shown to be -\A
- \/2 1.0249. That is, the radius of C - C is greater than
that of the sphere A by about 2.49% at those points. Hence
C - C 5s A.

4C. Linear Combinations of Convex Solutions
Returning to the N-dimensional case, if S, and S2 are solu-
tions to convex A = S - S, then

S, = tS, + (1-t)S2  (22)

is also a solution for 0 < t < 1. The proof of this result is as
follows:

St - = MtSI + (1 - t)S 2] - [tS + (1 - S21

= tS1-ttS + (1- OS2-(1 -t)S2

= tA + (1-t)A
= A, (23)

since A is convex.
If S is a solution, then so is-S. Then by using t = 1/2 and

S2 = -S, in Eq. (22), it is seen that

S112 = /2S1 - 1/2S = l/2A (24)

is a solution, as was shown previously by Eq. (16).
Equation (22) can easily be generalized as follows: If S,,

... , S,, are solutions for convex A, and if t,, .. ., t,, > 0 and
tI + t2 + ... + t, = 1, then

S= E tiS (25)

is also a solution.
In the two-dimensional case, if B, and B2 are solutions ob-

tained from the tri-intersection method of Eq. (19), then tB,
+ (1 - t)B2 is a solution that usually cannot be generated by

the tri-intersection method. Thus new solutions can be ob-
tained by this method.

Example 4
Consider the two-dimensional convex set S shown in Fig. 6(a),
consisting of a circle of diameter 1. A = S - S, consisting of
a circle of radius 1, is shown in Fig. 6(b), and a tri-intersection
solution B is shown as the intersection of three circles in Fig.
6(c). This solution is analogous to an equilateral triangle but
having arcs of circles of radius 1 with centers at the opposite
vertices for each of the three sides. It can easily be seen that
all other solutions B generated by Eq. (19) are similar to the
one shown in Fig. 6(c) except that they are rotated in the
plane. The circle of diameter 1 shown in Fig. 6(a) is not of this
form, but it is also a solution to A. As is shown by Eq. (24),
S = '/2A in Fig. 6(a) can be generated by applying Eq. (22) and
by using S8 = -S2 = B and t = l/2. One of a family of addi-
tional solutions generated by Eq. (22) is shown in Fig. 6(d).
It was generated by using S, = 1/2A in Fig. 6(a), S2 = B in Fig.
6(c), and t = l/2.

4D. Ambiguity of Convex Sets
We now consider the question of uniqueness of convex solu-
tions of A = S - S for convex A. As was mentioned earlier,
S = 1/2A is a solution. If all convex solutions are equivalent
to '/2A, then A is said to be convex-unambiguous. It was
shown that in two dimensions one can generate a family of
solutions by Eq. (19), the member of the family being deter-
mined by the choice of w1. Equation (22) or Eq. (25) can then
be used to generate still more solutions. Therefore one would
suppose that convex sets A are generally convex-ambiguous.
However, it is also possible that all solutions generated by Eq.
(19) are equivalent, in which case A would be convex-unam-
biguous.

In what follows it is shown that in two dimensions if A is a
parallelogram then A is convex-unambiguous. Let A be a
parallelogram having vertices w1, -WI, w2, and -w2 . By Eq.
(12) a locator set for A is L = A n (wi + A) since w, e A. It
is easily seen that L = 1/2w1 + 1/2A, and so L' = 1/2A, which has
vertices '/2w, - '/2w1, '/2 w2, - 12w2 is a locator set for A.
Suppose that A = S - S, where S is convex. Then some
translate of S call it S', is contained in L'. Since w1 e A there
existu, vES'suchthatw1=u -v. SinceS'gL',thenu,v
e L'. It follows that u = '/2w, and v = -/2w,. Therefore '/2w,
e S' and -112w, e S'. Similarly, 1/2w 2 & S' and -1/2w2 E S'.
Then, since S' is convex,

L' = c.hull [j'/2 w1, - '/2w, 1/2 w2, - /2W21 c S' c L'. (26)

Therefore S' = L' = l/2A, and so S is unique among convex
solutions.

It can also be shown that parallelograms are the only two-
dimensional convex-unambiguous sets, and convex-symmetric
sets A = c E2 that are not parallelograms can be shown to
have infinitely many nonequivalent solutions to A = S - S.
The lengthy proof of this last result is omitted here for the
sake of brevity.

5. AUTOCORRELATION TRI-INTERSECTION
FOR COLLECTIONS'OF POINTS

For the special case of certain finite sets consisting of a col-
lection of distinct points, the solution can be generated by a
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method similar to the one for convex sets. For example, the
function

M
(X) = E f m (X -x mX)

m=1
(27)

consisting of M delta functions having amplitudes /m > 0, at
the distinct points Xm c EEN, m = 1,. . . , M, would have sup-
port

S = 4xpl:mf = 1,.. .,M}.

. : * I

* . .1 .-
* . .I

.p . . .
(a)

(28)

(b)Let S be a set consisting of a collection of distinct points and
let A = S - S. Define the following three conditions on the
set S, which are needed for the results that follow.

Condition 1:
Whenever

xI, X 2 , Y1, Y2, Z1, Z2, C S, X1 lF X2,

xI-x2+yl-Y 2 +Zl-z 2 =0, (29)

thenx = Y2 or xi = z 2 , and x 2 = yi or x 2 = z1.
Condition 2:
Whenever the set G c A consists of three distinct points,

and 0 e G and G - G c A, then G is equivalent to a subset of
S.

Condition 3:
Wheneverxl,x 2 ,yI,y 2 e S,x 1 # x 2 ,andxi-x2 =Yl-Y 2 ,

then x1 = Yi.

The meaning of Conditions 1 and 3 is discussed in Section
7. Condition 3 is equivalent to saying that no two vector
spacings between any distinct pairs of points in S are
equal.

Now define the set B as follows: Let wl e A and W2 e A
n (w1 + A), with 0 # #; < w2 # 0, and let

B = A (wi + A) n(W2 + A). (30)

We have the following three results, which hold for any
number of dimensions:

(1) If S satisfies Condition 1, then

S -B. (31)

That is, B is the unique solution to A = S - S.
(2) If S satisfies Condition 2, then S is equivalent to a

subset of B.
(3) If S satisfies Conditions 2 and 3, then again S - B. In

fact, S satisfies Conditions 2 and 3 if and only if it satisfies
Condition 1.

The proofs of these three results are given in Appendix C.
Since it requires a special relationship between the points in
S in order to violate Condition 1, it is probable that for S
composed of randomly located points, B is the unique solution
to A = S - S. More will be said about this later.

Example 5
Consider the set S consisting of the collection of nine points
shown in Fig. 7(a). A = S - S shown in Fig. 7(b) has 92 - 9

+ 1 = 73 points. Intersecting A with a translate of itself by
using Eq. (12), a number of different locator sets L for A can
be formed, two of which are shown in Figs. 7(c) and 7(d).
(Each locator set must contain some translate of any solution

(c) (d)

Fig. 7. Autocorrelation tri-intersection for sets consisting of a col-
lection of distinct points. (a) SetS, (b) A = S -S, (c) and (d) locators
of the form L = A n (w + A). Intersecting (c) or (d) with (b) yields
the unique solution (a).

to A = S - S.) Taking the intersection of L in either Fig. 7(c)
or Fig. 7 (d) with a translate of A centered on any point within
L yields, according to Eq. (30), the solution B, which is found
to be equivalent to S in Fig. 7(a). For this example, for all
allowable values of w1 and w2, B is found to be equivalent to
S, which is shown in Fig. 7(a); that is, the solution B is
unique.

Example 6
Consider the set S consisting of the collection of nine points
shown in Fig. 8(a). The positions of eight of the points in S
are identical to those of eight of the points of the set shown in
Fig. 7(a). The ninth point in S (in the lower center) was
moved in such a way as to make the vector spacing equal be-
tween two pairs of four distinct points. That is, there are four
distinct points x1 , x2, y'1, and Y2 in S satisyfing xI -x2 = Y
- Y2. This violates Condition 3 and hence also Condition 1.
Therefore B - B is not necessarily equal to A, where B is given
by Eq. (30). A = S - S shown in Fig. 8(b) has only 69 points,
compared with 73 for the previous example. The redundancy
of the vector spacings (the differences) in S results in a twofold
redundancy in four of the points of A (at x1 - x 2 = Y1 - Y2, X2

-x = Y2 - Y1, xi -Y1 =x2 - Y2, and yi -x = Y2 - x 2 ).

Figures 8(c)-8(e) show three of the locator sets for A that are
formed by using Eq. (12). Once again, each locator set must
contain some translate of any solution of A = S - S.
Therefore for any solution there must exist a point v such that
a translate of the solution is a subset of L1 An ( + L2 ), where
L1 and L2 are locator sets for A. In addition, S must contain
at least nine points, since if it contained only eight points, then
A could contain at most 82 - 8 + 1 = 57 points. Trying all
possible translations of the locator set shown in Fig. 8(d), only
two of its intersections with the locator set shown in Fig. 8(c)
have at least nine points: set S,, shown in Fig. 8(f), and a
translate of -S,. Any solution therefore must be equivalent
to Sj or to a subset of Sj. Si-Sl is found to have more than
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... ... .1

* . .I

. . .

. . * . I

:1 :.

(b)

Mf) (9)

Fig. 8. Autocorrelation intersection for redundant case. (a) Set S,
(b) A = S - S, (c)-(e) locators of the form L = A n (w + A), (f) in-
tersection of (c) with (d), (g) another intersection of three translates
of A.

the 69 points in A, and A C S1-S1. Therefore, since S1 has
ten points and any solution must have at least nine points, it
follows that any solution must have exactly nine points.
Trying other pairs of locator sets for A, depending on the pair
of locator sets chosen, we often get intersections containing
ten points, but the tenth point will be different, such as in the
set shown in Fig. 8(g). The only possible solution is obviously
S in Fig. 8(a) (that is, the solution is unique), since it is the only
nine-point set that is equivalent to subsets of both the sets
shown in Figs. 8(f) and 8(g). Furthermore, if one takes in-
tersections of translates of the two particular locator sets
shown in Figs. 8(c) and 8(e), then the only resulting set of nine
or more points is S in Fig. 8(a); that is, by the lucky choice of
which two locator sets to intersect, the solution can be found
immediately. Equivalently, it can be shown that there are
values of w 1 and w2 such that B ,S although that is not true
for most values of wl and w2.

Therefore, even when Condition 1 is not satisfied, it is
sometimes possible to find solutions (and the solution may
even be unique, as it was in Example 6) by intersecting three
or more translates of A. However, when Condition 1 is not
satisfied, then there is no guarantee that the solution is unique,
and finding solutions is considerably more complicated than
simply evaluating B by Eq. (30). Unfortunately, given A it
is not possible to determine immediately whether Condition
1 is satisfied. A necessary condition that Condition 1 (or
Condition 3) be satisfied is that the number of points in A can
be expressed as M2 - M + 1, where M > 1 is an integer.

f * f(x) = SENf(Y)f(Y + x)dy

M M
= E E fnfm3(X -Xm + Xn),

n=1 m=1

which can be expressed as

M
f * f(X) = E fn(x)

n=1

M M
+ E E fnfmb(X -Xm + Xn),

n=1 man

(32a)

(32b)

which has M 2 terms located at positions x Xm - x,, M of
which are at x = 0. That is, it has up to M 2 

-M + 1 distinct
terms. For this type of object, the fact that the support of the
autocorrelation is given by A = S - S is obvious from Eqs.
(32).

Here we would like to take the product of two such auto-
correlation functions; however, the product of the two delta
functions is not well defined. Several approaches to overcome
this difficulty are possible. For simplicity we define the
product of two delta functions as follows:

[ab(x - xD][bb(x - x 2)] = abb(x -x X 2 = Xi

X2 5 X1

(33)

It is intuitively helpful to think of f(x) in Eq. (27) as a digitized
array of sampled values, with the values fm at addresses xm,

m = 1, 2,. . ., M. Then the delta functions in this section can
be thought of as Kronecker delta functions.

As a first step toward forming a product analogous to B of
Eq. (30), we consider the product of f * f (x) and f * f (x -),
where w E A, and we choose w 5d 0. From Eq. (32) it is evi-
dent that w E A is of the form xj - Xk, where xj, xk E S.
Therefore, we are taking the product of f * f (x) and f * f (x

- XJ + X0), where xj - xk 5 0 lies within the-support of f *
f(x). The center of the translated autocorrelation lies within
the support of the untranslated autocorrelation. By using Eq.
(32b), the autocorrelation product is (all summations are from

6. RECONSTRUCTION OF OBJECTS
CONSISTING OF COLLECTIONS OF POINTS

By a simple modification of the method described in the
previous section for reconstructing the support of an object
consisting of a collection of distinct points, it is often possible
to reconstruct the object itself. The method is analogous to
using Eq. (30) to compute B. Recall that in computing B one
takes the intersection of three translates of the autocorrelation
support. If one takes the product of three translates of the
autocorrelation function of f(x), using the same translations
as are used to compute B, then the support of that product will
be B. And if, as described earlier, Condition 1 is satisfied,
then B is a solution to A = S - S, and therefore the support
of that product is equivalent to the support of f (x). In what
follows it is shown that when Condition 1 is satisfied, f (x) can
be reconstructed from that product in a simple way [by using
Eqs. (38)-(40)].

Suppose that the object is given by Eq. (27), consisting of
M delta functions located at the distinct points xm having
amplitudes fi, m = 1, 2,.. ., M. The positions x, are vectors
in any number of dimensions. The autocorrelation is

(a)

(c) (d) (e)
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1 to M unless otherwise noted)

APjk(x) = [f * f(x)][f * f(x - Xi + Xk)]

= £ tf2) 6(X) + E E nnfm6(X - Xm + Xn)J
nn m 5!5n

X [( fn2) 6(X - Xi + Xk)

+ E E nt
n' m' n'

X (x - Xm' + Xn -xX + Xk)] (34a)

= ( 2fn ) fifk6(x) + (yfn) 2Ufk
6

(x Xi + Xk)

+fjfk E fm
2 6

(X Xm + Xk)
mxkj

+ f/k E fn2b(x- xi + xn) + (OT), (34b)

where (OT) denotes other terms, as will be described later.
[As an example of how Eq. (34b) follows from Eq. (34a), the
fourth term in Eq. (34b) arises from the product of the second
term of the first autocorrelation with the second term of the
second autocorrelation, with m = i, n' = n and m' = k.] By
using Eq. (32a), another way of expressing Eq. (34) is

APik(X) = , Yfnfmfn'fm' 6(X - Xm + Xn)
n m n' m'

X (x - Xm' + Xn' - Xi + Xk), (34c)

from which it is seen that terms survive at points x where

X = Xm - Xn = Xm' - Xn' + Xj - Xk-

case in which w' is of the form xn - Xk and treat the case of w'
x - xn later. Suppose that the specific point chosen is for

n = j' 1 j, k (i.e., w' x; -xk /- 0, and w' $ w = x - Xk).
Then the product of the three autocorrelations is

APjkj'k(X) = Vf * f(x)][f * f(X - Xi + Xk)]

X [f * f(x- Xi'+ Xk)]

= APik(x) * f(x - X' + Xk)]

fjfk [( f23 (X) + fn2) 6(X -X + Xk)

+ E fn26(x-xn + Xk)
nkkj

+ E fn2 6(XXi + Xn)l
n,6kj]

X [(E /2) f 6(X -Xi + Xk)

+ Ei Z fn'fm'b (X Xm' + Xn' -X' + Xk)l
n' m' F#n'

fkfjf;' yI fn
3
6(X Xn + Xk)

1n96kjj'

+ (L fn2) [fkb(x) + jh(x -Xi + Xk)

+ fjye(X -Xi'+ Xk)]}

= fkfjf' f3(X + Xk) +( E A2) fA6(x)

+ ( / An2) fj(X -Xj + Xk)

+ (fn 2) fj(x -Xi' + Xk)I.
(35)

The terms shown in Eq. (34b) all necessarily appear. In ad-
dition, other terms may appear, as indicated by the expression
+(OT). The existence of other terms depends on the presence
of special relationships between the coordinates xn, thus al-
lowing Eq. (35) to be satisfied by chance. There being no
additional terms is equivalent to Condition 1 (described in
Section 5) being satisfied. If the xm were independent ran-
dom variables, then the chance of having additional surviving
terms would be small, and we would have (OT) = 0.

Combining Eq. (27) with Eq. (34b), the autocorrelation
product can be expressed as

APjk(X) = fjfk [f
2

(x + Xk) + f
2

(-X + Xj)]

+ (>sfn 2) ffk[3(x) + 6 (X - Xi + Xk)] + (OT). (36)

Therefore there are translates of the supports of both f (X) and
f(-X) that are contained within the support of APjk(X). This
can also be seen from the fact that by Eq. (12) the support of
APik (x) is a locator set.

Now consider the second step toward forming a product
analogous to B of Eq. (30): we take the product of APjk (X)
with a third autocorrelation f * f (X - w'), where w' is within
the support of APjk (x). Suppose that (OT) = 0. Then from
Eq. (34b) it is seen that the support of APik (x) consists of the
points xn-Xk andx1 -xn, n = 1, 2. .., M. We first take the

(37a)

(37b)

That is, the product of three autocorrelations has the same
support as f(x + Xk), as was shown earlier in connection with
Eq. (30), since B is just the support of the product of three
such autocorrelation functions. Furthermore, except at the
three points x = 0, x -Xk, and xi' - xk, the product is pro-
portional to the cube of f (X + Xk).

The values at all points can be determined as follows:
First,

D -fjn2=f *f(O) (38)
n

is known, so that factor can be divided out from the last three
terms of Eq. (37a). Second, let the coefficients of those three
terms in Eq. (37a) be (with z f 2 divided out)

A = D'- APjkj'k(0) = fk
2

fjfjf,

B = D - APjkj'k(Xi - Xk) = fkfj 2i',

C = D 1 APjkj'k(Xi' - Xk) = fkfj ' 2 .

Solving, we get

fk= (A 3 l1/4
BC)

/1= ( B 3
)1/4

WAC)

(39a)

(39b)

(40a)

(40b)
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= (A-B) '

and

fkfjfj' = (ABC)1' 4.

(40c)

(40d)

The remaining values of fin, for m F k, j, j', can then be
computed by dividing Eq. (37a) by fkfjfj' and then taking the
cube root:

f [APkj'k (X. Xk) 1/3
f I= fkfjfj' ]

b

a c e

(40e)

By this method f(x) is reconstructed exactly to within a
translation, as long as (OT) = 0.

In performing these calculations, had we chosen a second
translation of the form (x; - xk'), k' F/ k, j instead of (xj; -

xh), then the result would have been similar, except a translate
of f (-x) instead of a translate of f(x) would have been re-
constructed. If (OT) 54 0, that is, if Condition 1 is not satis-
fied, then additional terms appear that make the analysis
much more complicated and may prevent the reconstruction
of f(X).

Various modifications to this reconstruction method are
possible. For example, the product of two autocorrelation
products APjk (x) APj'k W(x) is proportional to f4(x + Xk) except
at three points. Another example is to define the aut6corre-
lation support function as

M
AWx) = 5 + L E 5(X-Xm + X), (41)

n=1 mFn

which is just a binary-valued version of Eq. (32b). Then the
product of the autocorrelation function with two properly
translated autocorrelation support functions is proportional
to a translate of f(x), except at a single point that can be de-
termined by an extra few simple steps.

7. OTHER TERMS

In arriving at Eq. (37), it was assumed that the other terms
(OT) = 0, or equivalently that Condition 1 be satisfied. The
terms included in Eqs. (34b) and (37) are those that neces-
sarily arise by satisfying

Xm -Xn = Xm' Xn'+ Xj-Xk (42)

trivially, for example, for m = n, m' = k, and n' = j. The
other terms are those that satisfy Eq. (42) by chance, that is,
those that arise in addition to those that (trivially) arise nec-
essarily. The trivial solutions are the ones mentioned in
connection with Condition 1 in Section 5. These other terms
require a special relationship between the points in S and
would not be expected to occur if the points in S are randomly
distributed in some region of EN.

Figure 9 shows in two dimensions some relationships be-
tween points in S that would cause Eq. (42) to be satisfied by
chance, that is to say, in a nontrivial way. (S may contain
additional points that are not shown.) For example, if the
chords between three pairs of six distinct points in S as shown
in Fig. 9(a) can be translated to form a triangle as shown in Fig.
9(b), then Eq. (42) is satisfied nontrivially. A similar result
holds if some of the endpoints of the three chords are the same
points, except for the trivial case of three points already in the
form of a triangle defining the three chords. Note that when

(a)

(c)

b

d

f

e

a
C

(b)

(d)

Fig. 9. Redundancy types of relationships within S that would
violate Condition 1. (a) and (b) three vector separations add to zero,
(c) one vector separation is twice another, (d) two vector separations
are equal.

m' = i and n' = k, then Eq. (42) reduces to x -Xn = 2(xj -
xk). That is, another nontrivial case is the existence of a
vector separation between one pair of points equaling twice
the vector separation between another pair of points, as shown
in Fig.9(c). Also note that when, say, m' =n', then Eq. (42)
reduces to xm -Xn = Xj- Xk. That is, another nontrivial case
is the existence of a vector separation between one pair of
points equaling the vector separation between a different pair
of points, as shown in Fig. 9(d). This last case is also a viola-
tion of Condition 3 (see the discussion in Section 5) and an
example of that case was shown in Example 6 and depicted
in Fig. 8.

As was mentioned earlier, if the points xm, m = 1, 2,.. ., M
are randomly distributed, then it would be unlikely that any
of these special relationships exist, and so one would expect
that (OT) would equal zero and Condition 1 would be satis-
fied.

These results, with some modifications, can also be ex-
tended to the case of an object having support on a number
of disjoint islands having diameters small compared with their
separations (as opposed to the support consisting of isolated
mathematical points). However, as the number of islands
increases and as the ratio of the diameters of the islands to
their separations increases, the probability of satisfying a
condition analogous to Condition 1 decreases.

8. SUMMARY

We have described a number of new results relating to the
reconstruction of the support of an object function from the
support of its autocorrelation. Locator sets that contain all
possible solutions were described, the most interesting of
which is the intersection of the autocorrelation support with
a translate of itself. For the special case of convex sets in two
dimensions, it was shown that the intersection of three
translates of the autocorrelation support is a solution. These
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solutions can usually be combined to form still more solutions.
Among convex sets in two dimensions, only parallelograms
have unique solutions. For the case of objects consisting of
collections of distinct points, it was shown that unless a special
relationship exists between the points in the object, the in-
tersection of three translates of the autocorrelation support
yields the solution, and it is unique. If, instead of intersecting
autocorrelation supports, one takes the product of translated
autocorrelation functions, then for the same objects consisting
of collections of points one can easily reconstruct the object
function itself.

Some of the results on objects consisting of collections of
distinct points are also described in Ref. 5. These results were
first presented 6 at the Annual Meeting of the Optical Society
of America in Chicago, Illinois, in October 1980.

APPENDIX A.

If the support of f (x) is $, then the support of f (y + x) is S -
y. Then the interpretation of Eq. (1) as the weighted sum of
f(y + x) with weights f (y) leads intuitively to the fact that A,
the support of f * f (x), is given by

A= U (S-y)=S-S.
yeS

A rigorous proof for compact sets S is as follows: Define

B(x, r) = ly e EN:Ix - < r)

and

fr(X) = Jo f(y)dy.

Then x e S if and only if fr (x) > 0 for all r > 0. Also, iflx -

yI < r, then f 2r(Y) > fr(X)-

Part 1: S-S c A
Let x, y e S and let r > 0. Then

(f * f)2r (X -y) = SB(x -y, 2r) f*f(p)dp

= B(0,2r) fENfW

X f (w + p + x - y)dwdp

= -ENf(W) f2r(W + x -y)dw

= SEN( + Y)f2r (W + x) dw

, f(W + Y)f 2r(W + x)dw
B (O,r)

> fr(X) SB(O,r) f(w + y)dw

= fr(x)fr(y) > 0.
Therefore, since r > 0 was arbitrary, x - y E A, and soS - S
c A.

Part2: AcS-S
First, note that since S is compact, S - S is a closed set. Let
x E A and let r > 0. Then

0 < (f * f)r(X) (f * f)r(-X)

= ,B-xr f * f(p)dp
- B(-x ,r)

SB(O,r) SEN f(Y)f(Y + p - x)dydp

- SB(O,r) SENf(y + p)f(y + x)dydp

= SEN fr (Y)f(y + x) dy.

Therefore there exists z e EN such that

< B(zr) fr(Y)f(y + X)dy

<f 2 r(Z) fB(zr) f(y x)dy

= f 2r(Z)fr(Z + x).

Therefore f2r(Z) > 0 and fr(z + x) > 0. Hence S n B(z, 2r)
id PandSnB(y,r) 5d 0,wherey =z+x. Choosez' Sfl

B(z, 2r) and y' e Sf nB(y,r). Thenly'-yl <r andlz'-zl
< 2r. Then I (y'-z')-xJ = I (y'-y)-(z'-z)J < Iy'-yi +
I z'-zI < 3r. Since r > 0 was arbitrary, S - S is closed, and
y'-z'e S-S, it follows that x e S-S, and hence A a S-
S, and hence A = S - S.

APPENDIX B. PROOF THAT A = B - B FOR
CONVEX SETS

The proof that A = B - B will be divided into two parts.
First, it will be shown that A c B - B, and then it will be
shown that A - B - B.

Parti: AEcB-B
It can be shown that, because A has nonnull interior, the
points 0, wl, and w2 are not collinear. Let

B1 = c.hull {0, w1, w21.

Since B is the intersection of three convex sets, B is convex.
Therefore B1 c B. Let A1 = B1 -B 1 .

Claim 1: A., a-A
As can be seen from Fig. 10, we have

Al = c.hull (w1 , - W1, w2 , -w 2 , W1 - w 2 , w 2 - W1).

Furthermore, since A is convex and

W1 , -W1, W2 , -W2, W 1 - W2 , W2 - w 1 e A,

-112 `1 -"2

AI=BI *BI

Fig. 10. AI = c. hull JwI, -w, w 2,-w 2 , Il - w2, w 2 - w1 J, and AI =
A. This and Figs. 11-19 illustrate steps in the proof that A = B -
B.
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See Fig. 12. Note that C is an open set. We will show that
W2BW I +W2' W1 A n c = . SupposethatA n c5C~ . Thenletp e A n c-'W and let D = c.hull fp, wI, w2 - w1d. See Fig. 13. Then D c

W2 W /B1  w 1 / ww 2 -B, /A and w2 E int(1J) c int(A). This contradicts the assumption
,B that w 2 E a(A). Therefore A n C = o.

1 * Bi iSimilar arguments apply to the other notches in A2.Therefore A c A2. This completes the proof of Claim 2.
1 w2  1 - Bw . Summarizing, we have B1 c B and A1 c A c A2./2 w2 Letp e A. Wewantto showthatp e B -B. We have

A2  A c A2 = [B, U (wI + w 2 -B 1 )]
Fig.11. ThesetA2. U [(-B1 ) U (B, - wI - w 2)]

U [(B,-w 1 ) U (w2 -wI-B,)]
U [(wl-B 1 ) U (B1 + w -w 2 )1

'x U [(B 1 - w 2 ) U (W - W2- B)
U [(w 2 -B 1 ) U (B, + w 2 -WI)].

C Case 1: p e B1 U (w1 + w2 -BI)
We have

W2'W1 W2 - P-w 1 e (B 1-w 1 ) U (W2 -B 1 ) A1 s A.
Thereforep e w1 +A. Also,p-w 2 e (Bj-w 2 ) U (wI-B 1 )
c A1 c A. Therefore p E w2 + A. Since, by assumption, p

A2  \e A, it follows that p e B' We also have 0 e B. Therefore
p p=p -OB -B.

Case2: p e (-B,) U (B,-w.w- w 2)
We have -p e B, U (wI + w2 - B,). Therefore, by Case 1,Fig. 12. C is one of the extended "notches" in A2. -p E B - B, and since B - B is a symmetric set, p e B -
B.

In the four other cases, i.e., p e (B1 - wI) U (w2 - w1 - B,),
etc., we find that p e B - B by similar arguments." This completes the proof of Part 1.

p

Part 2: A i B-B
Let 11, 12,13 be lines tangent to A at points w1 , w2, and wI - W2,respectively. See Fig. 14. Then, since A is symmetric, the
lines -11, -2, and -13 are tangent to A at points -wI, -w 2 ,
and w2 - w1, respectively.

/ \It follows that wl-1l is tangent to wl + A at 0. Therefore
A2  w wl-I iis tangent to B at 0. See Fig. 15. Similarly, w2 -12is tangent to w2 + A at 0. Hence w2 - 12 is tangent to B at 0.

Also, W2 + 13 is tangent to w2 + A at w1. Therefore, w2 + 13
is tangent to B at w1. Finally, wl - 13 is tangent to w1 + A at

Fig. 13. Illustration of w2 a int(D), where D = c. hull ip, w1, w2 -
w15 is used to prove that A o C = 0 and therefore A c A2.

it follows that Al s A. This completes the proof of Claim

Now let 
2 -w1  2

A2 =A 1 U (B 1 -Wi- W 2 ) U (B1 +W 2 - WI) A
U (B 1 + W 1 - W 2) U (W1 + W 2 - B1 )

U (wI - w 2 - B,) U (W2 -w 1 - B,). -=> -2

See Fig. 11.

-$ {2Claim2: A A2 .
Let

Fig. 14. The lines 1l,-11, 12 -12 13, and -13 are tangent to the setC = -w 2 + X1Wl + X2 (w2 - W)O: \ 1 > 0 and \2 > 01. A at points wl, -w 1 , w2 , -W2, w1 - W2, and w2 - wl, respectively.
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Fig. 15. The set B lies between lines 1 and w1 -11, between 12 and
W2 - 12, and between W2 + 13 and w, - 13.

-C2

Co
C1

-CI
-Co

C2

Fig 16. The entire plane is the union of the cones Co, -Co, C1, -C1,
C2, and -C2 .

W2 . Therefore, wl-13 is tangent to B at w2. It follows that
B lies between lines 11 and w 1 - 11 and between 12 and w2 - 12
and between w2 + 13 and w 1 - 13.

Now let Co be the closed positive cone spanned by w1 and
W2 . That is,

CO = Xw1W1 + X2w2: X1 > 0 and X2 > 0).

See Fig. 16. Let C1 be the closed cone spanned by -w 1 and w2
- w1 . Finally, let C2 be the closed positive cone spanned by
-w 2 and w1 -w 2 . Then

E2 = Co U (-Co) U C 1 U (-C 1 ) U C 2 U (-C 2 )-

Next, let

so= Co n a (B),

si = (w, + c1 ) n a (B),

s 2 = (W2 + C2 ) nd(B).

Then a (B) = SO U s1 U S2. See Fig. 17.
Now let P1, P2 e B. We want to show that Pi-P2 e A.

Case 1: PI - P2 G C2
First, ifp 1 = P2, then P, - P2 = 0 e A.
Now assume that Pi #d P2. Let 1 be the (infinite) line

passing through p1 and P2. See Fig.18. The line I must in-
tersect either so or sj.

Subcase la: I Intersects so
See Fig. 18. Let 1'2 be the line parallel to 12 and passing
through Pl. Let 1"2 be the line parallel to 12 and passing
through P2-

Now lines 1'2 and 112 lie between 12 and w2 - 12. Also, 0 is
on w2 - 12 and w2 is on 12. It follows that 1'2 and 1"2 must in-

tersect the line segment [0, w2]. Let r1 be the point at which
1'2 intersects [0, w2], and let r 2 be the point at which 1"2 in-
tersects [0, w2]. Then, since 0, w 2 e B and B is convex, r, e
B and r2 e B.

Now let 1' be the line parallel to I and passing through w2.
Since Pi - P2 E C2, 1 cannot be parallel to 12. Therefore 1' is
not parallel to l'2 or to 1"2. It follows that 1' intersects l'2 and
112. Let q1 be the point of intersection of 1' and l'2 and let q2
be the point of the intersection of 1' and l"2.

Since I intersects so, it follows that q1 e [pl, r1] and q2 & [P2,
r2]. Since p1, P2, r1, r2 e B and B is convex, it follows that q1
e Bandq 2 e B.

Now, since p1 - P2 e C 2, we must have q2 e [q1, W2 ]. That
is, there exists X, 0 < X < 1, such that q 2 = Xq1 + (1 - X)w 2 or
q2-W2 = X(q -W 2 )-

Now q 1 e B w 2 + A. Therefore q 1-w 2 e A. Fur-
thermore, since 0 S 1 - X < 1, it follows that (1 - X) (q1 - w 2)
e A. Finally, we have

P1- P2 = q -q2

= (q1 - W 2) - (q2 - W 2 )

= (1 - X) (q, - W2 ) e A.

This completes the proof of Subcase la.

Subcase lb: I Intersects s,
See Fig. 19. An argument similar to the above is indicated in
Fig. 19. This completes the proof of Case 1.

Case 2: P2 - P2 E- C 2
We have P2-P1 e C2. Therefore, by Case 1, P2-P1 e A,

and hence P1 - P2 e A.
Similar arguments apply when p - P 2 E Co, -Co, C1, and

-C 1 . This completes Part 2 of the proof that A = B - B for
convex sets.

Fig. 17. The boundary of B is the union of the arcs sos 1, and S2.

Fig. 18. Illustration of the proof that P, - P2 E A when the line I
intersects the arc so and P1 - P2 is in the cone C 2 (illustrated in Fig.
16).
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Proof of Theorem 2
Let v, 13, and SI be defined as in the proof of Theorem 1.
Then, by that same proof, S1 c B. We want to show that B
5 S1 . Let x e B. We want to show that x E S1 .

First, suppose that x e G. Then, since G - S,, x e S1, and
we are done. Now assume that x i G. Let

Gi = 10, x, wil, i = 1,2.

Fig. 19. Illustration of the proof that Pi - P2 E A when the line I
intersects the arc s, and Pi - P2 is in the cone C2.

APPENDIX C. PROOF THAT B S FOR
CERTAIN POINTLIKE SETS

In this appendix we take the approach of first proving Theo-
rem 1.

Theorem 1
If S satisfies Condition 2, then S is equivalent to a subset

of B.
Then we prove Theorem 2.

Theorem 2
If S satisfies Conditions 2 and 3, then S is equivalent to

B.
Finally we prove Theorem 3.

Theorem 3
Condition 1 is satisfied if and only if both Conditions 2 and

3 are satisfied.
It then follows from Theorems 2 and 3 that if S satisfies

Condition 1 then S is equivalent to B.

Proof of Theorem 1
Let G = 10, W1 , w21. We have 0, W1, w2 e A. Since A is sym-
metric, we also have -w1 , -w 2 e A. Furthermore, since w2
E Wl + A, we have w2 - wI e A and l.-w2e A. There-
fore,

G - G = 10, W1 , -WI, w2, -w 2 , WI - w 2, w2 - Wil = A.

Also, G has three members. Therefore, by Condition 2, there
exists v e EN such that v + DIG c S, where 1 = +1. It follows
that G - 13(S - v). Let Si = fl(S - v). Then G = S1. Also,
S Si, and therefore A = Si-Si. We want to show that Si
s B.

Let x e S1. We have 0 e G = S1. Therefore

x =x -O e S - S = A. (Cl)

Also, W1 e G - Si. Therefore x - wi e S,-S, = A and

x e Wi + A. (C2)

Similarly,

x e w2 + A. (C3)

From Eqs. (C1)-(C3), it follows that x e B. Since x was an
arbitrary element of SI, it follows that S, s B.

Since x e B, it follows that x e A and -x e A. We also have
wi e A and -wi e A. Furthermore, since x e ws + A, x -w
e A, and wi - x E A. Therefore

GC - GC = 10, x, -x, wi, -wi, x - wi, wi - xI = A.

Also, Gi has three members. Therefore, by Condition 2, there
exists vi e EN such that vs + BiGi c S, where as = 1:1.

Claim: There Exists j e 11, 21 such that Oi = 1
Suppose not. Then i1 = 12 = -13. We have

1V,V+Ow1 ,v+0W2I=v+OG -S

and

{vi, vi + Six, vi + kiwi} = vi + jBGi 5,S i = 1,2.

Also, since i1 = 12 = -1,

(v + mw) - v = v- (vi + 1iWi), i = 1, 2.

Now, applying Condition 3, with

X1 = V + OWi, X2 = V, Y1 = Vi,

Y2 = Vi + /iWi,

we conclude that

vs = v + Kwi, i = 1, 2.

Furthermore,

V- (V1 + 13X) = V2- (V2 + 12X)-

It therefore follows from Condition 3 that

V1 = V2-

(C4)

(C5)

From Eqs. (C4) and (C5) it follows that Wl = W2. This con-
tradicts the assumption that Wl 5d W2 and proves the claim
that there exists j e 11, 21 such that 13 = 1.

Now we have

(vj + #j1jw) - Vj = (v + 1wj) - v.

By Condition 3, vj = v. Therefore

v + Ox = vj + 1jx e vj + OjGj - S

and

x E O(S - V) = Si.

Proof of Theorem 3

Part 1: 1 - 2
Let G have three elements, 0 E G s A, and G - G e A. We
want to show that G is equivalent to a subset of S. That is,
we want to show that there exists v E EN such that v + fG E

S, where i3 I1.
Let G = 10{ 1, g2 . Then 0 it g, 9 2 5d O and

10, g1 , -g1, g2 , -g 2 , g 1 - g 2 , g 2 - gl1 = G - G s A.
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Since A = S - S, there exists x1, x2 , Y1, Y2, z 1 , z2 E S such that
gl= Xl-X2,9g2 - = Yl-Y2, and-g 2 = Zl-Z2- Then x1
F6 x2 and

Xi - X2 + Y1 - Y2 + Z1 -Z2 = 0- (C6)

Therefore, by Condition 1,

xI = Y2 or xI = Z2, and x2 = Y1 or x2 = z 1 .

Claim 1: One Cannot Have xi = Y2 and x2 = Y1
If this were the case, then it would follow from Eq. (C6) that
Z-Z2 = 0. But z1 -Z2 =-2 0. This proves Claim 1.

Claim 2: One Cannot Have xi = z2 and x2 = Z1
If this were the case, then it would follow from Eq. (C6) that
Yl-Y2 = 0. Buty -Y2 =9g29-g s 0. This proves Claim
2.

Therefore either x1 = Y2 and x2 = z1, or xi = Z2 and x2 =

Yi-

Case 1: x1 = y 2 and x2 = z1
We have

Y1- X2= X- X2 + Y1 - Y2 = g 1 + g 2 - 1=2

and x1 -X2 = gj. Rewriting these equations, we have x2 +
92 = Yi and x2 + g1 = x1 . Therefore

x 2 + G = Ix 2 , x2 + g1 , X2 + g 2 1 = Ix 2 , x1 , Y11 = S-

Letting v = x2 and / = 1, we have v + OG c S.

Case 2: xi = Z2 and x2 = Y
We have

Z1 - X2 = X- x 2 + Z1 - Z2 = g1 - 92

andx 1 -x 2 =gl. Thisyieldsz 1 =x 2 +g 1 -g 2 andx1 =x 2
+ g1 . Therefore

x 2 + g1 - G = Ix 2 + g1 , x 2 , x2 + g1 -92 = fx, x 2 , z1 1 - S-

Letting v = x2 + g, and ,B =-1, we have v + ,BG c S.

Part 2: 1 3
Letu,,u2,vl,v 2 eSwithu,54u 2 andul-u 2 =vl-v2 . We
want to show that u1 = v1. Let

XI = V2 , X2 = V1, Yi = V1, Y2 = U2,

Z 1 = U 1, Z2 = V1.

Then x1 /- x2 and

xl -X2+Y 1 -Y2 +Z 1 -Z 2 = 0- (C7)

Therefore, by Condition 1, x1 = Y2 or xi = Z2, and x2 = Yi or
X2 = Z1 . Now

Z2 - XI = VI - V2 = Ul - U2 5 0.

Therefore, x1 F Z2 and hence x1 = Y2, or V2 = u2. Since, by
assumption, u1 -U2 = v-v 2 , it follows that ul = vj. This
completes Part 2 of the proof.

Part 3: 2 and 3 -1
Let x1, X2 , Yi, Y2, z 1, z2 e S, with x1 7d X2

and

Xi -X2+Yl -Y 2 +Zl -Z 2 = 0- (C8)

We want to show that x1 = Y2 or x1 = Z2 , and x2 = Yi or x2 =

Z1.

Case 1: Y1 = Y2
In this case, it follows from Eq. (C8) that

xl - X2 = Z2 - Z1-

Therefore, by Condition 3, x1 = Z2, and it follows from Eq.
(C9) that x 2 = Z1.

Case 2: z1 = Z2

Here, it follows from Eq. (C8) that

Xl - X2= - Yi- (CIO)

Then, by Condition 3, x1 = Y2, and it follows from Eq. (C10)
that x 2 = Yi.

Case 3: Y1 5d Y2 and z1 5d Z2
Letg1 = x-x 2 andg 2 = Y2-Yl, and let G = {0,g 1,g2 1. Now,
g1, g2 e S - S = A, and hence also -g1 , -g2 e A. Further-
more,

g1-92 = X- X2 + Y1 - Y2 = Z2 1-Z E S - S = A,

and hence alsog 2 -g 1 e A. Thus we have 0 e G s A and G
-G cA. Wealsohaveg1 =xl-x 2  °0 ,g2=Y2-Yl ls0,
and g1 - 92 = Z2- Z5 0. Therefore G has three members.
Hence, by Condition 2, there exists v G EN such that v + OG
c S, where3 = +1.

Subcase 3a: 3 = 1
We have

{v,v+gi,v+g2 }=v+OG sS. (C11)

Now,(v + gi)-v = 1= X1-x 2. Therefore, by Condition
3, v = x 2 , and hence, by Eq. (C11), X2 + g1 E S and x2 + g2 e
S. Now (X2 + g2 ) -X2 = 2= Y2 - Yl. Therefore, by Con-
dition 3, X2 + g2 = Y2 and x2 = Yl. Also

(X2 + g1 ) - (X 2 + g2) = g1 - 92 = Z2 - Z1-

Therefore, by Condition 3, X2 + g1 = Z2. But x2 + g1 = xl.
Therefore x1 = z2.

Subcase 3B; 3 =-1
We have

vv - g1 , v - 92} = v + 3G c S. (C12)

Now v - (v - g1 ) = g1 = xI - x 2. Therefore, by Condition 3,
v = x1 , and hence, by Eq. (C12), x 1 - gi e S and x1 - g2 e S.
Now xi-(X 1 -g 2 ) = 2=Y2-Yj. Therefore, by Condition
3,xi = Y2. Also,

(x 1 - g 1) - (xI - g2 ) =92 -1 =Z - Z2-

Therefore, by Condition 3, x1 -gl = zl. But xl-g = x2.
Therefore x2 = Z1.
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