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TABLE I1 
(a)  WORST  CASE AND AVERAGE  MAGNITUDE  ERRORS ON TRAINING DATA USING THE ESTIMATION FORMULA. (b) .WORST 

CASE AND AVERAGE MAGNITUDE  ERRORS ON TRAIKING  DATA USING A CONSTANT  MINIMUM  RMS  ERROR  ESTIMATE 
(c) WORST CASE AND AVERAGE  MAGNITUDE  ERRORS ON TRAINING  DATA USING A CONSTANT MINIMUM WORST 

CASE  ERROR  ESTIMATE. 

Data File Description 

Average 
Worst Case Magnitude 

(Hz) (Hz) 

(a) Set 1 
Set  2 
Set 3 
Set  4 

(b) Set 1 
Set 2 
Set 3 
Set  4 

TI  data-men, women, and children 
TI data-adult males 
Peter Ladefoged data-adult males 
Barney-Peterson data-adult males 

TI data-men, women,  and children 
TI data-adult males 
Peter Ladefoged data-adult males 
Barney-Peterson data-adult males 

148 
142 
87 

123 

586 
494 
373 
539 

98 
98 
58 
64 

221 
129 
115 
146 

(c) Set 1 TI data-men,  women, and children 487  250 
Set 2 TI data-adult males 390 191 
Set 3 Peter Ladefoged data-adult males 320  133 
Set  4 Barney-Peterson data-adult males 385  239 

TABLE 111 
WORST CASE  ERRORS ON TEST FILES 

Data Files on Which Parameters  were  Optimized 
Test 

Data  File Set  1  Set 2 Set 3 Set  4 

Set 1 148  425 620  577 
Set  2 415  142 25 7 191 
Set  3 457 266 87 170 
Set  4 5  24  234 191  123 

TABLE IV 
AVERAGE  MAGNITUDE  ERRORS ON TEST FILES 

- 

Data Files on Which Parameters were Optimized 
Test 

Data  File  Set 1 Set 2 Set  3  Set  4 

Set 1 98  284 373  372 
Set  2 287  98 257  78 
Set 3 230  141 58  62 
Set  4 267  103 100  64 

considered  as  exceptions.   Two  of the 256 cells on the graphics 
surface  were  dedicated to these   two   sounds ,   t he  ( x ,  y )  coordi- 
nates  being  selected  based on  their   respective  f irst   and  second 
formant  values. A board  was  mounted to the  graphics  pen 
with a  lever  and  four  switches  which  could  be  operated  by  the 
thumb  and  four  f ingers,   respectively.  

The  f i rs t   pass   of   the   hardware  f ixed  the  third  and  fourth  for-  
mant   f requencies   a t  2500 and  3500 Hz, respectively. A later 
version  estimated  these  frequencies  based  on  the  product  for- 
mula  described  above  and  produced  more  natural   sounding 
speech,  particularly  the  sounds IY as in “see”  and UW as  in 
“food.” 
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Comments on “The Reconstruction of a Multidimensional 
Sequence from the Phase  or  Magnitude of Its 

Fourier  Transform” 

J. R. FIENUP 

Abstract-When one imposes a nonnegativity constraint,  one usually 
can reconstruct  a two-dimensional sequence of finite support from  the 
modulus of its  Fourier transform using an iterative  algorithm, even 
when the  initial estimate is an  array  of  random numbers. 

In  a recent  paper,‘  the  description  of  an  iterative  algorithm 
for   reconstruct ing a sequence  from the magnitude  of its 
Fourier  transform  unintentionally  gives the appearance  of dis- 
cussing  an  algorithm  published  earlier [ I ] .  In  the  following, 
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the differences between  the  ,algorithm  and  experiments de- 
scribed by Hayes’ and  those published  earlier [ l ] are clarified. 

Hayes’ reviews both  the  problem of reconstructing a se- 
quence  from  the phase of its  Fourier  transform  and  the  prob- 
lem of reconstructing a sequence  from.  the  magnitude of its 
Fourier  transform.  For  the  latter  problem,  he describes an 
iterative  algorithm  for solving the problem as follows. “Spe- 
cifically, this algorithm involves the  repeated  Fourier  transfor- 
mation  between  the  time  and  frequency domains  where,  in 
each domain,  the  known  information  about  the desired se- 
quence is imposed  on  the  current estimate. In the  time  do- 
main,  for  example, a sequence is constrained to  have a given 
region of support whereas in  the  frequency  domain,  the 
sequence is constrained to have a given transform magni- 
tude.”’ He then shows  examples  where the algorithm  de- 
scribed  above fails. This  failure should  not reflect poorly  on 
the earlier  work [ 1  ]  since the algorithm  described  in the  quo- 
tation above and  the  experiments  performed by Hayes differ 
in  important ways from  the earlier work. In Hayes experi- 
ments,  both  the  type of information which was assumed to be 
known  and  the  reconstruction algorithm which was used 
differed from  those of the earlier work [ 1 1. 

Hayes is correct  in stating’ that  the  magnitude of the  Fou- 
rier transform is insufficient  to uniquely  specify  a sequence; 
additional  information  or  constraints are required. Depending 
on  the  application,  one  often  has available additional  informa- 
tion  or  constraints,  and a reconstruction may then be possible 
[ 21, [ 31. Two  important  constraints which often  occur  (as in 
astronomy)  are a known  support  (or  bounds  on  the  support) 
of a sequence,  and  the  constraint  that  the sequence  be  nonneg- 
ative [ 41. Unlike the  algorithm used by Hayes,’ the  iterative 
method described  earlier [ 1 ] primarily uses the nonnegativity 
constraint. Using the iterative  algorithm, we have been very 
successful in  reconstructing two-dimensional  nonnegative se- 
quences  from  their  Fourier magnitude [ ll-[6]. In this case, 
the sequences  must have finite  support,  but it is possible to 
reconstruct  them even when the  support is not  known. Ex- 
cept  for special cases, it is not possible to determine  the sup- 
port of a  sequence from  the  support of its  autocorrelation 
(which is the inverse Fourier  transform of the  squared  Fourier 
magnitude)  [7], so the  support  information is usually not 
available anyway.  One can  only  place upper  bounds  on  the 
support [ 71.  If an  upper  bound  on  the  support is utilized  dur- 
ing the  iterations,  then  the  algorithm converges faster  (in 
about  100  or  200  iterations  for  our work) than when using 
only  the nonnegativity constraint (in  which case we found  that 
several hundred  iterations are required). 

Unlike the  algorithm used  by Hayes, the  iterative algorithm 
described  earlier [ 11 does not simply  satisfy the  constraints 
(nonnegativity  and  bounds  on  the  support)  in  the time-domain 
step of the  iteration.  Such  an  algorithm, which we refer to as 
the  error-reduction  algorithm, was discussed earlier [ 11 where 
it is noted  that,  “For  the  present  application,  the error-reduc- 
tion  approach requires an impractically large number of itera- 
tions  for convergence.”  It is only a version of the  input-output 
algorithm [ 1 I-[ 61 which is capable of converging in  100  or so 
iterations. 

Hayes found  that “. . . if the initial estimate used in the 
iteration  has a Fourier  transform with the  correct  magnitude 
and  either  zero phase or  random phase, then  the  iteration will 
not generally converge to the  correct sequence.”’ However, 
using the  input-output  algorithm  with a nonnegativity con- 
straint, we obtained  good  reconstruction  results when the al- 
gorithm was initialized with  arrays of random  numbers [ l ] -  
161. The  algorithm  has also been shown to be surprisingly 
insensitive to noise [ 51. 

When the  error-reduction algorithm was used with a non- 

negativity constraint  (as well as a support  constraint), it took 
many thousands of iterations  for convergence [ 31, [ 61. There- 
fore, if one were to  employ  the  error-reduction  algorithm 
without a nonnegativity  constraint,  then  one would expect 
convergence to take  much longer, if it ever converges. Conse- 
quently,  it is consistent  with  our  experience  that  the  type of 
reconstruction  experiments  performed by  Hayes  would  be 
unsuccessful. 

Of course, there are situations  for which the  nonnegativity 
constraint  does  not  apply.  Then  one might wonder  whether 
it is possible to reconstruct a sequence of finite  support  from 
its  Fourier magnitude. Theory ([ 81, Hayes1 ) seems to  indicate 
that  the  solution will usually be unique. However, as shown 
by Hayes, the  error-reduction  algorithm is not a  practical ap- 
proach to  finding the  solution.  One might possibly succeed 
using an accelerated  algorithm, such as the  input-output al- 
gorithm  or a gradient search method  [6],  but  this is an area 
that  needs  further  work. 

It should also be noted  that  in  the phase  retrieval problem of 
X-ray crystallography, one  reconstructs  the three-dimensional 
electron density function  from  its  Fourier magnitude. For 
that  problem,  one  has  the  constraints  that  the  electron  density 
is nonnegative and  that it consists of a  discrete number of 
atoms.  For  that  problem, a number of reconstruction  meth- 
ods have been  developed [ 91. For  .the phase  retrieval problem 
in  electron  microscopy,  for which both  the wave function  and 
its  Fourier  transform are complex valued, one  has  the addi- 
tional  constraint of knowing the  magnitude of the wave func- 
tion.  For  that  problem,  the  error-reduction  algorithm  has 
been shown to perform very well [ l o ] ,  [ 1 11. 

In  conclusion, Hayes’ remark  that “. . . even for  those se- 
quences which are  uniquely  defined  by  their  magnitude, it ap- 
pears that a  practical algorithm is yet to be  developed for re- 
constructing a  sequence from  only  its magnitude”’ is strictly 
true when no  other  information is available;  however, for a 
number of important applications, there is auxiliary infor- 
mation,  such as a nonnegativity  constraint,  and practical re- 
construction algorithms do  exist. 
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