Detecting Moving Targets in
SAR Imagery by Focusing
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A new method for detecting moving targets in a synthetic
aperture radar (SAR) image is presented. It involves segmenting
a complex-valued SAR image into patches, focusing each patch
separately, and measuring the sharpness increase in the focused
patch. The algorithm is sensitive to azimuth velocities and is
exquisitely sensitive to radial accelerations of the target, allowing
it to detect motion in any direction. It is complementary to
conventional Doppler-sensing moving target indicators, which can
~ sense only the radial velocity of rapidly moving targets.
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I.  INTRODUCTION

Detecting the presence of moving targets with an
airborne radar is typically performed with a radar that
senses the difference in Doppler between the moving
target and the fixed background clutter or with a’
clutter-canceling displaced-phase-center-antenna
(DPCA) radar [1, 2], both of which are speéiﬁcally
designed to sense moving targets. These are referred
to as moving target indication (MTI) radars. In
some instances, when already operating an imaging
synthetic aperture radar (SAR) [3, 4], one wishes
to detect the presence of the moving target from
the available SAR data. We describe a new and
powerful moving-target-detection approach that
requires only a single conventional complex-valued
SAR image. It exploits the fact that target motion
induces phase errors that cause a smearing of the
target, and these phase errors can be detected by an
autofocus algorithm. To reduce false alarms it further
requires that the focused image patch have sufficiently
increased sharpness over the original image. Because
it is computationally efficient, we have used the shear
averaging autofocus algorithm [5], but we could
use other autofocus algorithms [6-8, ch. 6] as well.
This new detection approach is complementary to
the traditional approaches in that it is sensitive to

‘the azimuth (cross-range) component of velocity

rather than the range component of velocity. It is
also exquisitely sensitive to accelerations in range.
Consequently it will typically detect targets traveling
in any direction.

Like the new approach, the moving-target
detection approaches of Moreira and Keydel [9]
and of Barbarossa and Scaglione [10] also rely on
the motion of the target inducing phase errors and
azimuthal smearing of the imagery. In the Moreira
and Keydel approach, two or more images are formed
from shorter apertures. Images of moving targets in
them are displaced in azimuth relative to one another.
For each range bin, the intensities of the images are
cross-correlated to estimate the quadratic phase error,
much like what is done in map-drift autofocus [8,
ch. 6]. The quadratic phase error provides a basis, by
way of a change in the Doppler rate, for estimating
the combined effects of azimuth constant velocity and
radial acceleration, and for detecting the motion of the
target. In the Barbarossa and Scaglione approach, a
product high-order ambiguity function (PHAF) is used
to estimate phase errors in each range bin to deduce
whether a moving target is present in the range bin.
The principal version of the new approach can be
expected to have superior performance.to both these
approaches because it demands that the sharpness
of the image significantly improve after focusing.
This makes it more robust to false alarms from
spurious phase-error estimates. Furthermore, the new
approach includes the additional step of segmenting
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the image into patches, thereby providing a higher
ratio of moving target to background energy when the
focusing is performed on each patch (allowing lower
velocities to be detected). '

Section II describes the approach, shows
an example with real data, and discusses its
computational requirements and the optimum value
of the parameters of the algorithm. Section III reviews
the effect of target motion on SAR data. Section IV
describes limits placed by the fixed background on the
performance of the moving-target detection approach.
This includes the results of analysis, of computer
simulation, and of experience with real data. Section
V draws conclusions.

For the sake of simplicity, we analyze only
rigid-body translational motions of the moving target,
which cause spatially invariant phase errors; we
perform the analysis in the slant plane, ignoring the
depression angle; and we assume imaging broadside
the SAR, with 90° squint and cone angles.

ll. MOVING TARGET DETECTION APPROACH
" A. Moving-Target Detection Algorithm

Most target motions induce phase errors in the
SAR signal history (often called the “phase history™).
These phase errors cause a smearing of the image
of the moving target in the cross-track, or azimuth
direction. The moving-target detection algorithm
is based on the fact that the signal history of the
scene as a whole does not have any substantial
phase errors, but the component of the signal history
corresponding to the blurred image of the moving
target has phase errors that we can measure. We
employ a fast algorithm, called shear averaging [5],
for detecting these phase errors and thereby detect
the presence of a moving target; we can also use it
to perform a focusing of the moving target, which
also adds to our ability to detect it, as described later.
Other focusing algorithms could be used as well, but
shear averaging has the advantages of being very fast,
of being able to detect higher order phase errors, and
of not requiring a prominent point scatterer on the
target. :

Fig. 1 shows a diagram indicating the major

. steps in the detection approach. We start with a
complex-valued SAR image of the entire scene. We
interrogate individual patches of the complex image

to determine whether there is a moving target in each -

- patch. Let each patch be M pixels in azimuth by N
pixels in range, and the image of the entire scene be
K by L pixels. Section IIE discusses issues affecting
the optimal size of the patches. The procedure that
follows is repeated for each patch. The complex
image patch is Fourier transformed (in azimuth only)
to arrive at the range-compressed signal history for
that patch. We perform shear averaging to compute a
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Fig. 1. Approach to detectiﬁg moving targéts.

phase-error estimate for the patch. We could measure
the magnitude of the phase-error estimate and, if it
exceeds some threshold, indicate the presence of a
moving target. A reasonable measure of the magnitude
of the phase-error estimate is its standard deviation

Ji = bems = A| MY $2(m) — (M*Zq%m))

2

¢9)
where ¢(m) is the phase-error estimate for the
image patch at the mth azimuth (time) sample, m =
1,...,M, after subtracting the linear component of
the phase-error estimate (which only translates the
image). We have also studied a second feature, the
standard deviation of the derivative of the phase-error
estimate, but found this to be not as reliable as the
standard deviation of the phase-error estimate. A

- third useful feature is the quadratic component of

the phase-error estimate. This is appropriate for

many moving targets that induce phase errors that

are largely quadratic; however, we have in practice
also found that moving targets can induce phase errors
that are cubic and higher order, yet have only small
quadratic components.

We have also devised a measure of the presence
of a moving target that is superior to the magnitude
of the phase-error estimate. As indicated in Fig. 1,
we correct the data in the patch by subtracting .
the phase-error estimate from the phase of the
signal history for the patch, then inverse Fourier
transform to compute the corresponding corrected
image for the patch. The ratio of the sharpness of
the corrected image patch, to that of the original
patch, is a fourth feature that we use to indicate the
presence of a moving target. Using the first of the
Muller-Buffington image-sharpness metrics [11], we
compute the fourth feature as the sharpness ratio

£ = S, (after correction) _ Zx,y igcor(x,)’)‘4
# 78, (before correction) 3 lgGxy)*

@)
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where g(x,y) is the complex image in the patch before
the phase-error correction is applied and g (x,y) is
the complex image after the phase-error correction is
applied. This fourth power of the complex fields is the
same as the square of the image intensity. It measures
the degree of concentration of the energy within the
image patch. This ratio has proven to be a stronger
indication of a moving target than a measure of the
phase-error estimate itself, since it will be much larger
than unity only if 1) there is a sizable phase-error
estimate, and 2) if that phase-error estimate is indeed
the correct one, in the sense that it improves the image
sharpness.

Note that one can also use this sharpness
statistic as the basis of an autofocus algorithm
[12-14], and such autofocus algorithms could be
used instead of shear averaging. However, these
sharpness-based focusing algorithms are several
times more computationally demanding than shear
averaging.

We have also experimented with other features
indicative of a moving target. An example is the
degree of image correlation in the azimuth direction.
We may combine these various features by using a
likelihood ratio test to determine the presence of a
moving target. The image sharpness ratio is the single
feature that has the best combination of performance
and computation speed of the various features we
have investigated. For simplicity, here we analyze only
the magnitude of the phase error and the sharpness
ratio.

The computational requirements of the detection
algorithms are dominated by the 1-D fast Fourier
transforms (FFTs) used to transform back and forth
between the range-compressed signal history and
the image. The computational load is comparable
to that of the 2-D FFT required to form the image.
This computational requirement is less than that of the
approach described in {9] and much less than that of
the approach described in [10]. The computations for
shear averaging, described in the next subsection, are
minimal.

The patch size that is optimum for detecting a
moving target is one that is roughly the size of the
smeared image of the moving target. Larger than
optimal patch sizes include excess background, and
smaller patch sizes include only a part of the smeared
image of the moving target. Nevertheless, the patch
width in range should be eight pixels or greater to
avoid excessive false alarms. If a wide variety of
target velocities are expected, we run the algorithm
twice, once with a shorter patch length in azimuth
to better detect the shorter smears, and once with a
longer patch length in azimuth to better detect the
longer smears.

A second way to improve detection performance
is to use overlapping patches. Rather than having
a patch-to-patch displacement equal to a patch
width (i.e., adjacent patches), we may choose patch
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displacements equal to half the patch width in each
dimension.

B. Shear Averaging Algorithm

In this section, we briefly review the shear

- averaging algorithm [5].

In this section, let the (range-compressed) signal
history of a fixed target (or scene) be F(x,v) where
x and v are integer pixel numbers. The coordinate
x represents range and v represents azimuth (slow
time, or pulse number). (We could equally well have
x represent frequency, since shear averaging works
the same in both the range-compressed signal history
and the fully uncompressed signal history.) The phase
errors of most concern are in the azimuth dimension
only, and we denote them as ¢,(v). The aberrated
signal history is

G(x,v) = F(x,v)expli¢, ()] 3)

The corresponding blurred image would be g(x,y), the
inverse azimuth Fourier transform of G(x,v).

The shear averaging method consists of the
following. In the first step, the shear averaged quantity
S(v) is formed by computing the average over the
sheared product:

N .
50) =Y GG (x,v—a)

x=1

@

where N is the number of range bins (or, number

of samples in frequency) and « is a fixed number of
pulses or azimuth samples. Usually a = 1 sample. By
a derivation similar to that of the van Cittert—Zernike
Theorem in optics, it can be shown that [5]

S(v) = |S(v)| exp[i6(v)]
& N(F(x,v)F"(x,v — a)) expli¢,(v) — i, (v—a)l
= N1pu(0,a)explig,(v) — i¢ (v — a)] (S)

where (-) denotes an ensemble average, I, is the
average aperture-plane intensity, and 4 is a correlation
coefficient, which is the Fourier transform of the
underlying intensity reflectivity of the target or scene,
normalized to unity at the origin. From this expression
we see that the phase, 6(v), of S(v) is approximately
equal to the difference in phase error from the (v — a)th
sample to the vth sample. The constant x(0,a) may
also have a non-zero phase, but that constant phase
term will result only in an inconsequential linear

term in the phase-error estimate.. Therefore an
estimate of the phase error can be computed
according to

$0)=0 and  $,0v) =@, —a)+0v) (6)
or, equivalently,
v/a
¢ () =Y 0(ma). ©)
m=1
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Smeared image
of Moving Target

Shadow (Actual Location)
of Moving Target

Fig. 2. Magnimde of ADTS image. Smeared image of moving schoolbus seen in lower left portion of image. Range is horizontal and
azimuth is vertical.

This phase-error estimate is subtracted from the
phase of G(x,v) to arrive at a phase-error-corrected
version of the signal history G, (x,v). Note that
subtraction of a phase can be accomplished by a
complex phasor multiplication. The summation of
the phase differences in (7) can likewise be done
by the multiplication of phasors. The corresponding
corrected. image would be g, .(x,y), the inverse
Fourier transform of G (x,v).

The result in (5) above depends on approximating
the finite sum in (4) by an ensemble average, and
the accuracy of this approximation depends on the
number N of range bins (or frequency bins) over
which we average (for the case of a complicated
object or clutter scene). The accuracy of the
phase-error estimate also depends on the number M
of azimuth bins over which we sum. The result is that
the standard deviation of the phase error at the Mth
sample is approximately

oy = |
M O, V2N

Ordinarily we choose the shear distance a = 1 sample
in azimuth (pulse number) in the signal history. The
value of |x(0, 1)} depends on the oversampling of the
signal history and the content of the image. For a
twice-Nyquist sampled signal history (oversampling

is necessary in SARs anyway to avoid aliasing) of

a uniformly reflecting scene, |1(0,1)] ~ 0.7. The
weighting of the image by the antenna illumination
function in the spatial domain will ordinarily provide
the needed oversampling in the signal history domain.
However, for an extracted image patch over which

the weighting of antenna illumination is not evident,
the situation is different. For a patch of uniformly

- reflecting (clutter) area we will have |©(0,1)| ~ 0, and
{1(0, 1)| increases as the scene becomes more highly
structured, becoming unity when the scene consists of
a single delta function. For the case of an image patch
containing the smeared image of a moving target, '
ordinarily the focused image of the moving target
(which is what counts for the value of |(0,1)|) would

®
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be a fraction of the patch width, making its signal
history highly oversampled, making |x(0,1)| be near
unity, even if the width of the smeared image is equal
to the patch width.

Therefore for typical signal histories having M =
N and for shear a such that |x(0,a)| =~ 0.7 (requiring
a two-fold oversampling in the v direction), the
expected residual phase error will be about 1 rad
(\/6) peak-to-valley. However, the phase-error
estimate for the image patch will be for the sum of
the moving target image and the background image.
Since the background presumably has no phase error
associated with it, that sum is expected to have a
phase-error estimate that is less than the true phase
error for the moving target alone. For these reasons,
the phase-error estimate provided by shear averaging
is not necessarily expected to be faithful enough to
completely correct the smeared image of the moving
target (although in many cases it will be faithful).
Nevertheless, the phase-error estimate is highly likely
to be adequate for moving-target detection since it
must merely exceed some threshold, or increase the
sharpness of the image sufficiently, to distinguish
a patch containing a moving target from a patch
containing no moving target. More sophisticated
phase-error correction algorithms can be used to yield
better detection performance, but at the cost of greater
computational complexity. .

C. Detection Example

Fig. 2 shows an image to which we applied the
detection algorithm. The data was collected by MIT
Lincoln Laboratory’s ADTS 33.56 GHz SAR [15, 16],
which has 1 ft resolution in range (see the Table I in
the next section). The image, of size 2048 pixels in
range by 708 pixels in azimuth, contains a smeared
image of a schoolbus moving in a circle at a speed of
about 20 mi/h. A corner reflector had been mounted
on the top of the vehicle to enhance its return.

We formed the image by simply azimuth Fourier
transforming 708 range-compressed pulses, equivalent
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_Fig. 3. Detection result. Image patches having increased
sharpness of about 2.0, or greater, are likely to contain moving
targets.

to 0.472 s of data. Since we did not perform polar
interpolation, the images we produced are slightly
smeared away from the center of the scene. This
smearing was small because 1) at 33.56 GHz a
smaller angular aperture is needed than at lower
frequencies, 2) we used less than half the normal
azimuth aperture needed to get 1 ft resolution, and
thereby avoided false alarms due to lack of polar
interpolation in this case. Nevertheless, the image is
adequate for demonstrating our detection algorithm.
‘We used a patch size of 16 pixels in range by 128
pixels in azimuth, and used four overlapping grids
of patches. Fig. 3 shows the sharpness ratio for

the patches in a perspective plot. The maximum
value, 6.2, of the sharpness ratio f, exceeds the
typical threshold of 2.0 by over a factor of three,
giving a strong indication of a moving target. The
algorithm indicates the presence of a moving target
only in the area in which the smeared image of the
schoolbus appears. Despite the presence of other
bright (nonmoving) targets in the image, there are no
false alarms.

Fig. 4 shows the focusing results on two different
image chips. Fig. 4(a) shows the chip that contains
most of the smear from the moving target (the
square root is shown to stretch the contrast). It clips
off the top end of the smear. Fig. 4(b) shows the
- corresponding image focused by shear averaging. It
occupies an area several times smaller than that of the
given smeared image, making the sharpness of the
focused chip increase by a factor of greater than six
times that of the original chip. Fig. 4(c) and (d) show
the same things for a chip containing only clutter
background, located 40 pixels to the left of the chip
containing the target. Although the focusing algorithm
rearranged the energy somewhat, it did not cause
its sharpness to increase, the sharpness ratio being
Ja =0.95.

Fig. 5 shows the phase error estimates for the two
cases, the upper curve for the chip having the moving
target and the lower curve for the chip containing
background only. For both cases the linear trends
were removed. The phase-error estimate for the
moving target is, as is often the case, a large and

@ . ) e (d)
Fig. 4. Focused chips. (a) Image patch including smeared image

of moving target. (b) Focused image of chip (a). (c) Image patch
of clutter background only. (d) Focused image of chip (c).
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Fig. 5. Phase error estimates. Upper (dashed) curve: phase-error
estimate for chip including target. Lower (solid) curve: phase-error
estimate, for chip including clutter background only.

relatively smooth function, and it is predominantly
quadratic. The phase-error estimate for the fixed
clutter background is more random, and is smaller.
As discussed above, shear averaging has a residual
error that depends on the degree of oversampling of
the signal history in the slow-time direction. Since the
clutter background fills the image chip in azimuth,
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TABLE I
System and Target Parameters

Symbol Description Example Value
Vp platform velocity 100 m/s
T aperture time 1.30 s
t _slow time variable
R, range to scene center 7250 m
Ab, aperture angle = v, T/R, 0.0179 rad. (1.024°)
x image slant-range coordinate variable
y image azimuth coordinate variable
(x0:Yp) coordinates of target point various
v, target range velocity 4.47 m/s (10 mph)
v, target azimuth velocity 4.47 m/s (10 mph)
a, target range acceleration 0.172 m/s? (0.5 mph/T)
f center frequency 33.56 GHz
f instantaneous frequency variable
f relative frequency (f — f,) variable
Af ~ bandwidth (f,, — fiin) 600 MHz
Af/f, fractional bandwidth 0.0179=1/55.9
Ao center wavelength 8.94 mm
c speed of light 3 x 10% m/s
o, (unweighted) range resolution 025 m
Py (unweighted) azimuth resolution 025 m
k, range weighting factor 1.2
k, azimuth weighting factor 1.2
d, distance target moves in 58 m
range = v, T
<~ d, . distance target moves in 58 m

azimuth = v,T

the signal history is close to being critically sampled,
“making |u(0,a)| relatively small and making the phase
error, which takes the form of the random walk shown
in the lower curve of Fig. 5, moderately large (about

10 rad peak-to-valley in this example). This erroneous -

phase does not cause the image chip to become better
focused, and hence decreases rather than increases
the sharpness. In contrast to this, the focused image
of the moving target, as seen in Fig. 4(b), occupies a

- small portion of the image chip in azimuth, making its
signal history well over-sampled, making |x(0,a)| near
unity, and makmg the error in the phase-error estimate
(the upper curve in Fig. 5) small.

. ANALYSIS OF SAR PHASE ERRORS FROM
TRANSLATIONAL MOTIONS

In this section, we review the type of phase
errors and image translation induced in a spotlight
SAR [3, 4, 8] signal history by target translational -
motion. Consider a SAR with parameters given in
Table I. The values given are for example calculations
and are consistent with MIT Lincoln Laboratory’s
ADTS system, and a target moving with 10 mi/h
components of velocity in both the range and azimuth
directions. For simplicity we consider the case of
imaging broadside to the SAR platform and ignore
the depression angle.

The resolutions in azimuth and in slant-range for
an unweighted aperture are given by

_ 2R _ Ao

Pa= 2T = 240, ©)
and 7
¢ _y _Jo

The actual resolutions are k,p, and k,p,, respectively,
where k, and k, are factors that account for the
coarsening of resolution owing to such things as
weighting functions for sidelobe control.

For simplicity, consider the case of a point
target moving with constant component of velocity
in azimuth, and a velocity and an acceleration
in slant-range. For simplicity suppose that the
target motion is in the slant plane. The phase error
for a complicated target experiencing rigid-body
translational motion will be the same as that computed
here for a point target. The target has instantaneous
position :

(x,y)=(xg+ vt + %a,tz,yo +V,t),

~-T/2<t<T/2 an
making the instantaneous range velocity v, +a,t. In a
spotlight-SAR signal history the phase is compensated
for a fixed point at the scene center. The phase of the
signal history is proportional to r, the distance from a’
point on the flight path to the target point, minus the
distance from the point on the flight path to the scene

center:
o(f'.1) = 477’ (r —JR2 + (vpt)2) (12)
where
r= \/ Ry + xg + vt + 5a,12)2 + (yy + vt — V)2
13)
o0 1 _f_G+f) 1 I
s=L-%D- S f) s

Performing a Taylor series expansion, we have

o(f',1 = ———[x0+x0j: yO-R;+vt

ag__ﬁﬁ_hﬁﬁﬁ ;]

The given terms are described in Table II. The

last column of the table gives values for the case
in Table I of a moving target with velocity v, or

v, = 4.47 m/s (10 mi/h) or a, = 0.0172 n/s* (a,T =
0.5 mi/h). Note, for comparison, that the distance
traveled by a target with velocity 4.47 m/s in time
T=13sis58 m.
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TABLE I
Phase Terms for a Moving Point

Phase term ¢(f’,1) Description

Results in . Example Value

il Xo constant phase phase constant
Ao (unimportant here)
4._" xoﬂ frequency range position X, various
A " Jo linear phase
ﬁy f_’;t azimuth azimuth position y, various
oR .
Ao 0 linear Phase
4_”vr, Range-velocity- Azimuth translation by 324 m
Ao induced .azimuth 4n v, Tp,
§h1ft X 27
= erO = ﬁ d = dr
v, v,I' 7 Ad,
4_" larﬁ Range- Azimuth smear of 162 m
Ao 2 acceleration-- 8(# waves quad. phase) p,
induced azimuth ) T
quadratic phase = 2a,T__pa_ ] R
Ao v,
4n Vavpt2 Azimuth-velocity- Azimuth smear of 11.6 m
A Ry induced azimuth 8(# waves quad. phase) p,
uadratic pha:
E phase =2v,T=2d,
2
4r f_’ VaVpt Azimuth- Range walk of smear 0.0725 m
A fo Ry velocity-induced B
range walk = (azimuth smear) 2

Note: Example values are for system and motion parameters in Table I.

From Table II, we see that the phase error due
to the azimuth-velocity-induced range-walk term
is a small fraction of the azimuth smear due to the
azimuth-velocity-induced quadratic phase error.
Consequently, for estimating the phase error to detect
the presence of a moving target, we can usually ignore
this phase term. However, for accurately correcting
the phase error, this term can be significant for
fast-moving targets. This term causes a small but
noticeable curvature to the smeared image when the
smearing is very large. Range acceleration induces
a similar range-walk term. Polar interpolation [3, 8]
affects none of the purely azimuthal terms in Table II,
and so we ignore its effects here.

If polar interpolation is not performed, then there
are additional quadratic phase terms, which increase
linearly with the distance from the scene center,
smearing the fixed background. So for effective
detection in spotlight SAR imagery, polar interpolation
should be performed or the detection should be
limited to the central portion of the image.

The three major terms of concern are 1) the image
translation in azimuth due to a constant component
of velocity in range, 2) the azimuth smearing due to
a constant component of acceleration in range, and
3) the azimuth smearing due to a constant component
of velocity in azimuth. The first causes the image
of the moving target to fall on top of an area of the
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scene that is distant from the area where the target is

physically located; and the latter two, resulting from

quadratic phase errors, cause a smearing in azimuth

that results in a reduction in both the brightness and

the intelligibility of the image of the moving target.
In general, a quadratic phase error

2wA?  8rmAf
YO Tpr T T

defined over an aperture —7/2 <t <T/2 has center-
to-edge amplitude A cycles (27A rad) and has standard
deviation 2

an

=2rA——.
04 =2m 35

Since the derivative of ¢(t) is 4wAt/(T/2)?, its
maximum (minimum) derivative is (—)87A/T. A
linear phase having this slope over the entire aperture
T would have an excursion of (—)87A rad. Since a
Fourier-domain linear phase of 27 rad shifts an image
by p,, portions of the image are smeared over the
interval —4Ap, to 4Ap,, for an image smear of length

(18)

This relationship is true when the azimuth smearing
is much greater than one resolution element.

When the smearing is small, this approximation
overstates the smearing, and a better approximation

is (azimuth smear) = p,/kZ + (84)2.

(16)

(azimuth smear) = 84p,.
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If aperture weighting is present, then the
deleterious effect of the phase error tends to be
reduced since the weighting function reduces the
signal history most where the phase error tends to be
the greatest, near the edge of the aperture. However,
the effect of aperture weighting is not to reduce
the length of the smear. For quadratic and higher
even-order phase errors, the effect is to reduce the
intensity of the smear near the ends of the smear.
Hence the 3 dB width of the smear decreases without
the length of the smear decreasing.

Since the azimuth-velocity-induced a21muth
quadratic phase error has

A= MZVPT _ d, (19)
4 MR, 4p,
where d, = v, T is the distance the target moves
in azimuth during the aperture time, we find that
the standard deviation of the phase error for an
unweighted aperture is

T d,
=1 (20)
T3V50
and the azimuth smear length is
(azimuth smear) = 24d,,. 21)

The number of unweighted resolution elemcnts of the
azimuth smear is
M, = (azimuth smear) 2(v,,T ) - 3‘!:_:_ 22)

Pa Pa Pa

For the example parameters in Table I, the azimuth
smear is 11.6 m = 46.5p,, equivalent to 5.8 cycles
of quadratic phase error. As we see later, we expect
to detect bright moving targets that smear by 2p,, or
M, = 2; therefore, we expect to be able to detect an
aZImuth velocity of 1/23 of the example, or 0.19 m/s
(0.43 mi/h), for a favorable case.

Since the range-acceleration-induced quadratic
phase error has

a,T? :
- 2
4x, @3)
we find that the azimuth smear length is
(azimuth smear) 84p, 2a T2 24! Py =d ,4'0"
Ao Ao
2R0 2d,
= v T A 5. 24)

In this expression, d, = (1/2)a, T2, which is the
distance the target would travel in time 7T had it
started from rest and accelerated at the rate of a,.
Another useful way to express this is to note that the
range velocity changes by a,T during the aperture
time. The azimuth smear is 2(a,T)p,T /), Which,
expressed in the number of unweighted resolution
elements, is

. (azimuth smear) 2(a, T)T

1‘4’ =
Pa )‘0

(25)
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Since for the ADTS SAR p,/\, ~ 28, the azimuth
smear is about 56(a,T)T, that is, 56 times the distance
given by the change in radial velocity (a,T), times
the aperture time T'. From the example values in
Table I, an (a,T) change of range velocity of 0.5 mi/h
results in an azimuth smearing of 16.2 m. Hence very
small accelerations in range can result in considerable
azimuth smearing; consequently small accelerations in
range allow us to detect the moving target.

If the target’s acceleration is time varying, then
higher order phase terms are introduced. In particular,
if the range coordinate of the target is described by
an nth-order polynomial in time, then the motion
introduces an nth-order polynomial azimuth phase
error; and if the azimuth coordinate is described by
an nth-order polynomial in time, then the motion
introduces an (n + 1)-order polynomial azimuth phase
error. As long as the focusing algorithm can correct
higher order phase errors (as shear averaging can),
these higher order motions contribute to the ability to
detect the moving target as well.

IV. DETECTION PERFORMANCE IN THE PRESENCE
OF FIXED BACKGROUND

We determined the detection performance of the
algorithm in three ways: 1) by theoretical calculations,
2) by computer simulations, and 3) by testing on real
data. Unfortunately, because of a lack of a sufficient
number of images of ground-truthed moving targets,
the results we have with real data are not statistically
meaningful, but do serve as examples.

A. Theoretical Performance Prediction

We performed the analysis for two detection
features: f}, the rms phase-error estimate, and f;,
the sharpness ratio. We found the latter to be the
more effective means of detecting moving targets and
consider it our primary statistic, but for the sake of
completeness we report below on the results for both
features.

We predicted the performance theoretically with
the following steps. First, we predict the phase errors
induced by a given target motion (azimuth velocity
or radial acceleration). Next we take into account

" the fact that a given patch of the image contains

both the smeared image of the moving target and
the background, which is well focused and has no
phase errors. The consequence of the background is
that the phase error estimated for the patch will be
less than the phase error appropriate for the target.
The phase error is underestimated more for smaller
target-to-background ratios. The phase error is also
underestimated more for more highly structured
backgrounds than for uniform clutter backgrounds.
The structure of the background is quantified by |,u8|,
the correlation coefficient for the background. We
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assume, for simplicity, that the moving target has only
a single bright scatterer in each range bin. Then if
there were no background and we were to perfectly
focus the moving target, its sharpness would increase
by a factor of M, the number of resolution elements
by which the image of the target was smeared. The
minimum detectable velocity derived here should

be taken to be a lower bound, since targets having
multiple closely spaced scatterers within a given range
bin will require higher velocities for detection. The
total sharpness of the patch is also affected by the
sharpness and brightness of the background. After
focusing the patch according to the underestimated
phase error, the target is partially focused, increasing
its sharpness, and the background is defocused,
decreasing its sharpness.

We analyzed the theory for the simplest possible
case: that of the moving target consisting of a single
bright point (a delta function) having a constant
velocity in azimuth, resulting in a quadratic phase
error. We analyze the cases of the background
consisting of either zero-mean Gaussian-distributed
complex-valued clutter or a single bright corner’
reflector. For simplicity we assume an unweighted
aperture with no zero-padding.

1) Shear Averaging Phase-Error Estimate:

a) Phase-error estimate for the target only: First,
we assume that the target point source is centered
in the image patch, making its reflectivity f(x,y) =
b&(x,y), where the origin of the coordinates of the
patch is in the center of the patch and 6(x,y) is
the Kronecker delta function in two dimensions.

The target’s azimuth Fourier transform is F(x,v) =
bM~1/2§(x), and with motion the signal history is

G,(x,v) = bM~/25(x) expli¢,(v)} (26)

where b is a complex constant. M is the number of
image pixels (resolution elements) in azimuth and N
the number in range in the patch. The factor of M~1/2
arises if we employ a version of the discrete Fourier
transform which is unitary, that is, energy-preserving.
The sheared sum for the target alone is

S,() = IS,(")| explif,(v)]

= [bPM ' explig,(v) —ig,(v—a@)] (27
making the phase of the sheared sum
6,(v) = ¢,(v) — $,(v —a) (28)
which makes the phase-error estimate
" /e
3. = 6,(ma) = $,(v) (29)
m=1

that is, the phase-error estimate from shear averaging
is exactly correct (up to an unimportant additive
constant) when only a delta-function target is present.
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If there is no moving target-and only a background
F;(x, v), then the sheared sum is

S,(v) = ]Sg(v)l explif,(v)] = ZF;(x, v)Fg(x,v —a)

~ N1, |1,(@)| explif, (v)] 30

where I, is the average energy per pixel in the
background. More generally the magnitude of this
expression will vary with v as well (which we have
ignored); but it is the phase variation 6,(v) that will
have the largest impact. When the background alone is
present, the phase of the sheared sum is

0(v) = 6,(v) @31

and the phase-error estimate from shear averaging is
given by
v/a
¢ () = 6,(") =) _6,(ma).

m=1

(32)

The phase-error estimate for only the background
depends on the correlation properties of the
underlying reflectivity of the background. If the
background is highly structured, then the shear
averaging algorithm will tend to produce a phase-error -
estimate that is near to zero. At the opposite extreme,
for which the background is completely unstructured,
i.e., it is perfectly uniform clutter, the phase-error
estimate can be quite large. Since perfectly uniform
clutter does sometimes occur in nature (a grassy

field, for example), this case is of practical interest.
Note that perfectly uniform clutter may cause a large
phase-error estimate, making it a potential false alarm
for f;, the rms phase error, but it will not cause a false
alarm for f,, the sharpness ratio.

For Nyquist-sampled data from a patch of
perfectly uniform clutter, |u,(a = 1)| = 0, and the
phase differences 6, predicted by shear averaging are
random numbers uniformly distributed on [—=,7) rad.
The phase-error estimate is given by a sum of M
such random numbers, where M is the number of
sample in azimuth in the patch. This defines a random
walk problem. However, the linear component of the
phase only shifts the image and does not contribute
to the smearing of the image. Consequently, we

- should remove the linear component of the phase

before calculating its magnitude. After doing this,
we can show that the expected value of the standard
deviation of the phase-error estimate (actually, the
square root of the expected variance), averaged over
the M samples, is

oy = VM. (33)
For example, if M = 128 azimuth samples, the
expected rms phase error is 5.9 rad, which is.
substantial. This compares with the standard deviation
of the phase error induced by a moving target having
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anazimuth velocity v,, we saw earlier is given

by g, = (r/3+/5)d,/p,. Recall that the azimuth
‘smearing for this velocity is M, = 2d,/p, unweighted
resolution elements. The optimum patch size (in
‘unweighted resolution elements) M, in azimuth, is

one large enough to just enclose the smeared image
of the moving target. This would be M, for a smear
large compared with the target size. Insertmg this
expression into the equation above for the expected
rms phase error due to pure uniform clutter alone, for
M = M, (azimuth unweighted resolution elements), we
get. |
—2%. 34

o) =
Pa

o2

Taking the ratio of the standard deviation of the phase
error due to a moving target, with azimuth velocity v,

traveling a distance d,, in time 7, and that due to pure

uniform clutter over a patch size equal to the length of
the smear due to the target motion, we have the ratio

_ 24,
50,

-This would indicate that if the target moves by
several resolution elements in azimuth during the
aperture time, then it will induce a phase error that
is considerably greater than the expected phase-error
estimate from worst case clutter alone.

b) Phase estimate for target plus background:
‘Now consider the case of combined signals—target’
plus background—given by

o (target only)

oy (clutter only) (33)

G(x,v) = G,(x,v) + F;,(x,v) (36)

where G,(x,v) = bM ~'/2 §(x) exp[ig,(v)] for our simple
point target. We can show that the sheared sum of
this combined target-plus-background case is given
approximately by

S) = ISW)|explis (¥)]
~ |b[*M ™" expli6, (V)] + N1, |, (a)| expli6, ()]

€)
and its phase is given approximately by
0() = k,0,(v) + (1 — k)0, (v) (3%)
where )
k= o) (39

b2+ MNL, [, @)

is the |p|-weighted ratio of the energy of the moving
target to the total energy of the patch, and (1 —k,) is
the |u|-weighted ratio of the energy of the background
to the total energy of the patch. Note that |u| = 1

for the point target. From this we see that when the
target energy dominates over the background energy,
we detect most of the phase error due to the moving
target. For a clutter background that is very uniform,

FIENUP: DETECTING MOVING TARGETS IN SAR IMAGERY BY FOCUSING

g (@)] will be small and the moving target s phase
error will be underestimated less.

2) Performance Prediction for Sharpness Ratio:
The sharpness ratio f, given by (2), is our primary
indicator of moving targets. Consider the specific
case of a target traveling with constant velocity v, in
azimuth. This motion results in a simple quadratic
phase error, and the resulting image is smeared in
azimuth by the number of unweighted resolution
elements M, = 2d,/p,, for M, > 1. For a quadratic
phase error, in the smeared image the energy tends to
be spread uniformly over the distance of the smear,
for an unweighted aperture. That is, instead of the
intensity [b|? of the point target being concentrated
in a single pixel, it is spread uniformly over M,
unweighted resolution elements, each of which would
have intensity |b|?/M, (owing to conservation of
energy). If the energy of the target far exceeded
that of the background in the patch, then the shear
averaging algorithm would successfully correct
the phase error, returning all the energy to a single
resolution element. Then the numerator of the
sharpness ratio would be |b|* x (one resolution
element) = |b|*, and the denominator would be
(|b2/M)* x M, = |b|*/M,, making the ratio f, = M,
Assuming that we need f; = 2 for a solid indication
of a moving target (Which we have experienced is a
conservative threshold in order to eliminate most all
false alarms in clutter backgrounds), then for a reliable
detection we need

M, >2 (40

in the ideal case. This condition is equivalent to
d, > p,, which is equivalent to a minimum detectable
azimuth velocity of

41

For the example parameters in Table I, M, = 46
resolution elements, which is 23 times the minimum
required for detection. The minimum detectable
azimuth velocity for that example would be v, =
0.19 m/s. The minimum detectable radial acceleration
would be a, = \,/T?, and the minimum detectable
change in radial velocity would be

Ao
: (aT)> > T |
which is a radial velocity change of only 6.9 mm/s
(0.015 mi/h) for the parameters in Table I. Hence
we see that, even though it is insensitive to constant
radial velocities, the approach can be exquisitely
sensitive to changes in radial velocity. Since small
radial accelerations are present in most real moving
targets, this algorithm should be able to detect targets
moving in any direction.

Note that if we hold all other parameters

(Ao, Ry, v,) constant, the minimum detectable azimuth

(42)
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velocity and radial acceleration both increase as 1/ T2,
and hence as p2, the square of the azimuth resolution.

If we employ aperture weighting, the minimum
detectable azimuth velocity should increase because
1) the sharpness of the original smeared image will
be greater than for an unweighted aperture, since
aperture weighting causes the center of the smear to
be brighter than the edges of the smear, and 2) the
sharpness of the focused image will be less than for
an unweighted aperture, since aperture weighting
causes the mainlobe of the diffraction-limited
impulse response to be wider than for an unweighted
aperture. Hence, for detecting moving targets we
expect to obtain better performance if we employ an

. unweighted aperture.

Since the estimate above depends on the
background energy being negligible, the target being a
single bright point source (such as a corner reflector),
the aperture being unweighted, and the patch length
being optimum, the minimum detectable azimuth
velocity (and minimum detectable change in radial
velocity) will often be greater than this.

Next we consider a more complete theory,
which includes the effect of the background on the
sharpness ratio. We consider two cases, which differ
significantly from one another. The first is a relatively
benign case, for which the background is uniform
clutter. As we focus the moving target, making its
sharpness increase, the defocusing of the clutter
does not change its sharpness much; hence, the net
sharpness increases. For this reason, uniform clutter
is relatively benign. The second is the most difficult
case, for which the background consists of a single
bright pixel in the same image patch. As the moving
target is focused and the background point becomes
defocused, the sharpness of the background point
will decrease substantially; hence the net sharpness
increases only if the moving target is considerably
brighter than the background point.

For both cases, suppose that we choose a patch
azimuth length M > M,, which is necessary to avoid
truncating the smeared image of the moving target,
and we position the patch so that the smeared image
of the target falls entirely within it. The intensity
of the focused target point would |b|2, making the
intensity of the smeared image of the target point,
per unweighted resolution element, be |b|2/M, in its
non-zero range bin over the extent of its smear (it
is zero in the other range bins). The presence of the
background will usually cause us to underestimate the
phase error due to the moving target. Suppose that
our phase-error estimate is a constant o times the true
phase error associated with the moving target, with
0 < a < 1. After correction, the target will focus to a
smear of approximate length M, + a1 — M,); that is, it
will have length M, if no focusing is done (o = 0) and
length 1 pixel if the focusing is perfect (o = 1). Hence
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the sharpness contribution due to the focused moving
target is

b 2
1)~ (e ) XM oC1 =)
_ b "
T IM, + (MY “3)

If « is large enough that the smear length of the
corrected image is just a couple of pixels or less,
then the expression M, + a(1 — M,) will overestimate
the smear length, which will tend to underestimate
the sharpness of the focused point. Consequently,
this approximation causes us to underestimate the
increase in sharpness after focusing, and is therefore
conservative.

a) Sharpness ratio—clutter background: First
consider the case of a clutter background that
is relatively uniform. If the average energy per
unweighted resolution element of the clutter in the
patch is ,, then the sharpness contribution due to the
focused, relatively uniform clutter is

S), =2I;MN (44)

where N is the range width of the patch and the factor
of two arises from the negative exponential statistics
of the intensity of the clutter. Suppose that the clutter
is sufficiently uniform that changing its focus does
not affect its sharpness much. However, at the same
time we assume that |y, | is large enough that the
background does influence the phase-error estimate.
If we ignore the cross term between the target and the
clutter, the total sharpness is

lbl*

Si(@) =8,(0) +8y, = 7 Ty

+2I’MN.

(45)

The sharpness for a = 0 (for no focusing, giving the
sharpness of the original patch) is

$,(0) = |b|*/M, + 2I2MN (46)
and so the sharpness ratio is
lbl* 2
= Sile M, +o(1-M) + 2 MN “n
47 5,0 b4/ M, + 2I2MN

Recalling that the phase-error difference estimate
will be approximately 6 = k6, + (1 —k,)6,, and letting
6, ~ 0, we have 0 = k,6,. Noting that e = 6/6,, we
have

(61

—_—— (48)
[BF + MNT, ]

axk =

Inserting this into the equation above and rearranging
terms yields ’

2
KEMN K+ M)
(.o + MM i)

Ja= KZN +2M M “49)
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Fig. 6. Predicted sharpness ratio as function of smear length for

uniform clutter background. For N = 16, M = M, luxl =0.3, and

for target/background ratio per azimuth bin of K,, = 100 (upper
curve), 10 (middle curve), and 3 (lower curve).

where

[

=

|

K,= (50)

=z

I

is the total energy of the target relative to integrated
energy of the background in a single azimuth bin

of the patch. The point target must be smeared over
K,, resolution in azimuth for the target-to-background
energy ratio to be unity. Unfortunately this expression
for the sharpness ratio, which depends on the
target-to-background ratio, strength, the background
correlation [, |, the number of range bins N, and the
length of the smear M, and the length of the patch

M is too complicated to interpret easily. We do see,
though, that as K,, becomes larger, f; approaches M,,
and then to detect the moving target with threshold
fi =2, we need a smear length of M, =2 unweighted
resolution elements. We also see that as K, becomes
small, f, approaches unity, and we could not detect
the moving target. As an example, Fig. 6 shows plots
of three examples of f; versus M,, with K,, = 100, 10,
and 3, for N = 16, M = M,, and |u,| = 0.3. We see the
effect that'if the smear length M, is too small, then
there is insufficient phase error (smearing) to detect,
and if M, is too large, then the target-to-background
ratio becomes too small to detect the phase error.

For comparison, for a conservative indication of

a moving target we need f;, = 2 to achieve a low
false-alarm rate, which we determined by running the
algorithm on a large number of images with different
backgrounds. Fig. 6 shows that for K, = 100 (i.e.,

the target/background energy ratio would be unity

if the target were smeared over 100 unweighted
resolution elements), then f; would exceed f;, =2

for a very wide range of M, (and hence for a wide
range of target velocities), whereas for X,, =5, f,
would exceed f,, = 2 only for a limited range of
velocities. '

The minimum and maximum detectable azimuth
velocities and range accelerations are both governed
by the minimum and maximum detectable smears,
which we define as the values of M, resulting in
Ju=2. '

First suppose that we hold the patch length M
fixed, and that M, < M. We can solve the equation
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o w4 Khs.o w10
Fig. 7. Minimum smear length versus target-to-background ratio,
for clutter background. For I.Ugl =0.1, N = 16, to achieve f, = 2.
Patch length: Upper curve, M = 64; lower curve, M = 8.

above for M, in terms of f,, yielding

M= KB+ /K25 — 8f(fa — 1)-Kt:31M2N,ﬂ'g|
.o 4(far — DMz, |

(1)
where

B =K2ZN —M(f, — )2+ K,Nlu ).  (52)

The minimum and maximum detectable smear
lengths are given by the positive and negative signs,
respectively, in the expression above. There are real
solutions only if the term within the square root is
nonnegative, which occurs only if

KtzaN >M(f,, - D2+ KtaNlp‘gD

+ 1/8fulfis — DK, MN |

Fig. 7 shows, as an example, the minimum M,
plotted as a function of K,, for f, = 2.0, |u,| =0.1,
N =16, and for M = 64 and M = 8. For larger
target-to-background ratios K,,, both curves approach
the minimum M, of f,, = 2. As expected, the pair
of curves show that, for the smaller values of K,
the minimum detectable smear is smaller if we
use a smaller patch size (keeping M > M,). The
minimum detectable M, is minimized for M = M,.
We also found that, for typical sets of parameters,
the maximum detectable M,, as a function of M, was
greater than M. We limit M, to be no greater than
M to avoid problems with determining the effect of
truncating the image of the moving target; hence for
determining the maximum detectable M, we also set
M = M, in which case we have ‘

KiMN(K,, + M, )
(Ko + M2\ D)
KZN + 2M2

(53)

+2M?
(54

fa=

Solving for M, involves a quartic equation, which can
be solved by standard techniques. The complicated
solution will be omitted here for the sake of brevity.
In the limit of a very bright point target, f, approaches
M,, as we saw earlier.

Returning to the case of fixed M > M, for the
case of perfectly uniform clutter, with |u,| = 0, the
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expression for f, simplifies to

_ K2M,N +2M,M

fa= K2N +2M,M * (53)

For this case we can solve for the smear length M,
that yields the threshold f,, as

M j;hKI%N

amin= K,%N—2(ﬁu—l)M ) (56)

which approaches f,, for large K,,. This smear length
corresponds to the minimum that results in sharpness
ratio of f,,. If we take f,, = 2 to be required to detect
a target, then M, = 2K2N /(KZN ~2M).

On the other hand, if we use the optimal patch size
M = M, we have

_ KZM,N +2M?

f= N Tap 7

Solving this expression for M,, we have the minimum
and maximum detectable smear lengths to achieve

an sharpness ratio of f,, for the case of a perfectly
uniform clutter background as

oy = KN+ RENT =807, — DI KEN
¢ 4(fo — D

For the case of a bright target, the first term within
the square root is considerably larger than the second;
performing a three-term Taylor-series expansion, we
find that

(58)

KAN
M N 59
amax 2(f4t — 1) -f;‘t ( )
and ,
o o 2 DG _ 8
Mamin ~ ﬁit + KtzaN =2+ K%N (60)

for uniform clutter background and for f,, = 2.
This shows that the minimum detectable azimuth
smear remains near the ideal of M, ;. =~ f,, (which
has an appropriate value of 2) as long as the
target-to-background energy is large.

b) Sharpness ratio—single-point background:
When the background in the patch consists of a
single point target (like a corner reflector), then the
background has the form

fo(x,y) = c6(x, ). (61)
After correction it is smeared over an interval
of length approximately [1 + o(M, ~ 1)}, and its
contribution to the sharpness is
Y
_ |e[*
T 1l+aM,-1) 62)
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Fig. 8. Predicted sharpness ratio as function of smear length for

point-object background. For target/background ratio of 10 (upper
curve), 4 (middle curve), and 2 (lower curve).

Then the total sharpness is

S, =8, +8;, = —1o& el
P75 T IM +a(1-M,)] (1 +a(M,—1)]
(63)
and so the sharpness ratio is
bl el
fi= Sl M +a(l1-M)] [1+a(M,—1)]
T 8i(a=0) |bI*/M, + |c|* '
. o (64)
Now the fraction of the focusing is
a=k = b /(b]* + |c*). (65)

Inserting this into the equation above yields
|b*
M+ (1= Mp)Ib2/(Ib + [c[)]
.\ et
P (1 + (M, — DIb[2/(bP +[c[)]
* bI*/M, + |c|*
B/l 1 |
_ M+ BP/IcP T+ M,BP/IcP (1 K ﬁ)
(b[#/lel*)/M, + 1 S e

(66)

Fig. 8 shows f, for this case as a function of M,
for three cases (top to bottom): |b|?/|c|? = 10, 4, and
2. For this more difficuit circumstance, the moving
target must contain about four times the energy of the
point-like background to be detected over some range .
of M, using the sharpness ratio.

Solving the expression for f,, in terms of M,
we arrive at a cubic equation, which we solved by
standard techniques. For the sake of brevity, the
lengthy solution is omitted here. Of the three roots of
the cubic equation, one corresponds to the minimum
M, a second to the maximum, and the third to a
nonphysical value.

B. Performance Prediction by Computer Simulation

We simulated complex SAR images of resolved
military targets, simulated the smearing effects
typical of target motion, embedded the smeared
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images into real SAR images with backgrounds of
various types, and tested the detection algorithm

to determine performance. The simulated phase
errors were quadratic, which are appropriate to

either a constant component of azimuth velocity

or a constant acceleration component in range.

The backgrounds included trees, grass, desert, a
subdivision, a highway area, and a motor pool. We
simulated target/background ratios of 0.5, 2.0, and 10,
and a variety of quadratic phase errors.

We found that the sharpness ratio (f;) allowed us
to distinguish all the cases of target-plus-background
from the cases of target absent (i.e., background only)
when the target/background energy ratio was 2.0
or 10. There was some overlap of the distributions,
however, when the target/background ratio was 0.5.

Some additional conclusions from experiments
with simulated moving targets in real backgrounds are
as follows. The sharpness ratio f; and the degree of
image correlation both give much better indications
of moving targets than several other features that
we investigated, including the rms phase error.
However, since the sharpness ratio is several times
faster to compute than the degree of image correlation,
we strongly prefer to use the sharpness ratio. We
also investigated the combination of more than
one feature using a likelihood ratio test. This did
improve detection performance, but at the expense
of sometimes considerable additional computations,
and it required having a good estimate of the statistics
of the joint probability functions, which we do not yet

“know for real data. However, once sufficient images
of real moving targets are measured, then combining
multiple features using the likelihood ratio test should
be revisited.

C. Performance Obtained on Real Data

Because we had available only a few images
of ground-truthed moving targets, we do not
have statistically significant results of detection
performance for real moving targets. Nevertheless,
what results we have gotten with real data have been
excellent. An example is shown in Section IIC.

For the real data we have found that a sharpness
ratio of around 2.0 or higher provides a good
indication of a moving target with few false alarms.

Our analysis in the previous section does not
include the case of the patch size M being smaller
than the smear length M,. We however found that,
when the target/back-ground ratio is large, the
algorithm can successfully detect the moving targets
even when M, = 10M.

If the smearing due to target motion is highly
spatially variant (different for different parts of the
target), then a simple phase-error-correction algorithm
cannot focus all of it at once, and the sharpness may
not increase sufficiently to result in a detection.

We investigated potential sources of false alarms.

In one test on a vibrating (but otherwise
stationary) target, it was not indicated as a moving
target even though the paired-echo sidelobes were
purposely kept within the same patch.

Moderately wind-blown trees, the images of which
were smeared by several resolution elements, were not
indicated as moving targets. This might result from
the fact that each branch is moving with different
velocity and direction; hence the phase error for each
is different, and the net phase error for the image
patch as a whole is near zero (and the tree cannot be
focused). In general, the algorithm is likely to sense
the motion of a single rigid body within an image
patch, but not multiple bodies with different motions
within the same patch.

We found that a significant source of false alarms
is moving glints along the sides of gently curving
roads or railways. The point of reflection directly back
to the SAR from a gently curving dihedral (like a curb
on a road or a guard-rail interacting with the ground)
is that point at which the dihedral is perpendicular
to the instantaneous line-of-sight. Hence as the SAR
platform moves forward, that point on the curve
moves forward or backward, depending on whether
the curve is convex or concave from the point of
view of the SAR. Analysis of the signal history of a
moving glint shows it to be indistingunishable from
that of a moving point scatterer. So translating glints
act very much like moving targets. In addition, they
are fairly common. To overcome this false alarm,
one can merely be suspicious of any moving target
cue that is on a part of a road or rail that is precisely
perpendicular to the range direction.

Another potential source of false alarms is any
image feature that appears as a very bright, thin
line in a single range bin. This could cause a false
alarm because 1) the shear averaging algorithm,
which weights the phase-difference estimate by the
energy of the return in each range bin, would be
dominated by the single bright range bin, 2) the
phase-error estimate would then just be the phase
of the signal history due to that range bin, 3) after
focusing all the range bins, that bright range bin
would focus to approximately a single bright point
while the other range bins would be blurred out,
and 4) the bright range bin would dominate the
image sharpness calculation, and so the sharpening
of that range bin would more than make up for
the blurring of the other (dim) range bins. We
have seen what appears to be this effect in one
image, but further analysis is required to determine
whether it was a true false alarm of this type. It
might be possible to circumvent this problem by
prenormalizing all the range bins before performing
shear averaging. One would have the same problem
with any higher-order phase-error correction
algorithm.
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V. CONCLUSIONS

In this paper we have shown that we can detect
the presence of moving targets by dividing a
complex-valued SAR image into patches, focusing
each patch separately, and measuring the sharpness
increase in the focused patch. This detection
algorithm is sensitive to azimuthal velocities and
radial accelerations of the moving target, as these
motions induce image smearing that can be focused
to improve image sharpness. This is complementary
to conventional moving-target indicator radars and
dual-phase-center-aperture SARs which sense radial
velocities. However, our algorithm can be used with a
conventional single-antenna SAR. The algorithm can
detect slow azimuth velocities and exquisitely small
amounts of radial acceleration, making it effective
for targets traveling in any direction. The algorithm
can detect any motion that causes a smearing of about
two (or more) resolution elements. This assumes that
the background is focused so as to be smeared by
no more than a resolution element; this is usually
achieved with standard autofocus algorithms. The

target/background ratio within the patch need be only

on the order of unity. The algorithm is fast, requiring
fewer computations than needed to form the image.
Another useful, but less effective, feature indicative of
a moving target is the magnitude of the phase-error
estimate.

Since use of the phase error, without requiring
an improvement in image sharpness, is the basis
for other approaches [9, 10], this approach is
expected to have superior detection performance. Its
subdivision of the entire image into patches, which
increases the integrated target-to-background ratio for
patches countaining moving targets, also improves
performance over an approach based on the contents
of an entire range bin [10].
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