
Optical wavefront measurement using phase 
retrieval with transverse translation diversity 

Gregory R. Brady
*
, Manuel Guizar-Sicairos, and James R. Fienup 

The Institute of Optics, University of Rochester, Rochester, New York, USA, 14627-0186 
*Corresponding author: grbrady@gmail.com 

http://www.optics.rochester.edu/workgroups/fienup 

Abstract:  We demonstrate the use of transverse translation-diverse phase 
retrieval as a method for the measurement of wavefronts in situations where 
the detected intensity patterns would be otherwise undersampled.  This 
technique involves using a smaller moving subaperture to produce a number 
of adequately sampled intensity patterns.  The wavefront is then retrieved 
using an optimization jointly constrained by them.  Expressions for the 
gradient of an error metric with respect to the optimization parameters are 
given.  An experimental arrangement used to measure the transmitted 
wavefront of a plano-convex singlet using this technique is described.  The 
results of these measurements were repeatable to within approximately 

λ/100 RMS. 
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1. Introduction 

Phase retrieval is a useful technique for wavefront determination that requires only simple 
measurements of the intensity distributions produced by the field of interest.  Phase retrieval 
distinguishes itself from other wavefront sensing methods by often not requiring additional 
optics to perform the measurement.  The intensity measurements are typically made in a plane 
removed from the plane where the wavefront determination is desired.  Often the plane where 
the wavefront is desired is the exit pupil of a focusing optical system.  In this case the 
intensity measurements for phase retrieval are typically made at or near the image plane 
where the pattern of light can be collected onto a detector array such as a CCD. 

If this intensity pattern is to be adequately sampled by the detector, the f-number of the 
beam is limited by  

 # uQd
f

λ
≥  (1) 

or in terms of the numerical aperture (NA) 

 ,
2 u

NA
Qd

λ
≤  (2) 

where ud  is the detector sample spacing (pixel pitch), λ is the wavelength, and 

( )# uQ f dλ=  is a parameter describing the sampling rate [1].  If Q ≥ 2 the intensity pattern 

is adequately (Nyquist) sampled and if Q ≥ 1 the field is adequately sampled.  If a detector 

with a 5 µm sample spacing is used with 632.8 nm illumination and the field is adequately 
sampled, the f-number must be greater than 7.9 (or the NA less than 0.063).  This limits the 

use of most phase retrieval algorithms to high #f  wavefronts [2]. 

Here we describe an approach that relieves this limitation.  As illustrated in Fig. 1, we 
place a mask (termed a subaperture) in a plane at or near the plane of the field or aperture of 
interest, thereby reducing its NA and forming an adequately sampled intensity pattern, which 
we measure.  We can estimate the phase across the entire aperture by using multiple intensity 
measurements, transversely translating the subaperture between each of them.  Note that there 
are no additional optical components other than the lens being measured and the movable 
subaperture.  Using this approach the wavefront over an arbitrarily large aperture can be 
measured, limited only by data collection time, computation time and data storage.  In certain 
situations it may also be necessary to transversely translate the detector array to capture the 
light passing through the subaperture, depending on the plane in which the detector is placed 
and the nominal shape of the wavefront to be measured. 

Subaperture “stitching” approaches for determining wavefronts across a larger area have 
been demonstrated using interferometry [3, 4].  Combining the subaperture measurements 
involves registering overlapping regions of the interferometry measurements, and is 
frequently complicated by imaging distortions in the interferometer optics.  Similar methods 
could be employed to combine multiple subaperture phase retrieval wavefront measurements.  
Intensity data, gathered as shown in Fig. 1(a) and (c), could be processed individually to 
arrive at a wavefront estimate of that particular subaperture.  The individual subaperture 
phases would then be stitched together to form a composite wavefront measurement.  This 
task may be simpler for phase retrieval data than for interferometery because interferometer 
imaging errors would not have to be corrected.  When independently retrieving the phase in 
each subaperture in this way, often multiple axially separate (i.e. in different focus planes, for 
phase-diverse phase retrieval) intensity patterns are collected to increase the robustness of the 
algorithm and resolve certain phase ambiguities. 
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Fig. 1.  Experimental arrangement for phase retrieval with subaberture tranverse translation 
diversity.  (a) Perspective view of the arrangement.  (b) Without tranverse translation diversity, 
if the numerical aperture of the lens is too large the intensity pattern at the CCD will be 
undersampled.  (c) With translation diversity, the numerical aperture of the beam is reduced by 
truncating it with a smaller subaperture.  A larger area is mapped out by making multiple 
subaperture measurements, translating the subaperture between each. 

 
In contrast to conventional stitching techniques, our method estimates a single underlying 

wavefront that is consistent with all of the intensity measurements produced from multiple, 
overlapping positions of the subaperture, which is more robust than a conventional stitching 
approach.  Overlapping of the subaperture positions is necessary to resolve inherent 
ambiguities in the phase estimate and improves convergence.  This also generally eliminates 
the necessity of collected data in multiple focus planes.   

Related work has been done in the fields of x-ray imaging and x-ray beam 
characterization.  In these situations intensity measurements are typically taken in the far-field 
regime, where a longitudinal displacement of the detector does not provide suitable diversity 
for robust phase reconstructions.  In this case, transverse translation diversity has been used 
primarily to improve the robustness of image reconstruction by phase retrieval [5-10], while 
in our work we use it primarily to increase the measurement range of the technique for optical 
metrology.  A technique for measuring 1D and 2D focused x-ray beams with an analogous 
method is described in Ref. [11], assuming a simple FT relation between the plane where the 
moveable structure is placed and the measurement plane.  Although for phase retrieval at x-
ray wavelengths a Fourier transform relationship is typically appropriate, a more general 
propagation is usually required to describe propagation of optical wavefronts.  Here we 
provide analytical expressions for the gradient of an error metric with respect to the 
parameters that describe the wavefront and movable subaperture for a generalized 
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propagation.  The method described here does not require exact knowledge of the translations 
of the subaperture for the multiple measurements.  This distinguishes it from earlier methods 
based on the iterative transform algorithm which are limited by the positioning accuracy of 
the motion control equipment [6-10]. 

In Section 2 and the Appendix of this paper we describe the phase retrieval algorithm in 
detail.  In Section 3 we show phase reconstructions from laboratory data over a composite 
aperture that could not be performed using conventional phase retrieval because of the pixel 
pitch limitation.  We conclude in Section 4. 

2. Nonlinear optimization over multiple transverse translations of a subaperture 

Our algorithms for phase retrieval with transverse translation diversity are based on an explicit 
nonlinear optimization of parameters describing the field in the pupil plane so that the 
intensity distributions, computed when the field is numerically propagated, agree with the 
measured intensity distributions [5, 11-13]. 

The first necessary component for this kind of algorithm is a model of the field in the 
plane of interest.  As in Ref. [5], we write the field transmitted by the subaperture in the n

th
 

position as 

 ( ) ( ) ( ), , , ,n n ng x y h x y a x x y y= − −ɶ  (3) 

where ( ),h x y is the field impinging on the subaperture, ( ),a x y is the complex amplitude 

transmittance of the subaperture, and the subaperture is translated by ( ),n nx y  for the n
th

 

position.  Depending on the propagation method used, the phase of ( ),h x y  may be the 

deviation from a plane or spherical wavefront.  This can equivalently be written as 

 ( ) ( ) ( ) ( ), , , , ,n n n n n ng x y g x x y y h x x y y a x y= + + = + +ɶ  (4) 

where we have now taken the subaperture to be stationary and the incident field moving, 
which was numerically more convenient in our software.  The sizes of the arrays representing 

( ),h x y and ( ),a x y do not need to be the same, with the larger being truncated to the size of 

the smaller during the calculation of ( ),ng x y .  Usually the unknown field, ( ),h x y , will be 

the larger array.  Subpixel shifted versions of ( ),h x y  or ( ),a x y  are calculated making use 

of the discrete Fourier transform shift theorem.  Since a field ( ),h x y  is usually band-limited, 

this sinc-like interpolation can be more accurate for it than for an aperture function ( ),a x y , 

thereby making it advantageous to model the field as translating. 

The fields in the measurements plane are computed from ( ),ng x y using a generalized 

Fourier optics propagation, 

 ( ) ( ), , ,n nG u v g x y=   P  (5) 

where [ ]P  is a linear propagation operator, which may be as simple as a Fourier transform, 

used in Ref. [5], or may be a propagation through a more general optical system [13].  For 
converging wavefronts we typically use a two-step propagation, where Fresnel diffraction is 
used to propagate to the paraxial image plane of the system under test, and angular spectrum 

is used to propagate that resulting field to a defocused plane a small distance ∆z away.  This 
propagator can be written as 
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 (6) 

where DFT[ ] and IDFT[ ] represent the forward and inverse discrete Fourier transform, z is 

the distance to the paraxial image plane, ∆z is the small defocus distance, r and s are spatial 
frequency indices, u′ and v′ are coordinates indices in the paraxial image plane, and constant 

factors are ignored.  The relation between the sample spacings ( ),x yd d  in the input plane  

and ( ),u vd d  in the focal plane and in defocused measurement planes is 

 ,
,

.u v
x y

z
d

Nd

λ
=  (7) 

We represent the terms ( ),a x y , ( ),ng x y , and ( ),nG u v  by arrays of size N × N, and  

( ),h x y  by an array of size M × M.  Usually M is larger than N. 

We compared the amplitudes of the propagated field ( ),nG u v  to the field magnitudes 

( ) ( ), ,n nF u v I u v= , where ( ),nI u v  is the measured intensity pattern, using a squared-

difference error metric 

 ( ) ( ) ( ) 2

1 ,

, , , ,

q

n n n

n u v

E W u v F u v G u v

=

 = − ∑ ∑  (8) 

where q is the number of subaperture positions and ( ),nW u v are weighting terms that allow 

us to ignore regions of poor signal to noise ratio or known bad detector pixels. 

The error metric is minimized by varying the parameters describing ( ),h x y , ( ),a x y  and 

the subaperture translations ( ),n nx y .  For this purpose we typically use gradient search 

algorithms, e.g., the conjugate gradient search [14].  These algorithms require the gradient of 
the error metric with respect to the optimization parameters.  The large number of free 
parameters in this problem makes calculation of the gradient using finite difference methods 
prohibitively expensive, so we use computationally efficient analytic expressions for the 
gradients.  Depending on the particular application and a priori knowledge of the system, 

different parameterizations of ( ),h x y  and ( ),a x y  may be advantageous.  The gradients for a 

number of parameterizations are given in the Appendix. 

3. Experiment 

3.1. Experimental Arrangement 

The experimental arrangement shown in Figs. 2 and 3 was constructed to collect data sets 
taken at multiple subaperture transversely translated positions.  A 10 mW helium-neon 
(HeNe) laser beam passed through a shutter, which was used to block the beam under 
computer control so that dark frames can be taken automatically.  A range of neutral density 
(ND) filters were mounted in a computer-controlled filter wheel so that the light level could 
be controlled automatically.  Typically optical densities in the range of 3 to 4 were required to 
avoid saturating the CCD camera.  The attenuated beam was focused by a 40× microscope 
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objective onto a 5 µm diameter pinhole, which was a sub-resolution point source in this 
arrangement.  The point source was placed 1453 mm in front of a 2” diameter plano-convex 
lens with a focal length of 250 mm forming an image of the point source 302 mm behind the 
lens.  The orientation of the lens (planar surface toward longer conjugate) was chosen so that 
significant spherical aberration would be produced, giving an interesting, yet well-behaved 
wavefront to measure.  The moving aperture was placed as close to the lens under test as was 
practical given the constraints of the mounts used.  The moving subaperture was mounted on a 
two-axis computer-controlled stage which produced the required transverse translations.  The 
CCD camera, a Q-Imaging Retiga 2000R, was mounted on a third axis of motion control 
along the direction of propagation to allow for the focus to be adjusted so that data could be 
taken at a selected plane.  The CCD is fixed axially during collection of the data.  This is a 12 
bit camera, with reasonably good noise characteristics (40,000 photoelectron full well 

capacity, 16 photoelectrons of read noise), with a 1600 × 1200 array of 7.4 µm pixels, but is 
by no means a state-of-the-art scientific camera. 

Lens
f=250 mm

Clear
Aperture

Moving
Subaperture

HeNe

Microscope
Objective

ND Filter

Pinhole

Shutter

CCD
Camera

1453 mm 302 mm

291 mm

 

Fig. 2.  Diagram of the experimental arrangement used to collect subaperture intensity pattern 
data (not to scale).  The CCD camera is placed near the focus.  The subaperture and CCD are 
mounted on computer-controlled translation stages. 

CCD Camera

Moving
Subaperture

Stage
(two axes)

Lens
in Mount

Stage (one axis)  

Fig. 3.  A portion of the experimental setup including the lens that forms the wavefront of 
interest, the moving subaperture, the CCD camera, and the associated motion control 
equipment.  The illumination point source is out of the frame to the left. 
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Fig. 4.  An image of the subaperture from a flatbed scanner.  The diameter is 9.85 mm. 

 
The subaperture was machined in a 0.5” thick aluminum plate which was anodized black 

to reduce reflections.  The final machined aperture was found to be 9.85 mm in diameter.  The 
shape of the subaperture, shown in Fig. 4, was measured by scanning the plate using a 6400 
dpi flatbed scanner with a backlighting attachment typically used for scanning photographic 
negatives.  The machined subaperture proved to be close to a perfect circle, although small 
imperfections are visible. 

3.2. Measurement of Subaperture to Camera Distance 

The distance between the subaperture and the camera was determined using a double pinhole 
placed in the subaperture and performing Young’s experiment, giving a pattern as shown in 
Fig. 5.  The distance between the pinhole plane and the camera plane is given by 

 

2 tan arcsin
2

s
L

λν
=

   
      

 (9) 

where s is the pinhole separation, and ν is the fringe frequency. 

 

Fig. 5.  Double pinhole interference pattern that was analyzed to determine the distance 
between the pinhole (subaperture) plane and the CCD camera plane. 
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The fringe pattern was analyzed by Fourier transforming it and finding, with sub-pixel 
accuracy [15], the location of the peak corresponding to the fringe frequency.  This allowed us 

to measure the distance, L, to a resolution of about 5 µm. 
The distance from the subaperture (double pinhole) plane to the nominal focal plane was 

measured to be 291 mm.  When this measurement was complete the double pinhole was 
removed from the arrangement.  As this distance measurement was no longer possible, we 
relied on the accuracy of the motion-control equipment to track the offset from the nominal 
focal plane when the camera was moved axially.  This may cause small, relative positioning 
errors resulting in small focus terms that are easily removed. 

3.3. Results 

In order to verify the usefulness of this technique for measuring faster beams than allowed by 
Eqs. (1) or (2), we measured the wavefront over a composite aperture with an effective 
diameter of 33.32 mm.  A full aperture measurement over this area would be undersampled, 
having a sampling parameter Q = 0.748.  The 9.85 mm diameter subaperture results in a Q = 
2.53, which is oversampled for both intensity and field.  To cover the area of the composite 
aperture with significant subaperture overlap, we measured intensity patterns at 43 different 
subaperture positions illustrated in Fig. 6.  A point in the composite aperture could be sampled 
by as few as one (near the edge) or as many as eight subaperture measurements.  Example 
intensity patterns produced by various subaperture positions are shown in the middle column 
of Fig. 7, and the corresponding subaperture position is indicated in the left column.  For 

processing in our algorithm, each intensity pattern was centered in a 256 × 256 array of data.  

This resulted in a subaperture plane sample spacing of 97.4 µm.  
The raw intensity data were processed by first subtracting an average dark frame from 

each frame.  Any remaining bias was subtracted using the average value of a small patch of 
pixels well away from the intensity pattern of interest.  The intensity patterns are normalized 
so that each has unity power integrated over the array, as are the numerically computed 
intensity patterns used in the optimization algorithm. 

The dark-subtracted intensity data was used as the input to our phase retrieval algorithm 
using the following procedure.  First, since the phase was expected to be slowly varying, we 

optimized the phase of ( ),h x y  using Zernike polynomial coefficients up to 8
th

 order, 

assuming a uniform amplitude distribution and using the gradient expression in Eq. (22).  At 

the same time we optimized tip, tilt, and focus for each subaperture, ( ),na x y , assuming the 

amplitude distribution shown in Fig. 4, to correct for focus errors and small shifts of the 
detector, using the gradient expression in Eq. (36).  We also optimized for the subaperture 
positions, using the expressions in Eqs. (47) and (48).  This optimization ran for 50 iterations.   

Second, we used the result from the first step as the initial guess for an optimization of 100 

iterations of a pixel-by-pixel representation of ( ),h x y , making use of the gradient in  

Eq. (19).  This captures high frequency variations of the phase not well expressed by Zernike 
polynomials.   

Third, we used the result from the second step as the initial guess for an optimization of 

1000 iterations over the complex values of ( ),h x y  at each point in the composite aperture 

using Eq. (29), at which point we do not rely on the assumption that the amplitude of ( ),h x y  

is uniform.   
Finally, we used this result as the initial guess for an optimization of 100 iterations where 

we allowed the complex numbers at each point in the moving subaperture to vary using Eq. 
(43).  These complex values were kept the same for each subaperture position.  This allows 
for correction of errors in our assumption of the aperture shape.  In addition, we optimized for 

different tip, tilt and focus values for each subaperture and the complex values of ( ),h x y  at 

each pixel in the same way that we did in the previous optimization.  The resulting estimate of 
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the field in the composite pupil is shown in Fig. 8.  The phase is quite smooth, exhibiting 
mostly spherical aberration.  The amplitude is quite uniform, but does contain artifacts at the 
edges of the subapertures.  It is interesting that amplitude variations due to digs on the lens 
surface were well reconstructed on the left side of the subaperture.  These appear as amplitude 
variations because the large slope of the dig scatters light away from the detector array.  The 
digs were visible to the naked eye.  The reconstructed intensity patterns in the measurement 
plane are shown in the right column of Fig. 7.  The agreement between the measured and 
retrieved intensity patterns is excellent. 

As a check on our results we additionally performed a reconstruction using the same 
algorithm with a smaller, independent data set of 17 subaperture measurements which cover 
the central region of our previous result, as shown in Fig. 9.  Notice that different subaperture 
positions are used than in the earlier result.  The results of this reconstruction are shown in 
Fig. 10(b).  The reconstruction compares well to the data from the same region of the larger 
aperture data shown in Fig. 8.  A cropped version of this data is shown in Fig. 10(a).  The 
difference between the two phase distributions is shown in Fig. 10(c).  The RMS difference 
between the two patterns is 0.0107 waves.  Since the largest differences appear to be due to 
high frequency variations, we fit the two data sets to 36 Zernike polynomials and compared 
those, as shown in Fig. 11.  The RMS difference between the two polynomial fits is 0.0079 
waves. 
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Fig. 6.  A 9.85 mm subaperture is moved to 43 positions to measure a composite aperture with 
a diameter of 33.32 mm.  The aperture postions are shown above, with the grey level indicating 
how many times a given point in the composite aperture was sampled by a subaperture.   
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Measured Retrieved

 

Fig. 7.  The left column indicates the subaperture position of the measured intensity patterns 
(center column) and retrieved intensity patterns (right column).  Intensities are shown raised to 
the 0.4 power. 
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Fig. 8.  Amplitude (left) and phase (right) retrieved over the composite aperture using the 
intensity patterns measured at the 43 subaperture positions shown in Fig. 6.  The phase shown 
has tip, tilt and focus removed. 
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Fig. 9.  Pattern of subaperture positions for a smaller data set taken to check the phase retrieval 
results.  The color scale shows the number of times a particular point is sampled by a 
subaperture.  The outer white line indicates the edge of the larger data set. 
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Fig. 10.  (a) Wavefront of Fig. 8 cropped to the size of the small composite aperture pattern.  
Note that some artifacts are visible at the edge of the subapertures on the scale of this figure as 
compared to that of Fig. 8.  (b) Wavefont retrieved using independent data collected over the 
small composite aperture shown in Fig. 9.  (c) Difference between (a) and (b).  Tip, tilt and 
piston have been removed from each, and all are on the same color scale. 
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Fig. 11.  Data of Fig. 10 fit to 36 Zernike polynomials.  (a) Cropped and Zernike fit version of 
the wavefront in Fig. 8.  (b) Zernike fit version of the phase shown in Fig. 10 (b).  (c) 
Difference between (a) and (b).  Tip, tilt and piston have been removed from each, and all are 
on the same color scale. 

 
4. Conclusion 

We have described and demonstrated a new method of phase retrieval that allows for 
measurement of faster converging beams than was possible with the conventional method.  
This method involves making intensity measurements for multiple overlapping transversely 
translated subaperture positions and jointly optimizing parameters of the entire field of 
interest so that modeled intensity patterns are consistent with the measurements.  The use of 
overlapping subaperture data increases the robustness of the method in a similar way as taking 
data in multiple axially separated planes.   

We have derived expressions for the gradient of a squared-difference of magnitudes error 
metric with respect to a number of different parameterizations of field or phase.  The 
expressions include derivatives with respect to the positions of the subapertures used to form 
the intensity measurement, making the method very robust to uncertainties in these positions.  
The gradient expressions allow for the use of a generalized propagation calculation. 

We described an experimental arrangement to make measurements of a wavefront 
transmitted through a plano-convex singlet, which was used at conjugates to produce 
significant spherical aberration.  As many as 43 intensity measurements were jointly used to 
constrain a multiple-stage optimization over Zernike coefficients, point-by-point phase values 
and finally the complex field values of the field of interest.  To verify the method, we 
measured different intensity patterns over a smaller region of the same field and performed 
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another optimization.  The result of this second optimization agreed with the earlier result to 
within 0.0107 waves RMS.  The good repeatability shown here is an indication that the 
algorithm is recovering an accurate wavefront, although a comparison with an independent 
measurement method is needed to definitely establish the accuracy. 

This method promises to make phase retrieval a more practical measurement method for 
many problems, especially with faster beams, including those used in the metrology of optical 
surfaces and wavefronts. 

Appendix:  Analytic gradient calculations for different parameterizations 

Following the derivation in Ref. [13], the gradient of the error metric in Eq. (8) with respect to 

a real-valued parameter α  can be written as 
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and c.c. stands for complex conjugate.  Inserting Eqs. (5) and (4) into Eq. (10) gives 
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As in Ref. [13], the order of summations can be manipulated so that 
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where [ ]†
P  is the inverse operation to [ ]P .  Defining 
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allows us to write Eq. (13) as 
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For derivatives with respect to parameters describing ( ),h x y , we employ a change of 

coordinates for (x, y) and write 
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Expressing ( ),h x y in terms of its amplitude and phase, we have 

 ( ) ( ) ( ), , exp , .hh x y h x y i x yθ=     (17) 

The derivative with respect to the value of the phase at a particular pixel (x′, y′) is given by 
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We use this with Eq. (16) to write 
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If the phase is known to be relatively smooth it is advantageous to model ( ),h x y  using a 

set of polynomial basis functions, such as the Zernike polynomials, with coefficients 
h
k

c ,  
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and we can write 
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Using this with Eq. (16) gives 
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We can optimize over ( ),h x y , the amplitude of ( ),h x y  in Eqs. (17) and (20).  Then 

 
( )

( ) ( ) ( ) ( ) ( ), , , exp , , ; ,
,

n n n n h
h x y a x x y y a x x y y i x y x x y y

h x y
θ δ

∂
′ ′− − = − −      ′ ′∂

(23) 

which, when used with Eq. (16), gives 
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We can alternatively model ( ),h x y  as the real and imaginary parts (complex value) of the 

field at each pixel, 
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we have 
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Similarly we have 
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Combining the real and imaginary parts gives 
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Similarly expressing the subaperture transmittance ( ),a x y  in terms of its amplitude and 

phase, 

 ( ) ( ) ( ), , exp ,aa x y a x y i x yθ=     (30) 

we have 
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We can model ( ),a x y  in terms of the coefficients of basis functions as well.  In this 

situation it is useful to have two sets of coefficients, one set that is constant over all 

subaperture measurements, 
a
k

c , and one that varies for each translation of the subaperture, 

,
a
k n

c  [2].  The latter coefficients allow us to include parameters in the optimization to account 

for focus variations or small lateral shifts of the CCD; 
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For the part that is constant across subaperture positions we have 
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Using this with Eq. (15) gives  
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For the part that varies across subaperture measurements we have 
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Using this with Eq. (15) gives 

 ( ) ( ) ( ) ( )*

,,

2 Im , , , , .
w

n n n kna
x yk n

E
g x y h x x y y a x y Z x y

c
′ ′ ′ ′′

′ ′

 ∂  = + +
 ∂  
∑  (36) 

We can optimize over the amplitude of ( ),a x y , ( ),a x y  in Eqs. (30) and (32).  Then 
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which when used with Eq. (15) gives 
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We can also use the complex values of ( ),a x y at each pixel, 

 ( ) ( ) ( ), , , .R Ia x y a x y ia x y= +  (39) 

The derivative with respect to the real part is 
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Similarly for the imaginary part, 
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Combining the real and imaginary parts gives 
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The final derivative that we have found to be useful is the derivative with respect to the 

subaperture locations ( ),n nx y .  We are assuming here that the function that is shifted is 

( ), .h x y   To compute the derivative 
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we use the shift theorem, 
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Substituting this into Eq. (15), 
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Similarly for the y-shift,  
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These expressions are similar to those in Ref. [5] for the error metric being the squared 
difference of amplitudes. 
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