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ABSTRACT

The principal goal of computer holography is the synthesis of a
transparency that can modulate an optical wavefront according to a
computed complex Fourier transform. A major préb]em has been that it is
necessary to introduce spurious images into the reconstruction when using
existing holographic materials, which can modulate only the intensity or
only the phase of an incident wavefront. This dissertation describes a
solution to this problem. By the use of multi-emulsion color film, a
transparency can be synthesized that has controlled complex transmittance.
Independent control over the amplitude and the phase is accomplished by
absorption in one layer and thickness variations in another. Upon recon-
struction, a single on-axis image is formed, without spurious images and
with the maximum possible diffraction efficiency. This new kind of compu-
ter-generated hologram has other highly desirable properties, as well.

The synthesis and calibration procedures necessary to gain complex control
of the material are discussed in detail and experimental results are shown.

The properties and limitations of Kodachrome film as a holographic
material are investigated. The modulation transfer function, phase

response as a function of spatial frequency, dynamic range, and scattered
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flux spectrum are studied. Various cross-talk effects between the

different layers of the film are analyzed, and methods of compensating
for cross-talk are presented.

Another major problem in computer holography is that the display
devices and materials used are often limited in the number of gray levels
and resolvable elements that can be achieved. Consequently, it is often
not possible to represent any arbitrary complex Fourier coefficient, and
quantization noise results. A new iterative technique is described that
recomputes the hologram in such a way as to substantially reduce quanti-
zation noise in the reconstruction. Modified versions ,of this jterative
method can be used to solve a number of other problems in optics as well,
including spectrum shaping and the phase retrieval problem.

Full-color images can be obtajned by combining the images from three
color-separation holograms, one for each of the primary colors, each
illuminated by its respective color of coherent light. False color images
can be eliminated by some additional complexity in the optics of the
reconstruction setup. However, a new method is described in which the
holograms themselves reject the false color images by the use of color
film. Both the wavelength-selective absorption of the different layers

and phase effects in color film are used to eliminate false images.
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CHAPTER 1

INTRODUCTION

Suppose that an object is illuminated by coherent Tight and that the
1ight transmitted or reflected to the hologram plane is described by a
complex-valued wavefront F(u,v). The goal of holography [Gabor, 1948,
1949] is to produce a transparency that has at least one component of its
complex transmittance proportional to F(u,v). The classic way to produce
such a hologram transparency is to expose a piece of photographic film to
the interference of the wavefront F(u,v) with an offset reference plane
wave [Leith and Upatnieks, 1962, 1963]. Then, with the object absent,
upon illuminating the processed hologram with a plane wave, the transmitted
wave is modulated by the hologram to reconstruct a wavefront proportional
to F(u,v). Therefore, if we look through the hologram, it appears as
though we were looking at the object itself.

In computer holography, the object need not exist physically; we
need only a mathematical description of the object from which we can
calculate F(u,v) on a digital computer. For example, if a lens is
inserted between the object and the hologram so that the object is in
the front focal plane and the hologram is in the back focal plane of the
lens, then there is a Fourier transform relationship between the wavefront

F(u,v) 1in the hologram plane and the object f(x,y) [Goodman, 1968, Ch.5],
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1 -i MC(ux+vy)
F(u,v) = X?'ff f(x,y) e dxdy (1-1) R
and the inverse relationship is given by .
1. +i %%(ux+vy) .
f(x,y) = X?'ff F(u,v) e dudv (1-2)

where A s wavelength of monochromatic 1ight illuminating the object.
We use

f(x,y) > F(u,v) (1-3)

as an abbreviated form of (1-1) and (1-2). After computing the wavefront

F(u,v) that will yield the desired image f(x,y), the primary goal of

computer holography is to synthesize a transparency that has at least one

component of its complex transmittance proportional to F(u,v). As with ;
interferometrically generated holograms, illumination of a computer-

generated hologram with a plane wave will cause the wavefront F(u,v) to

be "reconstructed". More precisely, the wavefront is constructed, and not

re-constructed, since it never physically existed.

1.1 Applications of Computer-Generated Holograms

The ability of a computer hologram to reconstruct a wavefront allows
it to form an image of any one, two, or three-dimensional object which
can be described mathematically [Lesem, Hirsch, and Jordan, 1968]. The
description can be a set of equations or a sequence or array of numbers
obtained from such sources as a scanned photograph, an acoustic microscope,
or a mathematical model. Color images can be obtained by making three
color-separation holograms for red, green, and blue information and -
illuminating them with the respective colors of coherent light [Fienup,

1974a; Fienup and Goodman, 1974], as described in Chapter 4. The principal
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drawback is that the large number of resolvable elements in a high

5 or 106

quality image, typically 10 for a two-dimensional picture and
many times that for a three-dimensional one, combined with the extra
redundancy desirable in a hologram, requires time-consuming and expensive
computation and display.

A promising use of computer-generated holograms is for archival
storage of data from computer outputs. The data to be stored may exist
in core, and in this case the digital Fourier transformation step would
represent the only extra step in comparison with writing the data directly
on film. The benefits of translation invariance, burst noise resistance
and redundancy (see Appendix A) make this extra step worthwhile, particu-
larly if the memory is to be machine-read later. The outstanding features
of holographic memory are high storage density, quick accessibility due
to parallel processing and low cost. A working memory based on computer
holography has been developed at Radiation, Inc. [ Kozma, Lee, and Peters,
1971; Kozma et al., 1971].

Another area in which computer holography has been put to practical
use is in the testing of optical elements [Birch and Green, 1972].
Manufacturing errors in an optical element can be detected by observing
the difference between a wavefront from the optical element and a
reference wave in an interferometer. Computer-generated holograms can be
used to generate the reference wavefront standard. This approach is
particularly useful in the testing of aspherics, for which the complexity
of the desired reference wave makes synthesis difficult by any other means.

In addition to their use in testing optical elements, computer-

generated holograms can be the optical elements themselves. Examples of
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possible uses include computer-generated Fresnel lenses, diffraction
gratings, zone plates, and diffusers. Interferometrically generated
holographic optical elements [Latta, 1972] have proven to be practical and
do not have the limited space-bandwidth product of computer-generated
holograms; but computer-generated optical elements would be far more
versatile (in addition, on-axis computer-generated holograms, made, for
example, by the technique to be described in this thesis, would avoid many
of the aberrations encountered with off-axis designs). Recently computer-
generated holograms were used to produce conical and helicoid-shaped
reference waves for interferometry [Bryngdah], 1973] and to accomplish
the shearing operation for radial and azimuthal shearing interferometers
[Bryngdahl and Lee, 1974].

With the ability to control amplitude as well as phase transmittance,
a whole new class of optical elements is possible. One example is an
"extrapolating pupil", which is an aperture mask that allows a lens to
resolve beyond the diffraction 1imit [Frieden, 1969,1970]. The extra-
polating pupil is extremely difficult to manufacture because it must be
made very precisely to work at all. There is hope that a computer-
generated hologram could be used as an extrapolating pupil, but it would
have to be one without any spurious images, such as the new computer-
generated hologram described in this thesis.

Still another application of computer-generated holograms is their
use as optical spatial filters. Although many types of coherent optical
spatial filters can be optically generated [Vander Lugt, 1964], computer
generation is often the most convenient (and sometimes the only) way

to make them. Spatial filters find use in image enhancement [Lohmann
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and Paris, 1968], restoration of degraded images [Severcan, 1973],

matched filtering [Brown and Lohmann, 1966], and code translation

[ Lohmann, Paris, and Werlich, 1967]. With computer-generated holograms,
matched filtering with incoherent illumination is also possible [Lohmann
and Werlich, 1971]. The versatility of computer-generated holograms allows
other types of operations to be performed as well, such as geometric
transformations of images [Bryngdahl, 1974].

The considerations that go into making computer-generated holograms
for all the above-mentioned applications are very similar. Because the
grant under which our work was performed was for the study of computer-
generated holographic memories, the emphasis of this work is on image
formation from computer-generated holograms. However, most of the contri-
butions of this thesis can also be readily applied to the other appli-
cations as well.

Another emphasis found in this thesis is on Fourier transform
holograms. The (widely known) reasons for preferring the Fourier transform
geometry are mentioned in Appendix A. The contributions of this thesis
can be readily applied to the Fresnel case as well.

1.2 Previous Approaches to Synthesizing Computer-Generated Holograms

Previous approaches to synthesizing computer-generated holograms varied
greatly because of a wide choice of available display devices and hologram
materials. After calculating F(u,v) wusing (1-1), then manfpu]ating it
to put it in a form suitable to be recorded on a given material, that
information must somehow be displayed and photographed to produce the
hologram transparency. Display devices that have been used include

CRT's, Cal Comp and gray-level mechanical plotters, laser scanning
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systems, writing microdensitometers, and even scanning electron micro-

scopes. Materials for computer-generated holograms usually fall into

ane of two classes: thin amplitude materials and thin phase materials,
which modulate the intensity and the phase, respectively, of the

transmitted wave. Thin amplitude materials include silver halide
photographic films and plates, diazo, and magnetic materials [Mezrich
1970]. Thin phase materials include bleached silver halide films and
plates [Lamberts, 1972], photoresists [Bartolini, 1974], dichromated
gelatin, and thermoplastics [Co]]ier et al., 1971, Ch.]O]. Thick hologram
materials using volume absorption and phase effects are generally less
suitable than thin materijals for computer holography, although they are
extremely valuable if the hologram is to be generated interferometrically.
Such materials can act like a stack of thin holograms [Alferness, 1975],
show Bragg effects [Koge]nik, 1967,1969], and can have a net complex
transmittance that varies in both amplitude and phase, even though the
material may be purely absorbing or purely phase-shifting.

The main problem encountered in synthesizing a hologram transparency
with one component of its complex transmittance proportional to F(u,v)
is that the thin amplitude and thin phase materials ordinarily used have
real non-negative and pure phase transmittances, respectively. But
F(u,v) = |F(u,v)|e1W(u’V) is complex valued, where |[F(u,v)| is the
amplitude, or modulus, and y(u,v) 1is the phase. What is usua11y done
is to add another complex function to F(u,v) that makes the sum real
and non-negative, or, alternatively, a pure phase function; but the
Fourier transform of that added function must be spatially separated from

f(x,y) , so that the desired image is not degraded. Fortunately, there
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are many ways to accomplish this separation.
Let &(x,y) be the Dirac delta function - the impulse function

[Bracewell, Ch.5]. If A is a real number, then

As(x,y) + f(xts,y) + f*(-x+s,-y) O H(u,v) =

eiZﬂus/Af e-iZnus/xf

A+ F(u,v) + F*(u,v)
A+ 2|F(U,V)|Re{ei¢(“sv)e12ﬂus/xf}

A + 2|F(u,v)|cos(2rus/Af + y(u,v))

is real and is non-negative if A 1is greater than or equal to the maximum
value of 2|F(u,v)| . Thus, this real and positive hologram function can
be synthesized on ordinary "black and white" photographic film or any
continuous-tone thin amplitude material, by exposing it in such a way

that the processed transparency will have amplitude transmittance propor-
tional to the right hand side of (1-4). However, upon reconstruction we
will find an on-axis bright spot, As(x,y) , and a conjugate image,
f*(-x+s,y) , along with the desired image. The desired image is shifted
off-axis by a distance s in order to avoid overlap with the spurious
images. For the convenience of using a thin amplitude material, we pay
the price of spurious images in the reconstruction, an associated decrease
in diffraction efficiency (the amount of light going into the desired
jmage), and an increase in resolution required of both the hologram
material and the display device that is needed to produce thevhigh
frequency sinusoidal carrier. Synthesizing a hologram transparency in

the form of (1-4) is the most straightforward approach [Burch, 1967] using
a thin amplitude material. This method has actually been used in a

computer-hologram memory system [Kozma, Lee, and Peters, 1971; Kozma
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et al., ]971]. A hard-clipped one-dimensional version of (1-4) was
one of the first computer-generated holograms [Kozma and Kelley, 1965]. .
An abundance of other methods have been devised to encode F{u,v)
onto a thin hologram material. These methods can be divided (rather -,
arbitrarily) into two classes, off-axis and on-axis ("in-Tine"),
according to the location of their reconstructed images. The off-axis
holograms produce conjugate images as in (1-4) and can be synthesized on
either thin amplitude or thin phase materials. The off-axis holograms
can be subdivided into two groups: those that encode the amplitude and
phase by the carrier-frequency term |F(u,v)|-cos(2nmus/Af + w(u,v)) as
in (1-4), and the detour-phase holograms, which incorporate a carrier
frequency in a more subtle way. The on-axis holograms do not produce .-
conjugate images (instead they produce other spurious images) and can be
synthesized only on thin phase materials or thin amplitude-and-phase
materials. A new on-axis hologram that produces no spurious images and
can be synthesized only on a thin material with complex transmittance will
be described in this thesis.
Substituting |F(u,v)|2 for the term A on the right hand side
of (1-4) eliminates the problem of picking the correct A , but replaces
the on-axis spot with the autocorrelation of f(x,y) , which is wider
and forces the desired image to be shifted farther from the optical axis
to avoid overlap [Huang and Prasada, 1966]. Including both terms A and
]F(u,v)]2 in (1-4) results in a hologram similar to the interfero-
metrically generated hologram [Lesem, Hirsch, and Jordan, 1967].
In the off-axis holograms described above, the carrier frequency

results in a fringe structure with a mean fringe spacing of Af/s , as
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can be seen in the cosine term in (1-4). We also see from (1-4) that
the phase, u(u,v) , of the desired wavefront modulates the positions
of the fringes. Similar to the way that those holograms modulate the
phase of the wavefront by the positions of the fringes, detour-phase
holograms modulate the phase of the wavefront by the positions of
apertures within the hologram.

Perhaps the most popular computer-generated hologram is the binary
detour-phase hologram of Lohmann [Brown and Lohmann, 1966,1969;
Lohmann and Paris, 1967]. Its primary advantage is ease of synthesis,
since only binary control is needed, i.e., at any one point the hologram
is either opaque or transparent. This hologram consists of an array of
Fourier coefficient cells, each representing one sampled value of
F(u,v) . Within each cell is a transparent aperture on an opaque back-
ground, with the area of the aperture proportional to the amplitude
|F(u,v)| and its lateral position within the cell (the detour-phase
effect) related to the phase v(u,v) . It can be viewed as an approximate
hard-clipped version of (1-4), but its binary nature introduces still
more spurious images. A more exact hard-clipped version of (1-4) has
also been developed [Lee, 1974]. Other binary detour-phase holograms
have been proposed that use a number of apertures within each Fourier
coefficient cell [Haskell and Culver, 1972; Haskell, 1973; Haskell and
Tamura, 1974]. Still another detour-phase method uses continuous-tone
materials [Lee, 1970; Burkhardt, 1970].

The off-axis holograms mentioned above can also be made on phase-

only materials. For example, the pure-phase version of (1-4) is

H(u,v)

explia[A + 2|F(u,v)|cos(2rus/Af + w(u,v))]} (1-5)

iaA
e

expi2a|F(u,v)|cos(2mus/Af + w(u,v))§ ,

-9 -



where o 1is a phase modulation coefficient. Dropping the constant
phase term em‘A and expanding into a power series yields

H(u,v) « 1 + i2a|F(u,v)|cos(2rus/rf + y(u,v))

- 2a2|F(u,v)|2c052(2wus/Af +y(u,v)) + ... . (1-6)

The third term (a?) in (1-6) can be prevented from overlapping the
desired image, which is preserved in the second term (u-) of (1-6).
However, the fourth (ug) and higher-order terms cannot be prevented
from overlapping the desired image, so it is necessary to have
u2|F(u,v)]2 << 1 to keep from degrading the desired image.

A method of accurately controlling the phase of a transparency in an
arbitrary manner was used to make "kinoforms", which produce a single
on-axis image [Lesem, Hirsch, and Jordan, 1969; Clair, 1972]. A kino-
form is a pure phase transparency, and as such can have transmittance
e (us>v) , but cannot control |F(u,v)| . The result is an absence of
spurious images of the type obtained from the hologram using (1-4); how-
ever, making the approximation, |F(u,v)| = constant, is usually
inaccurate and introduces noise into the reconstruction [Kermisch, 1970;
Fillmore, 1972]. Surprisingly, a kinoform works well enough to give
recognizable images, which indicates that the phase ¢(u,v) carries
considerably more information than does the amplitude |F(u,v)|
The kinoform does work especially well for shaping wavefronté for which
|F(u,v)| is nearly constant.

Another method using thin phase materials is the "parity sequence"
hologram [Chu and Goodman, 1972; Chu, 1974]. A parity sequence image

is added to the desired image such that, together, the two images have
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a Fourier transform with constant modulus. The image has a dot-Tlike
structure, and rows of parity elements are interlaced with rows of the
desired image. If used as a holographic memory, a readout-detector
array would be placed so that only the desired image would fall on the
detectors, and the parity elements would fall between detectors. A
related hologram is the synthetic coefficient hologram [Chu, 1974] which
does not require the parity elements to be interlaced with the desired
data, but suppresses the parity elements near the optical axis and
causes them to appear off-axis away from the desired image. Both of
these thin-phase-material holograms control |F(u,v)| by selectively
diffracting 1ight away from the desired image into the parity image. The
same effect can be obtained by using a diffraction grating and a two
step exposure sequence [Kirk and Jones, 1971].

A method that is in a category by itself requires the synthesis of
two hologram transparencies, one producing the real component of F(u,v)
and the other the imaginary component [Ransom, 1972]. These two compo-
nents are combined interferometrically during reconstruction with a %
wavelength relative phase shift (this is difficult to achieve experiment-
ally). The reconstructed image is on-axis with a bright on-axis spot.
Another two-transparency method uses polarized 1light and Vectograph
film [Ho]]aday and Galatin, 1966; Marathay, 1969].

Good reviews of computer holography can be found in two survey
papers [Huang, 1971; Chu and Fienup, 1974] and in a chapter in the text
Optical Holography [Co]]ier et al., 1971].

This multitude of computer-generated holograms suggests the large

number of trade-offs between various considerations such as materials,
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display devices, diffraction efficiency, complexity, resolution,

spurious images, noise, ease and cost of synthesis, ease of reconstruc-
tion, and so on. Each type of hologram mentioned differs in some respect
from every other one, and each has a different set of spurious images
associated with it. In all cases, the use of amplitude-only or phase-
only materials to reconstruct an arbitrary complex-valued wavefront
introduces spurious images into the reconstruction. These spurious
images were tolerated because in most cases they do not overlap the
desired image. Furthermore, there was not previously known a simple
method to directly control the complex (both amplitude and phase) trans-
mittance of a hologram material. Only through complex control is it
possible to completely avoid spurious images. The closest attempt to
arbitrary complex control was the very difficult and often impractical
method of making two different transparencies, one an absorbing trans-
parency to control the amplitude and one a phase-shifting transparency
to control the phase, and sandwiching the two together [Tsujiuchi, 1963].

1.3 Overview of Thesis and Summary of Contributions

Chapter 2 of this thesis describes a new kind of computer-generated

hologram, called the "Referenceless On-Axis Complex Hologram (ROACH)
(chu, Fienup, and Goodman, 1973]. The ROACH constitutes a method of
controlling the arbitrary complex transmittance of a transparency; that
is, the amplitude transmittance and the phase transmittance are control-
led independently without resorting to a carrier frequency. Independent
control is accomplished by using a multi-emulsion film, such as Kodak's
Kodachrome color reversal film, the different layers of which can be

addressed independently by different colors of light. As will be
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explained, the complex transmittance of the ROACH can be made proportional
to the desired complex wavefront F(u,v) , and so no spurious images need
occur. The ROACH has a number of other extremely advantageous properties
that are discussed in Chapter 2. The ROACH is the most direct and
elegant of all holograms and represents a major advance in computer
holography. Also discussed are the experimental steps and calibration
required to succeed in obtaining a ROACH with the desired complex trans-
mittance. Experimental results will be shown. The ROACH was invented
jointly by the author and Dr. David Chu.

In Chapter 3 we discuss the properties and limitations of Kodachrome
film that affect its use as a holographic material. There are cross-
talk effects in both the spectral sensitivities of the different layers
of the film, and in the dye spectral densities of the dye images in
the processed transparency. The result is amplitude-phase cross talk
that must be compensated for. The spatial frequency response of the film
not only limits the information density achievable with the material, but
also requires compensation if optimal results are desired. The dynamic
range of the film limits the range of amplitudes that can be represented.
The power spectrum of the noise due to scattering in the emulsion
ultimately limits the signal-to-noise ratio of the reconstructed image.

Color images can be produced from three color-separation computer-
generated holograms, one for each of the three primary co]oré. Three
monochromatic images are added to form a full-color composite image.

Two basic problems must be solved: scaling the images according to
wavelength and avoiding false color images [Fienup and Goodman, 1974;

Fienup, 1974a]. As discussed in Chapter 4, we solved the scaling problem
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in three different ways: digitally, photographically during hologram
synthesis, and optically by the reconstruction geometry. We also solved
the problem of false images in three different ways: by optical means
during reconstruction, by using the wavelength-selective absorption
properties in color film, and by using phase effects in color film to
produce what is called the "phase-null" effect. This is the first work

in which the problems associated with producing color images from computer-
generated holograms were clearly understood, stated, and solved in a
systematic and straightforward manner.

Due to limitations in the display devices and materials used to
synthesize computer holograms, often the complex values of the recon-
structed wavefront F(u,v) must be quantized to a certain set of values
in the complex plane. In Chapter 5, we discuss an iterative procedure
invented by the author that re-computes the hologram to significantly
reduce noise in the reconstructed image due to quantization in the
hologram [Fienup, 1974b]. Images from quantized holograms computed by
this iterative method achieve error rates that are orders of magnitude
better than the error rates from quantized holograms computed by previous
methods. This type of iterative procedure is shown to be extremely
versatile. Among other things, it can be used to find solutions to the

phase retrieval problem.

In Chapter 6 we summarize our conclusions and make some final
remarks. The remarks include ways in which computer holography could

be improved still further and suggestions of recommended further research.
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Appendix A contains a discussion of the Fourier transform geometry
assumed in this thesis and the reasons for preferring that geometry.
Appendix B contains a derivation of the discrete Fourier transform and
the exact form of the image produced by a sampled hologram. Appendix C
contains a discussion of a method used to produce sinusoidal patterns of
intensity with variable modulation and spatial frequency, which were
required for testing the spatial frequency response of Kodachrome.

Appendix D contains a derivation of the phase-null effect.
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CHAPTER 2
THE ROACH

In this chapter we describe a new kind of computer-generated hologram,
called the ROACH, that is made with multi-emulsion film. The ROACH is the
most elegant and direct of all holograms in that, if made properly, it
reconstructs exactly the desired wavefront and produces no spurious images.
The ROACH consists of two emulsion Tayers that independently control ampli-
tude transmittance and phase transmittance. In this chapter we describe how
ordinary color film with conventional processing can be used to synthesize
a ROACH. Also described in detail are the calibration and synthesis proce-
dures required to make a ROACH.

2.1 Basic Concept of the ROACH

The best possible hologram would have a complex transmittance
directly proportional to the desired complex wavefront. To have a complex
transmittance F(u,v) = |F(u,v)| eiw(u,v) , the hologram must, at each point
(u,v) , absorb (or scatter) 1ight according to |F(u,v)| and vary in thick-
ness or refractive index according to y(u,v) . The "referenceless on-axis
complex hologram", or ROACH, is such a hologram. The ROACH consists of a
two- (or multi-) layered material in which the different layers are inde-
pendently addressable with radiation of different wavelengths. After

exposure and processing, one layer responds with variations in amplitude
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transmittance and another layer responds with variations in phase
transmittance, according to the exposures by the radiations of the
respective wavelengths (Figure 2.1). With the ability to independently
control both amplitude and phase, we can, by a judicious pair of
exposures with radiation of the two wavelengths, control the arbitrary
complex transmittance of the material. Thus it is possible to synthesize
a hologram transparency with transmittance exactly equal to the desired
complex transmittance. When that hologram is illuminated during recon-
struction, no more and no less than the desired complex wavefront is
produced.

The advantages of the ROACH over other computer-generated holograms
are significant. Since exactly the desired wavefront is produced, no
conjugate image, on-axis spot, or other spurious images appear in the
reconstruction. ATl the Tight transmitted by the ROACH would ideally go
into the desired image, which is on-axis (in-line). Except for the sand-
wich hologram [Tsujiuchi, 1963], of all the computer-generated holograms,
only the ROACH has no spurious images. In fact, the ROACH can be thought
of as a sandwich hologram, only without the great difficulties encount-
ered in aligning together two transparencies. Due to an absence of
spurious images, the ROACH has a theoretical maximum efficiency of 100%
(the diffraction efficiency of most computer holograms is only a fraction
of this). Since the level of illumination is very often a pfob]em in
holography and in coherent optical spatial filtering, this high diffraction
efficiency gives the ROACH an important advantage.

The space-bandwidth product (or number of picture or resolution

elements) of most display devices is very limited - 1000x1000 is typical.
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Fig. 2.2 Model of Kodachrome film. In the processed
transparency, three dye images are formed, each of which
absorbs the same color to which that layer had been
sensitive before processing.
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But as mentioned in Chapter 1, a redundant hologram for a high-quality
jmage would require many times that display capability. This is partic-
ularly troublesome for binary detour-phase holograms [Brown and Lohmann,
1969] that require many display resolution elements to represent a single
sampled value of F(u,v) . The ROACH, on the other hand, requires only
one resolution element per sampled value of F(u,v) on a gray-level
display device. Thus, for a given display device with gray-level cap-
ability, the ROACH could produce the highest quality image possible from
any computer-generated hologram, since it would include the largest
number of sampled values of F(u,v).

Since the ROACH produces F(u,v) directly, no additional encod-
ing calculations are required, although such calculations are needed
with many of the other computer-generated holograms. The off-axis images
produced by most computer-generated holograms require a high-frequency
carrier on which the information is modulated in the hologram. Supporting
a carrier requires a hologram material as well as a display device with
far greater resolution than would be needed for the information in
F(u,v) alone. The ROACH, being in-line and without a carrier, keeps
the bandwidth requirement to a minimum, so that hologram materials with
Tower resolution (and correspondingly higher-speed) can be used. In fact
(as will be discussed in the next sections), we were able to use a holo-
gram material of sufficiently high speed as to make it practical to expose
it directly from a CRT.

2.2 Kodachrome Film

While the ROACH is the most direct and most elegant of all holograms,
its synthesis was not accomplished until just two years ago [Chu, Fienup,

and Goodman, 1973]. Since hologram materials are sensitive only to the
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intensity of 1ight, and not phase, it was not possible to make inter-
ferometrically-generated holograms in this direct way. Computer-
generated holograms also were not made in this direct manner because
there did not (and does not now) exist a hologram material designed to
have independently addressable amplitude and phase layers. However, we
discovered that ordinary color reversal film, particularly Kodachrome,
did happen to behave in this manner and could be used to make a ROACH.

2.2.1 Amplitude and Phase Control with Kodachrome

A simplified model of Kodachrome film, sufficient for our purpose
here, is that it consists of three emulsion layers, sensitive individu-
ally to blue, green, and red light, respectively (Figure 2.2) [Kodak,
E—74]. After exposure to a pattern of multicolored 1ight and processing,
there are formed three corresponding dye images that are predominantly
blue absorbing (yellow), green absorbing (magenta), and red absorbing
(cyan), respectively. If the processed transparency is illuminated by
monochromatic 1ight, one layer will absorb, while the other layers will
be predominantly transparent. For example, to the red 632.8 nm light of
a helium-neon laser, the blue- and green-absorbing Tayers are transparent,
and only the red-absorbing layer can attenuate the red light.

Our goal is the ability to control the complex transmittance of
color film; therefore, we will discuss only those characteristics of
color film that play a role in our gaining that ability. More complete
descriptions of the manner in which color film works, its chemistry, and
its physics, can be found in a number of references [Mees and James,
1966; Evans, Hansen, and Brewer, 1953; Neblette, 1962; Langford, 1974].

To control the amplitude transmittance to red light, the film is
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exposed to a pattern of red light; and after processing, the transparency
has greater amplitude transmittance where the exposure had been greater,
and smaller amplitude transmittance where the exposure had been less
(since color reversal processing is performed). By making trial expo-
sures and making measurements on a color densitometer, one can determine
what exposure is necessary to produce a desired amp]itude transmittance.
There is nothing unusual about trying to control the amplitude trans-
mittance (optical density) of Kodachrome film, since its intended function
is to be an absorbing material.

The Tess obvious property of color film that can be used is its
ability to control the phase structure of a transmitted wavefront.
Approximately proportional to density differences in the three layers
of Kodachrome are optical path differences due to variations in emulsion
thickness and refractive index. If the film is exposed to a pattern of
blue-green Tlight and (in a second exposure) flooded with red Tight, then
the processed transparency will be a pure-phase material to red light,
with the blue- and green-absorbing layers providing the phase effects.

The phase transmittance of Kodachrome to red 1light can be controlled in

a way somewhat similar to the manner in which the amplitude transmittance
is controlled. By making trial exposures and making measurements on a
color densitometer (measuring the density to blue-green light) we can
determine the relationship between exposure and density to blue-green,
excursions of which are assumed to be proportional to the excursions of

the phase delay. To find the proportionality constant, the film is exposed
to simple patterns of blue-green 1light (and re-exposed to uniform red light)

that result in phase gratings that have well-known diffraction patterns.

- 22 -



Then by measuring the amount of 1ight that falls in the different orders of
diffraction, the proportionality constant can be determined. We first used
this method of making a phase transparency with Kodachrome film [Goodman
and Gray, 1973] to make kinoforms [Lesem, Hirsch, and Jordan, 1969].
Combining the amplitude controlling and phase controlling layers
gives us control over the complex transmittance of the material, and we
have a ROACH. To synthesize a ROACH for illumination with red light,
Kodachrome film is exposed to a pattern of red 1ight in order to give it
the proper amplitude transmittance and to a pattern of blue-green 1ight
to give it the proper phase transmittance. The red-absorbing layer will
also give rise to an unwanted phase pattern, but, as will be explained
later in more detail, that phase is compensated for in the phase control-
ling layers by adjusting the blue-green exposure.

2.2.2 Advantages of Kodachrome over Other Phase Materials

Ordinary color reversal film has many practical advantages over
the more conventional thin phase materials that could be used to make
on-axis holograms (besides the fact that it is a thin amplitude-and-

phase material). Kodachrome, having a sensitivity of about one

2)'1 , is roughly ten to one hundred times as sensitive as thermo-

plastics, one thousand times as sensitive as 649-F (bleached), 105 times

(erg/cm

as sensitive as dichromated gelatin, and 105 times as sensitive as
photoresist [Pennington, 1971]. Kodachrome has sufficient photographic
speed for it to be conveniently exposed directly from a CRT (as will be
explained in detail in the next section) in a reasonably short exposure
time. The other commonly used phase materials mentioned above have

such low sensitivity that they would require prohibitively long exposure
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times (or require a different means of exposure, such as a laser scanning
system).

Most thin phase materials, especially thermoplastics and bleached
649-F, have a surface-relief response that varies greatly with the spatial
frequency of the pattern of 1ight that exposes the material [Lamberts,
1972; Collier et al., 1971, Ch.10]. That is, the relationship between
phase and exposure depends upon the spatial frequency of the exposure
pattern. Consequently, to obtain the desired phase for a general pattern
containing a wide range of spatial frequencies, a difficult compensation
must be performed. As will be described in Section 3.5.2., the surface
relief of Kodachrome also varies with spatial frequency. For our own
ROACHs and phase-only holograms, the important range of spatial frequen-
cies was 1 to 15 1/mm. For these spatial frequencies the response of
Kodachrome does not vary as much as the response of bleached 649-F,
and compensation is not a necessity.

Bleached 649-F has an advantage over other phase materials in that
its phase pattern can be measured using a densitometer, since the phase
after bleaching is linear with the density before bleaching [Lamberts,
1972]. Such an easy measurement of phase is extremely helpful in deter-
mining the exposure pattern (before processing) required to achieve the
desired phase pattern (after processing). For Kodachrome the measurement
of phase is even easier. Unlike bleached 649-F, for which the easy
measurement of phase must be performed before the final processing
steps (bleaching), the phase of Kodachrome can be measured on the completely
processed transparency, as discussed in Section 2.3.5.

The use of Kodachrome is also advantageous because it is inexpensive,
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readily available, and requires no darkroom facilities of the user,
since it can be purchased almost anywhere and processed through any drug
store or photo-counter, or by the manufacturer. The convenience of
Kodachrome should make it extremely attractive to researchers who want
to make computer-generated holograms, even if it is used just as a thin
phase material.

We used Kodachrome II for most of our work. However, since the
summer of 1974, Kodak has replaced it with a new film, Kodachrome 25.
Both of these materials, as well as other color films, are suitable for
making ROACHs; but Kodachrome II has the best combination of character-
jstics of the films we tried (these characteristics will be discussed
in the following sections).

2.2.3 Different Modes of Use

A ROACH can be made for reconstruction with green or blue 1light, as
well as with red light as discussed in Section 2.2.1. (Reconstruction
with all the visible colors of light is possible, but we will consider
here only the primary colors.) Furthermore, for reconstruction with red
Tight, it is not necessary to use both the green-absorbing and the blue-
absorbing Tayers to control the phase. There are many different modes
in which a three-layered color film can be used to control amplitude and
phase. For reconstruction with any one of the primary colors of light,
the corresponding absorbing layer is used to control amplitude trans-
mittance ‘and either or both of the remaining two layers are used to
control phase transmittance. The various modes and the colors of light
needed in their synthesis are summarized in Table 2.1. When only one
of the two transparent layers is used for phase control, then the other
transparent layer can either be left unexposed, resulting in a uniformly
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thick dye image in that layer of the processed transparency, or be
fully exposed (by flooding it with the corresponding color of narrowband
light), resulting in an absence of dye in that layer of the processed
transparency ("eliminating" the layer). In practice, if a layer is not
used for either amplitude or phase control, then the results are better
if that layer is "eliminated". 1In Table 2.1 it is assumed that unused
layers are eliminated. When a phase-only transparency (kinoform) is
desired, the layer corresponding to the color of the reconstructing
light is eliminated.

For most of our experiments we made ROACHs for reconstruction
with red light, using both the blue-absorbing and the green-absorbing
layers together for phase control. In order to produce full-color images,
as will be described in Chapter 4, it is necessary to synthesize ROACHs
for reconstruction with blue 1ight, green light, and red light. A1l of
the modes were tested. Not all modes are equally useful. One consider-
ation is the amount of phase variation obtainable from one layer (27
radians, or one wavelength, is required), and that depends on the specific
type of film used. A comparison of the advantages and disadvantages of
the various modes will be made in Section 2.3.5.

2.2.4 Dye Spectral Densities of Kodachrome

Figure 2.3 shows the spectral densities of the dyes in the three
layers of Kodachrome II [Kodak Data]. The considerable amount of overlap
of the three dye spectral densities is suitable for color photography
since it reproduces colors that are interpreted by the eye to approxi-
mate the colors in the original scene. However, that overlap is highly

undesirable for computer holography. There is little problem when the
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Fig. 2.3 Dye spectral densities of Kodachrome II,
normalized for a visual density of 1.0.
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processed transparency is illuminated with the red 632.8 nm 1light from
a helium-neon laser, since the blue-absorbing and green-absorbing dyes
absorb very little at that wavelength. However, when the transparency
is illuminated by the blue 457.9 nm light from an argon-ion laser, the
blue Tight is significantly absorbed by the green-absorbing and red-
absorbing layers, causing an undesired change in the amplitude trans-
mittance. If a ROACH were made for illumination with blue Tlight, this
cross-talk from the green-absorbing and red-absorbing layers could be
compensated for by adjustments in the blue-absorbing layer. Since the
green-absorbing and/or red-absorbing layers would be used for phase
control, this is a phase-to-amplitude cross-talk. Fortunately, good
results can be obtained even if we ignore this phase-to-amplitude dye-
absorption cross-talk since the accuracy of the amplitude transmittance
is much Tess important than the accuracy of the phase transmittance
[Pear]man, 1974; Powers, 1975]. Similarly, the green 514.5 nm 1ight
from an argon-ion laser would be partially absorbed by the bTue-absorbing
and red-absorbing layers, but good results can be obtained if this cross-
talk is ignored. For optimal results, however, compensation for this
cross-talk must be performed, as will be discussed in Chapter 3. An
effect of phase-to-amplitude cross-talk for which no compensation is
possible is a reduction in the diffraction efficiency of the hologram
due to absorption by the phase controlling layer.

We éxpect the phase contributed by each layer to be proportional
[Lamberts, 1972] to the density of each individual Tayer, the analytical
density. However, a measurement with one color on a color densitometer

gives the sum of the contributions from all three layers, the integral
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density, which differs somewhat from the analytical density [Evans,
Hansen, and Brewer, 1953; Mees and James, 1966]. It is possible to
determine the analytical densities from the integral densities [Evans,
Hansen, and Brewer, 1953]; however, we used the integral densities for
our experiments because they are easily measured and are sufficiently
close to the analytical densities for our purposes. For optimal results,
though, the analytical densities should be considered. Furthermore, since
the densitometer available to us measures diffuse density, we used
measurements of diffuse density for our H&D curves rather than specular
density (which is more pertinent to Fourier transform imagery). The
diffuse-density H&D curve is sufficiently similar to the specular-
density H&D curve to warrant its use.

2.3 Synthesis and Calibration Procedures

In order to synthesize a hologram that will produce a desired image,
it is necessary to first calculate the desired wavefront in the hologram
plane. Ordinarily, the image is specified as an array of complex
numbers, the moduli of which are the square roots of the desired intensity
at a grid of sampled points in the image plane. A digital discrete
Fourier transform is performed that yields sampled values {Fp,q}
(Fourier coefficients) of the Fourier transform of the sampled object.
This will be explained in more detail in Appendix B. Then to synthe-
size a ROACH for reconstruction with red light, we expose Kodachrome film
to two pétterns of light, a pattern of red 1light to control the amplitude
transmittance and a pattern of blue-green 1light to control the phase
transmittance. We accomplish this by photographing a computer-controlled

CRT display, the amplitude controlling exposure through a red filter and
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the phase controlling exposure through a blue-green filter. After
standard processing, the ROACH can be reconstructed by illuminating it
with coherent red light from a helium-neon laser. This synthesis pro-
cedure is summarized in Figure 2.4.

This work is the first successful attempt to control the complex
transmittance of a material. The gaining of the ability to control complex
transmittance requires considerable experimental effort; however, once
the correct exposure parameters are found, then ROACHs can be made with
relative ease. In this section we will describe in detail the CRT and
photographic considerations, the choice of filters needed for independ-
ent amplitude and phase control, and the calibration procedure necessary
to determine what exposures are needed to produce the desired complex
transmittance. The considerations described in this section are of
considerable practical importance in achieving the complex control needed
to synthesize a ROACH.

2.3.1 CRT and Photographic Considerations

For our experiments, we use a Tektronix type 602 CRT display,
controlled by a Xerox Sigma-5 computer through a digital-to-analog
converter. Assembly language subroutines for controlling the CRT were
written by Turner [Turner, 1972]. The CRT has 256x256 addressable points.
On the CRT a pattern is scanned out once, the exposure controlled by the
length of time that the CRT beam is turned on at each point, generating
gray 1evéls that are for all practical purposes continuous.

To minimize exposure times, the highest intensity that would not
damage the phosphor is used. To get a repeatable intensity, after the

CRT is fully warmed up, the brightness of a spot displayed on the CRT
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is measured directly by putting a light meter up to the face of the CRT
and adjusting the intensity knob until the 1ight meter indicates the
standardized intensity (20 uW in our experiments).

The ideal display would be a grid of adjoining squares with uniform
illumination over each of the squares and no gaps between the squares.
To approximate this, the X and Y gain control knobs on the CRT are
adjusted so that adjoining lines just overlap. Unfortunately, a single
dot on the CRT is round rather than square; and over its circular area
the dot intensity is not uniform, but is peaked at the center and falls
off toward the edges. Defocusing the electron beam can cause the spot
to take a more rectangular shape, but the shape is difficult to control
accurately. The method we use is to move the dots close together to
make them overlap somewhat, then use four adjoining dots (in a 2x2
square) to represent one sampled location. That is, in effect we used
the CRT as though it had only 128x128 resolution elements. Using 2x2
dots as one display element reduced the number of available display
elements by a factor of four, but substantially increased the quality of
the display.

Kodachrome II resolves spatial frequencies out to the range 96-135
lines/mm [Kodak, AF-1], and the 55 mm f/3.5 Micro-Nikkor Tens that we
used to photograph the CRT display resolves only 70 lines/mm (by our
own measurements). To insure that the modulation transfer function (MTF)
of our pﬁotographic process would not be a limiting factor, we chose a
magnification that gave us a spacing of approximately 1/20 mm between
Fourier coefficients in our holograms. Positioning the front of the lens

80 cm from the face of the CRT yields a magnification of 1/14.5 that
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produces a hologram of width 5.3 mm (128%128 Fourier coefficients) from
a CRT display of width 7.7 cm. The CRT is shielded from room light by

a cardboard tube (Fig. 2.5).
2.3.2 Color Filters

It is necessary to photograph the CRT through color filters in
order to independently address the different layers of the color film.
The relative exposure of each layer (the photicity) is given by [Jones,
1931]

E. =

; P(A)Tf(x)si(x)dx (2-1)

O 8

where P()) is the spectral energy distribution from the CRT phosphor,
Tf(x) is the spectral transmittance of the color filter, and Si(x)
is the spectral sensitivity of the ith emulsion layer of the film.

The CRT display used for our experiments has a type P-31 phosphor,
which has a spectral energy distribution shown in Figure 2.6a. Two
filters typically used, Kodak Wratten filters No. 38A and No. 26, have
spectral transmittances shown also in Figure 2.6a [Kodak, B—3]. Figure
2.6b shows the spectral energy distributions of the light from the CRT
after it has passed through either of these two filters. Kodachrome II
has spectral sensitivities shown in Figure 2.6c¢ [Kodak Data].

As can be seen from Figure 2.6a, the P-31 phosphor emits little
1ight energy with wavelengths greater than 620 nm; and as can be seen
from Figure 2.6c, wavelengths longer than 620 nm are needed in order to
expose the red-absorbing layer independently of the other two layers.
The result is a need for very long exposure times when red light is
required from the P-31 phosphor. A better choice of phosphor when work-

ing with color film would be a white phosphor, such as P-4 [Be]], 1970].
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Fig. 2.5 Photographing the CRT. The CRT (A)

is shielded from room light by a cardboard tube
(B). Color filters are inserted in felt-lined
slots (C) in the cardboard tube, between the

CRT and the camera (D). A storage CRT (E) shows
what is displayed on the primary CRT (A).
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(b)

(c)

J _1

2L d |
200 750 500 550 500 550
7\(nm)

Fig. 2.6 Spectral distribution curves. (a) P-31 phosphor - P(A),
and Wratten filters No. 38A and No. 26 - T.(x); (b) P(A)Tf(x);
(c) Spectral sensitivities of blue-absorbing layer - Sp(x), green-
absorbing layer - S (1), and red-absorbing layer - S (3), in
(ergs/cmé)=-1, 9 r
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The spectral distributfon curves of Figure 2.6 make apparent the
interrelated problems of independently addressing the different layers
of the film. Since there is considerable overlap of the spectral
sensitivities of the different layers of the film, it is not possible
to expose each layer completely independently of the others (the result
being exposure cross-talk, which will be discussed further in Chapter

3.). Let the ratio of the relative exposure of the mth

h

layer to the
relative exposure of the nt layer be Em/En . Then the requirement for
layer m being addressable independent of layer n is only that

Em/En >> 1 ; in practice, Em/En in the 50-100 range is sufficient.
Competing with the desire to have E /E ~ as large as possible is the
desire to keep Em , the relative exposure of the desired layer, as

large as possible. This conflict arises from the fact that Em/En

can only be increased by choosing a narrow-band filter transmittance

Tf(A) ; but, as can be seen from (2-1), a narrow-band Tf(x) will

reduce Em . Furthermore, narrow-band absorbing filters usually have a
Tow peak transmittance, further reducing Em . Higher peak transmittances
can be obtained from dichroic interference filters, but at a much higher
cost than Kodak Wratten filters. In order to find the Kodak Wratten
filters with optimum Em and Em/En for a given mode, the integration
(2-1) was performed on a digital computer for all Wratten filters of
interest, using filter spectral transmittance data supplied by the manu-
facturer [Kodak, B-3]. The results are summarized in Table 2.2, a list-
ing of the Kodak Wratten filters best suited for use with a P-31

phosphor and Kodachrome II film.
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undesired desired color

color(s) red green Dblue
Both other colors 26 61 98

red - 61 98 (a)

green 26 - 98

blue 12 12 -

desired colors (equally)

third color red and green red and blue green and blue
not allowed 22 none available 38A (b)
allowed 22 CC50Y CC50M

Table 2.2. Kodak Wratten filters for use with P31
phosphor and Kodachrome II. (a): Filters with maximum
transmittance to the desired color and minimum
transmittance to the undesired color(s). No filter is
required for kinoforms using only one layer to control
phase when both of the other layers are eliminated.
(b): Filters for use when two layers are to be exposed
equally.
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2.3.3 Eliminating a Layer

Before attempting to control both amplitude and phase simultane-
ously, it is necessary to first concentrate on controlling just the phase.
In order to make a phase-only transparency it is necessary to eliminate
the absorbing dye from the processed transparency. This elimination can
be accomplished by flooding the film (in addition to exposing it to the
phase-controlling pattern) with the color of 1light to which the processed
film is to be transparent. If the flooding exposure is sufficient, then
the processed transparency will be sufficiently transparent to the
reconstructing 1light; however, too great a flooding exposure will also
expose the phase-controlling layers, reducing the ability to control the
phase. The elimination of a Tayer by a flooding exposure is also needed
when the film is used in a mode in which only one of the two transparent
layers is used for phase control (Table 2.1), as discussed in Section
2.2.3.

In order to determine the optimum flooding exposures for elimin-
ating undesired layers, a series of exposures are made through narrow-
band color filters, then the resulting densities to the three primary
colors are measured. The exposures are made by photographing a uniform
white surface through narrowband color filters. The white surface is
ilTuminated by two No. 2 photofloods (with a color temperature of
3400°K) in 12 inch-diameter reflectors, positioned on both sides of
the camera, both at 45° angles to insure even jllumination. The distance
from each of the photofloods to the white surface is adjusted so that
the intensity of the Tight falling on the white surface is 520 foot-

candles. Since minimization of exposure time is not a consideration
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(as it is when exposing from a CRT), very narrowband filters can be used.
The following Wratten filters were used for the flooding exposures:

No. 92 (red), No. 93 (green), No. 98 (blue), and No. 21 (red and green =
yellow-orange).

A Macbeth Quantalog TD-100A densitometer was converted for use as
a color densitometer. Color filters are inserted into the illuminating
beam to select the desired color for measurement. The filters used by
us were taken from a Kodak 1-A visual densitometer: Wratten No. 92 (red),
Wratten No. 61 (green), and Corning No. 5113 (blue). These filters are
of relatively high transmittance, which facilitates densitometer read-
ings. Measurements in better agreement with other color densitometers
would result if Status A filters [Vog]esong, 1973] were used.

Unfortunately, the tungsten light source of the densitometer emits
very little blue Tight. Consequently, the density-to-blue readings are
made at the highest sensitivity range of the densitometer and are
unreliable beyond a density of 2.0 (using a 1 mm measuring aperture;
with a 3 mm measuring aperture, useful measurements can be made up to a
density of 3.0). An infrared-reflecting dichroic interference filter is
also inserted in the illuminating beam in order to eliminate false
readings at high densities due to infrared, which Kodachrome transmits
freely [Powers and Miller, 1963].

Figure 2.7 shows the three-color integral densities resulting from
the series of flooding exposures (density vs. log of exposure, also
known as the H&D curves [Hurter and Driffield, 1890] or the character-
jstic curves). As mentioned in Section 2.2.4, these measurements differ

from the analytical densities, due to the overlap of the dye spectral
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DENSITY

DENSITY

o5 060 .25 | 4 15 60 250 1000 4000
EXPOSURE

Fig. 2.7 H&D curves for flooding exposures. One unit of
exposure is equivalent to 1 msec at f/4 with an
illumination of 520 footcandles.
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densities in the three layers. In no case does the density go to zero,
due to the density of the film base.

Figure 2.7 makes apparent the absorption cross-talk effects
mentioned in Section 2.2.4. For the Wratten filter No. 21 case, the
densities to green and red level off at 0.45 and 0.20, respectively, at
high exposure levels (even though the green-absorbing and red-absorbing
dyes are eliminated) due to a small amount of green and red absorption
by the remaining blue-absorbing dye Tayer. For the Wratten filter No.
92 case, the drop in density to blue and to green is due to the decreas-
ing blue and green absorption by the red-absorbing layer as it is
increasingly eliminated. For the Wratten filter No. 98 case, the
decrease in density to blue results from a decrease in absorption in
the blue-absorbing layer, up to an exposure level of about 250 units
(see Fig. 2.7), at which point the blue-absorbing layer is eliminated;
above an exposure level of 250 units, the decrease in density to blue
results from a decrease in blue absorption by the green-absorbing and
red-absorbing layers. Taking into consideration the absorption cross-
talk effects mentioned above, the exposures at which the various layers
are eliminated are given in Table 2.3.

As mentioned in Section 2.3.2, another problem is exposure cross-
talk which results from the overlap of the spectral sensitivities of the
three layers (Fig. 2.6d). As can be seen from the exposures through
Wratten fi]ter No. 92, the red-absorbing layer can be exposed completely
independently of the blue-absorbing and green-absorbing Tayers (i.e.,
no exposure cross-talk). Through Wratten filter No. 93, the green-

absorbing layer can be exposed completely independently of the blue-
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Filter Layers eliminated Exposure

92 red 8
93 green 250
98 blue 125
21 red and green 60

Table 2.3. Flooding exposures for eliminating layers.

Units of exposure are the same as in Figure 2.7.

absorbing layer and almost completely independently of the red-
absorbing layer. But for Wratten filter No. 98, if the blue-absorbing
layer is exposed to the point of elimination, then the green-absorbing
and red-absorbing layers are significantly exposed. However, the
exposure of the red-absorbing and green-absorbing layers resulting from
the elimination of the blue-absorbing layer only adds a bias to the red
and green exposures and limits the maximum attainable densities to red
and to green. The result is to 1imit the dynamic range available in the
red-absorbing and green-absorbing layers, but not to prohibit their use.

2.3.4 Density vs. Log of Exposure Curves from the CRT

In order to determine the film characteristic (H&D) curves for
the particular CRT, filters, and photographic set-up, grey scales are
displayed on the CRT and photographed through the filters. Flooding
exposures are also made when necessary. The densities of the resulting
transparencies are measured on the densitometer and the H&D curves are
plotted. Figure 2.8 shows H&D curves for a few filters typically used

for amplitude control and for phase control. In Figure 2.8, as well
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DENSITY
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\ N --= No. 26
-——No. 61

- . 98, R¢G Elim
0.5 No. 384, R Elim
—.—-=No. 22, B Elim

I I ] I [
1.5 2.0 25 3.0 3.5 4.0 4.5

LOG OF EXPOSURE

Fig.2.8 H&D curves for CRT exposures. One
unit of exposure is equivalent to one computer
cycle at f/8 with a CRT spot brightness of 20uW.
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as in some other figures in this thesis showing measured character-
istics of color films, we show only the most representative or most
often used measurements made by the author. The large number of color
filters and different modes of use of the film actually tested would
require too much space and only serve to confuse the reader.

2.3.5 Establishing the Phase Controlling Exposure

Depending on its mode of use (Table 2.1), Kodachrome film is
exposed through one of the Wratten filters listed in Table 2.2 in order
to control the phase of the processed transparency. We will refer to
the phase controlling filter as the "phase filter", to the corresponding
layer(s) within the film that control(s) the phase transmittance as the
"phase layer", and to the effective exposure received by that layer as
the "phase exposure", Ep . As discussed in Section 2.3.3, to produce
as pure-phase transparency it is necessary to flood the film (in a
second exposure) to the color of light with which the processed trans-
parency is to be illuminated, which we will refer to as the "flooding
color".

It is assumed that phase excursions are proportional to density
excursions [Lamberts, 1972], an assumption that is shown in Chapter 3 to
be accurate. The more heavily exposed parts of Kodachrome II are thinner
(as well as Tless dense), yielding by our convention a positive phase
shift. Therefore, we can use the H&D curves of Figure 2.8 to determine
the phase as a function of exposure, to within a proportionality con-
stant. It simplifies the mathematics if the phase exposure is made over
the Tinear part of the H&D curve. From Figure 2.8 it can be seen that

the H&D curves do generally have a linear region of considerable extent.
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If, on the linear region of the H&D curve, an exposure range E

pmin
to Epmax results in 2m radians of phase shift, then the phase shift
resulting from an exposure of Ep is
p = A (log E_ - log E__. )
Alog Epm p pmin (2-2)
where Alog Epm = Tlog Epmax - log Epmin = ]og(Epmax/Epmin) and the phase

shift at exposure E js arbitrarily defined to be zero. Since the

pmin
phase shift is linear with the log of exposure, all exposure ranges
Epmin to Epmax on the linear region of the H&D curve that result in
n = Vog(E ./

2r radians of phase shift have the same value of Alog Ep pinax

E Hence, the determination of the phase matching condition

pmin) :
reduces to finding the value of Alog Epm . Solving (2-2) for 1log Ep ,
the exposure that results in the desired phase shift ¢ is given by

+ (y/2n)Alog E (2-3a)

log E om

1og Ep pmin

or

(v/2n)Alog E

Ey = (Epmin) 10 Mo (2-3b)

The phase-matching condition can be determined by displaying and
photographing an appropriate pattern through the phase filter (subse-
quently, the film must be re-exposed to the flooding color). Equation

(2-3) is used to determine the exposure pattern that gives the desired

pattern of phase shift. Since alog Epm is not known, exposures are
made with test values of Epmin and Epmax ; and aAlog E = log EpmaX -
log Epmin is used in place of Alog Epm in (2-3). The resulting phase

pattern can be a sawtooth pattern, a sinusoidal pattern, or any phase-
only hologram with a known diffraction pattern. By measuring the

intensities in the different orders of diffraction in the reconstruction
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of the phase transparencies, the phase-matching condition (the value of
Alog Epm) can be established.

Let t(x) be the complex amplitude transmittance of the trans-
parency, which is assumed here to be constant in the y direction.
If t(x) is periodic, with period L , then it can be decomposed
into the Fourier series [Matthews and Walker, 1970] (physically, the

transmitted wave is decomposed into plane waves):

«©

n=-o
where
L/2 .
o = [ t(x) e E/L g (2-5)
-L/2

The intensity of the 1ight from the illuminated transparency falling

into the nth order of diffraction (in the Fourier plane) is proportional

to |an|2 . As discussed in Appendix B, each spot of light in the
Fourier plane is a point convolved with a sinc function of width depend-
ing upon the width of the transparency, giving each spot a finite dia-
meter. For the sawtooth phase-grating pattern shown in Figure 2.9a, the
transmittance is t(x) = eiw(x) » where y(x) = (2n/L)M-(x+L/2) over

one period (that is, x = -L/2 to L/2), and M is the phase modulation
coefficient for a particular grating. The phase-matching condition is

met when M =1, since y(x) would then vary by 2m over one period.

Using (2-5), for the sawtooth pattern we have
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-y, Ly X L, L/, X
(o)) (b)

Fig. 2.9 (a) Sawtooth phase grating pattern;
(b) Sinusoidal phase grating pattern.

M= (refracdive 1noley - Py w/ A
lanl2= Sinc2(M-n) lapl2 = an (M)

{4

Fig. 2.10 Reconstructed intensity 05 n
(a) For sawtooth phase grating, la |

order
= sinc(M-n);

(b) For sinusoidal phase grating, Iu |2 JE(nM).
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L/2 .
o = LT exp{i -Z—EM-(x+L/2)}e‘12“"X/L dx
noo by L

/in

. L/2
£V cos[2m(M-n)x/L]dx (2-6)
0

REY §%%%§%3nl. = '™ ginc(M-n)

Therefore, the intensity falling into the nth order of diffraction

will be proportional to

|2 = sincz(M—n) (2-7)

o

for the sawtooth pattern. Similarly, for the sinusoidal phase-grating

pattern of Figure 2.9b, where the phase is ¢(x) = (2aM/2)-sin(2wx/L),

exp{i(ggm)sin(znx/L)} = 19 (aelammL (2-8)

n=-o

th

[Goodman, 1968] where J, s the n order Bessel function of the

first kind. Then, for a sinusoidal pattern, the intensity falling into

the nth order of diffraction is proportional to

12 = 9Zam) . (2-9)

o

Figure 2.10 shows sincZ(M—n) and Jﬁ(wM) as functions of M
for various orders of diffraction, n . To determine the actual M of
a given transparency, the measured intensities in different orders of
diffraction could be compared to the curves in Figure 2.10. However,
to use Figure 2.10 directly, the proportionality constant between

th

order, I would have to

Ian[2 and the measured intensity of the n n

be known (since there is some residual absorption by the phase grating).

Instead, we consider the ratios IO/I1 , and IZ/I1 (other orders
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could be considered, too). Let Rmn(M) be the calculated value of
|am12/|an12 for a given value of M . The ratios I,/I; and I,/1,
are then compared to R01 and R21 , respectively, to determine M .
Plots of R01 and R21 , as a function of M (which are used to
determine M), are shown in Figure 2.11 for the sawtooth pattern and
in Figure 2.12 for the sinusoidal pattern.

When phase-matching is achieved, then a perfect sawtooth phase
pattern would be just a prism modulo 2m radians of phase, and 100%

of the 1ight will go into the first order (R,; = R,; = 0) , which

01 21
would be very easy to interpret. A sinusoidal phase pattern yields
intensities in the zero, first, and second orders in the ratios of
98(r) : 93(n) : 35(n) , or 0.0928 : 0.0810 : 0.235 , when phase-
matching is achieved, a condition which is Tess easy to determine

experimentally.

For a sawtooth pattern, u(x) contains many different spatial
frequencies (although the fundamental frequency dominates); and, as
discussed in Chapter 3, the phase response (which is proportional to M)
varies somewhat with spatial frequency. Consequently, phase-matching
cannot be exactly achieved for a wide band of spatial frequencies
simultaneously. Furthermore, various non-linearities and noise also
prevent the ratios IO/I1 and 12/11 from going to zero even when the
best phase-matching is achieved. The non-linearities and noise tend to
boost thé intensities I0 and 12 compared to I1 when M 1is near
1. Consequently, the ratio IO/I1 tends to predict too low a value of
M when Mg 1 . Similarly, the ratio 12/11 tends to predict too high

a value of M when M3z 1 . When the value of R01 (or R21) is below
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Fig. 2.11 Sawtooth phase grating: rat1os of intensities of

orderg of d1ffract1on Ron = logl /la |2 = sinc2(M-m)/sinc2(M-n) =

(M-n) Mm
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Fig. 2.12 Sinusoidal phase grating: ratios of
intensities of orders of diffraction.

R = o 12/ 1a, | = 92 (nt) /35 (M)
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about 0.05 (depending upon the amount of noise present), then IO/I1
(or 12/11) no longer gives an accurate estimate of M , except to
indicate that M is between 0.82 and 1.18 (see Figure 2.11).

Using only the linear part of the H&D curve to control the phase,
the phase-matching condition is achieved by finding the value of

Alog E = log(E /E

pmax pmin) that makes M =1 (that value being

Alog E Theoretically, only one trial exposure would be needed to

Pm) )
find M for a given Alog E ; then alog Epm would be equal to
(ATogE)/M . However, since non-linearities and noise 1imit the accuracy
of our estimate of M , it is necessary to make a series of trial
exposures in order to pick the optimum Alog Epm .
Table 2.4 shows typical experimental data used for determining the
phase-matching condition. In this case, the phase filter was Wratten
No. 22 (using both the green-absorbing and red-absorbing layers for
phase control), and the film was re-exposed to blue 1ight through a
Wratten filter No. 98 to eliminate the blue-absorbing layer. The trans-
parencies were reconstructed by 457.9 nm blue 1ight from an argon-ion
laser. The indicated values of M were obtained by comparing the values
of IO/I1 and 12/11 with the values of R01 and R21 » respectively,
using Figures 2.10 and 2.11. Since 12/11 gives a very inaccurate
estimate of the value of M when 12 is very small (for Alog E < .5) ,
those values should be ignored. From the data in Table 2.4, a best
guess for the value of Alog Epm would be 1.10 + .05. To get accept-
able images, phase-matching should be accurate to within about 10%, as

discussed in Chapter 3.

Tables 2.5 and 2.6 summarize the experimentally determined phase-
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sawtooth
patterns

sinusoidal
patterns

measured indicated alog E m

quantities indicated M =(alog E)/M

Alog E IO/I1 IZ/I1 by IO/I1 by 12/11 by IO/I1 by 12/11

.50 1.25 .22 .48 - 1.04 -
.80 .175 .052 .70 .70 1.14 1.14
.90 .082 .027 .78 ~1 1.15 ~.90
.95 .066 .036 ~1 ~1 >.95 ~.95
1.00 .052 .023 ~1 ~1 1.00 ~1.00
1.05 . 041 .021 ~1 ~1 1.05 ~1.05
1.10 .033 .033 ~1 ~1 1.10 ~1.10
1.20 .021 .080 ~1 1.23 <1.20 .98
.20 10.40 .082 .18 .35 1.10 .57
.40 2.22 .12 .35 .41 1.14 .97
.60 .54 .25 .53 .56 1.14 1.08
.80 . 089 .50 .67 .70 1.20 1.15
1.0 .29 1.20 .91 .88 1.10 1.15
1.2 1.32 2.23 1.01 .96 1.19 1.24

Table 2.4. Typical experimental data for
phase-matching
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phase-

reconstructing phase controlling Alog E A1og E matching
wavelength, color layer(s) pm available possible?
632.8 nm  red blue 1.90+£.15 1.4 no

" " green 2.20+.20 1.6 no

. " blue and green 0.85+.10 1.8 yes
514.5 nm  green blue 1.40+.20 1.4 yes

" . red ~ 2.8 1.4 no

" " blue and red 0.80+.10 1.4 yes
457.9 nm  blue green ~ 1.2 1.4 yes

" " red 1.70+. 20 1.6  marginal

" ! green and red 1.10+.05 1.4 yes

Table 2.5. Experimental phase-matching conditions for all modes of
Kodachrome I1I

reconstructing phase controlling Alog E A]og E 52i§§§ng
wavelength, color layer(s) pm available possible?
632.8 nm  red blue 2.45+.10 1.3 no

" " green 3.70+.40 1.4 no

" ! blue and green 1.20+.10 1.6 yes
514.5 nm green blue 1.75%.05 1.4 no

" ! red 2.20+.20 1.4 no

. . blue and red - - yes
457.9 nm  blue green 4.30+.30 1.4 no

! . red 1.85+.15 1.4 no

" " green and red 1.50+.10 2.0 yes

Table 2.6. Experimental phase-matching conditions for all modes of
Kodachrome 25
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matching conditions for all modes of Kodachrome II and Kodachrome 25,
respectively. The values of Alog Epm were determined by comparing
with Figure 2.11 the measured values of IO/I1 and 12/11 that
resulted from sawtooth phase patterns. "alog E available" 1is the
log of the dynamic range in exposure (over the approximately linear part
of the H&D curve) of the phase controlling layer. If Alog Epm is
somewhat greater than Alog E available, then (2-3) can no longer be
used to determine the exposure required to produce the desired phase:
the exact shape of the H&D curve must be taken into account. If for a
given mode Alog Epm is much greater than Alog E available, then it
is not possible to achieve phase-matching (2 radians of phase) for
that mode; consequently, that mode could not be used to make either a
ROACH or a kinoform (except for the special case mentioned in Section
3.6). As noted in the last column of Tables 2.5 and 2.6, only a few of
the modes are capable of achieving phase-matching. The use of both
transparent layers for phase control makes phase-matching possible in
all cases. Hence it is possible to make ROACHs for all three of the
primary colors (see Chapter 4).

A comparison of Table 2.5 with Table 2.6 shows that Kodachrome II
is much better suited for computer holography than is Kodachrome 25,
since the former exhibits greater phase variations than the latter.
While a ROACH for green light can be made with Kodachrome II using only
the blue-absorbing layer for phase control, it can be made with Koda-
chrome 25 only if both the blue-absorbing and the red-absorbing layers
are used for phase control. No single Wratten filter exists that can

cause the blue-absorbing and the red-absorbing layers to be equally
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exposed without also significantly exposing the green-absorbing layer.
Consequently, to make a ROACH for green 1light on Kodachrome 25 it is
necessary to make two exposures just for phase control, one through a
blue (Wratten No. 98) filter and one through a red (Wratten No. 26)
filter. For this mode of Kodachrome 25 the double-exposure Alog Epm
was not determined; however, since use of the blue-absorbing layer
alone (see Table 2.6) comes close to phase-matching, the combination of
the blue-absorbing and the red-absorbing layers should make phase-
matching possible. The value of Alog Epm given for the corresponding
mode of Kodachrome II in Table 2.5 was obtained from single exposures
through Wratten filter No. CC50Y which also transmits green light; thus

that value of Alog E is meaningful only for kinoforms, for which the

pm
green-absorbing layer is eliminated.
Of the modes listed in Tables 2.5 and 2.6, only those that were

actually used to make ROACHs were accurately tested. Only rough esti-

mates of Alog E were made for other modes, particularly those for

pm
which phase-matching is not possible.

2.3.6 Adding Amplitude Control

In order to produce the desired calculated wavefront, F(u) =
[F(u)[eiw(u) » & ROACH should have a complex transmittance, H(u) ,
that is proportional to F{u) . Since the maximum amplitude transmit-
tance of any passive hologram material is 1 , F(u) 1is normalized to
have a maximum value of 1 by t_(u) = |[F(u)|/Max{|[F(u)|} . If toax
is the actual maximum amplitude transmittance of the hologram material,
then the desired hologram transmittance is H{u) = toax ta(u) eiw(u) .
The optical density of the amplitude controlling layer, Da , corres-
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ponding to tmaX t is given by

a
. 2y _ i ’
D, - Damin = 1og(ta) 21og(ta) (2-10)
h D is the d ity corresponding to t = 10'Damin/2 and to
where D_ . =~ 1s the density corresp g nax
the maximum exposure, Eamax . The amplitude controlling exposure, Ea >

needed to achieve the desired density, Da (and the desired ta), is

determined from the H&D curve (Fig.2.8), and(2-10).

If, for simplicity, only the linear part of the H&D curve is used,

then
Tog £, = Tlog E_ ..+ B-Tog t, (2-11)
or
_ B

Ea = Eamax'ta
where B = 2(log Eamax - log Eamin)/(Damax' Damin) and DamaX is the “
density corresponding to the minimum exposure, Eamin . The hologram

D -D_ .

is limited to a dynamic range of 10 amax —amin -, intensity or

10(Damax'Damin

)/2

in amplitude.

The addition of amplitude information also results in undesired
phase effects, since the amplitude controlling layer contributes to the
phase delay. As discussed in Chapter 3, the phase delay contributed is
linear with density. To compensate for this undesired phase delay, the

phase controlling exposure, Ep , is adjusted. We replace (2-3a) with

Tog Ep = Jlog E + (v/2r) Alog Epm - glog(E,/E ) (2-12)

pmin amin

where the factor g is determined experimentally. If 1log Ep computed

by (2-12) is less than log E , then Alog Epm js added to Tog E

pmin p

in order to preserve the phase modulo 2r vradians in the phase control-
ling layer.
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As discussed in Chapter 3, for optimal results the effect of the
phase controlling layer on the amplitude transmittance may also be
compensated for; however, good results can be obtained without that
compensation.

2.4  Experimental Results: Images

Due to jnaccuracies in the measured densities (integral vs.
analytical) and chemical and physical interactions between the different
layers (interimage effects) during processing [Evans, Hansen, and Brewer,

) E

amax , and D

1953], the measured values of E

. D .
amin amax amin

used in (2-11) are considered to be only approximate. To determine
the best set of exposure parameters, the measured values of Eamax s

Tog(E /E D ) are used as a starting point in

amax amin) » and (D

amax —amin

a trial-and-error search. The search for the best set of exposure
parameters (including B) is accomplished by varying one exposure
parameter at a time to converge on the best image. Once the optimal
exposure parameters are found, the calibration procedure is completed;
and the same exposure parameters can be used to make ROACHs reliably and
with good repeatability.

Figure 2.13 shows an image from a ROACH illuminated by red light.
The object was specified by a 32x32 array of 1's and 0's and was phase-
coded using the "hyperbolic" phase-code [Chu, 1974]. The basic 32x32
element ROACH, shown in Figure 2.25, was replicated 4%4 times, resulting
in the dot structure of the image (see Appendix B). ROACHs for illumi-
nation by blue 1ight, by green 1ight, and by red 1ight,and the full-
color image produced by them, will be shown in Chapter 4.

Figure 2.14 shows a similar image from a kinoform. The phase

controlling layer of the kinoform was exposed in the same manner as the
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Fig. 2.13 Reconstructed image Fig. 2.14 Reconstructed image
from a ROACH. from a kinoform.

Fig. 2.15 A 32x32 element ROACH repeated
in a 4«4 array (magnified 8x).
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phase controlling Tayer in the ROACH, except that no compensation was
required for the phase due to the amplitude controlling Tayer. The
amplitude controlling layer in the kinoform was eliminated, as discussed
in Section 2.3.3. The variations in the intensities of the dots in the
kinoform image are primarily a result of the loss of the hologram ampli-
tude information. The improvement of the image from the ROACH (Fig. 2.13)
over the image from the kinoform (Fig. 2.14) is a result of the control

of amplitude as well as phase.
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CHAPTER 3
PROPERTIES AND LIMITATIONS OF KODACHROME

AS A HOLOGRAPHIC MATERIAL

In Chapter 2, references were made to various considerations that
effected the use of Kodachrome film as a holographic material, such as
resolution, cross-talk and noise. In this chapter we will investigate
these and other considerations in more detail, determine to what extent
they 1imit the image quality obtainable from a ROACH, and describe
methods of compensating for some of the deficiencies.

3.1 The Relationship Between Phase and Density

In Chapter 2, it was assumed that phase variations.in a layer are
proportional to the density variations of that layer (Eq.2-2) [Lamberts,
1972; Smith, 1968]. For example, to blue 1ight, the phase variations
due to the red-absorbing layer are assumed proportional to the density
variations in that layer, as measured with red light (ideally, the red-
absorbing layer is transparent to blue 1ight, so there would be no
variations in density to blue). This assumption was tested in a manner
similar to the method of determining the phase-matching condition
described in Section 2.3.5. The assumption of proportionality between
phase and density is equivalent to assuming that M 1is proportional to
Alog E over the linear portion of the H&D curve. That M is, indeed,

proportional to Alog E can be seen from Figure 3.1a, a plot of
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Fig. 3.1a Phase modulation coefficient M vs. aAlogE for the green-
absorbing and red-absorbing layers of Kodachrome II, as indicated
by the values of IO/I1 ("-") and by the values of 12/11 ("+").
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Fig. 3.1b M vs AlogE for the blue-absorbing and green-absorbing
layers of Kodachrome 25.
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M vs. Alog E for the sinusoidal patterns listed in Table 2.4 (The
12/11 data point at Alog E = 2 is meaningless because of the large
error due to noise in measuring a very weak 12 .) This particular test
was performed on Kodachrome II using both the red-absorbing and the
green-absorbing layers for phase control. A similar test was performed
on Kodachrome 25, using both the blue-absorbing and the green-absorbing
layers for phase control for illumination with red Tight. The results
are graphed in Figure 3.1b, from which it is seen that the proportional-
ity rule holds also for those two layers of Kodachrome 25.

Another test was made to see if the proportionality rule held in
the shoulder and toe regions of the H&D curve as well as on the linear
part. Sawtooth patterns were exposed using a constant Alog E = log(E /

pmax

E ) » but E was varied over the entire range of the H&D curve.

pmin
Two different constant values of Alog E were used, 0.3 and 0.6.

pmax

Exposures were made on Kodachrome 25 using both the blue-absorbing and
the green-absorbing layers for phase control, and the resulting sawtooth
phase gratings were read out with red 1Tight. The density excursions,
AD , due to the exposure ranges Alog E were determined from the H&D
curve. Figure 3.2 shows the values of the phase modulation, M ,
plotted against the density excursions, AD . Since all of’the data
points fall near a straight line passing through the origin, the rule
that phase excursions are proportional to density excursions is shown to
hold true for the entire extent of the H&D curve.

The mechanisms causing variations in phase are only partially
understood. Both variations in refractive index (the index image) and

variations in surface relief height (the relief image) contribute to
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LTS

the phase, and for commonly used photographic emulsions, the relief
image dominates [Lamberts, 1972]. The relief image is the result of a
tanning action that occurs during processing [Smith, 1968].

We determined the phase modulation coefficient, M , for phase
gratings inserted in a Xylene liquid gate. Assuming Xylene has a
refractive index that is nearly equal to the refractive index of the film
emulsion, then the effect of the relief image is cancelled, Teaving only
the contribution due to the index image, allowing the measurement of the
phase due to the index image alone. In this way it was found that the
relief image dominates for all modes of Kodachrome II, contributing more
than twice the phase variations of the index image.

3.2 The Effect of Phase Mismatch

Suppose that the desired phase transmittance is e1w(u,v) , but

that, due to inaccurate phase-matching, the actual phase transmittance

is eiMW(u’V) , where M # 1 . The purpose of this section is to

discuss the degree of image deterioration when M differs from 1.
The simplest case is an image that consists of a single off-axis

point, such as that produced by the sawtooth phase pattern of Figure

2.9a. The results of a phase mismatch are given by (2-7):

|2 = sinc?(M-n) (3-1)

o

which is plotted in Figure 2.10a. For M near 1, sincz(M-l) =

2 2 ~1 - (n2/3)(M-1)2 . Therefore, for a slight phase

sin’r(M-1)/x%(M-1)
mismatch, the percentage of the 1ight that goes into noise is approxi-
mately (n2/3)(M-1)° . That noise is 12.5% if M is off by 20%, 3.2%
if M is off by 10%, and 0.82% if M is off by 5%. Consequently, very
good results can be obtained if phase-matching is within 10%.
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A more general derivation is given by Kermisch [1970] for the case
of a kinoform. He concludes that the intensity of the desired image
is proportional to sincz(M-l) and that the intensity of the nth
spurious image due to phase mismatch is proportional to sincz(M-n)

(his factor Tm(c) in both cases). These results are in agreement with
the sawtooth phase-grating case. The zero order spurious image is simply
an on-axis spot and is proportional to sinczM . The minus first order
jmage (referred to by Kermisch as a virtual image) is the conjugate of the
desired image. Higher order spurious images are multiple convolutions

of the desired image with itself.

The results from our sawtooth phase grating example and from
Kermisch's analysis were born out by our experiments. Figure 3.3 shows
images from kinoforms, each with a different phase modulation, M .

The images shown in Figures 3.3a, b, and ¢ are of the Tetters STAN
above the optical axis and FORD below the optical axis, with a space
between the letters STAN and the letters FORD. In the image shown in
Figure 3.3a, which resulted from M ~ .2 , the on-axis spot (the zero
order image) contains most of the energy and the minus first order is
clearly visible (an upside-down FORD between the desired STAN and
FORD), as predicted by the sincz(M-n) factor (see Fig.2.10a). In the
image shown in Figure 3.3b, which resulted from M ~ .5 , both the on-
axis spot and the minus first order are substantially reduced. In the
image shown in Figure 3.3c, which resulted from M~ .9 , both the on-
axis spot and the minus first order are greatly reduced. The image

shown in Figure 3.3d is of the letters STAN and FORD , but without any

space between them (as in Figures 3.3a, b, and c). In this case M
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is greater than 1.4, and the second order image is clearly visible.

The second order image is the convolution of the first order (desired)

image with itself. Consequently, the second order image is double the

width of the first order image and has the appearance of a rectangle of
noise.

3.3 Amplitude-Phase Cross-Talk

Amplitude-phase cross-talk occurs when amplitude information
results in variations in phase (amplitude-to-phase cross-talk) or when
phase information results in variations in amplitude (phase-to-amplitude
cross-talk). The two major sources of amplitude-phase cross-talk are
the inability to address the amplitude controlling and the phase con-
trolling layers completely independently (exposure cross-talk) and the
non-ideal nature of the amplitude controlling and the phase controlling
processed layers (dye layer cross-talk).

3.3.1 Amplitude-to-Phase Cross-talk

Let the desired hologram complex transmittance be given by

F = lFleiw and the desired image be given by f (F > f) , where the
spatial coordinates are understood. When amplitude-to-phase cross-talk
is present, then the hologram will have a complex transmittance of the
form

. lFlei[w+8C(|F|)] - o1BC([F) (3-2)
where C(IFI) determines the nature of the cross-talk and g the
strength of the cross-talk. Transforming, and using the convolution

theorem [Bracewell, 1965],

A L D (L (3-3)
where h 1is the reconstructed image, ${-} denotes the Fourier trans-
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form operation, and * denotes the convolution operation. For weak

cross-talk, BC(|F|) << 1 , and the exponential can be expanded,

e BCUFD) w14 sac(F)) - me2(IF) + ... (3-4)

where the higher order terms may be dropped. Inserting (3-4) into

(3-3), we obtain

h = f+ igf*F(C(|F|)} - %82F*FLC(|F|)I*SLC([F])} + ... .
(3-5)
For simplicity, suppose that C(|F|) = |F| . Then it is necessary

to know the shape of F{|F|} . Let e 5 k . Then the convolution
theorem yields

F o= |Fle'Vs s|F[1*ste'¥) = s{|F[}*k = f

(3-6)

But k 1is just the image obtained from a kinoform. Kinoforms of
diffuse (random phase-coded) objects are known to produée easily recog-
nizable images in which the noise is only 21% of the total energy
[Kermisch, 1970). That is, k does not differ drastically from f .
Therefore, since by (3-6), ${|F|}*k = f , then ¥{|F|} must be a very
sharply peaked function (somewhat like a delta function with broad,
irregular sidelobes). Consequently, not only is the first term in
(3-5) exactly the desired image, but also the second term in (3-5) should
look very much like the desired image. Image quality would be drastic-
ally reduced only if at least a few terms in (3-5) were significant,
which would occur if the excursions of B8C(|F|) , that is, excursions in
phase due to amplitude-to-phase cross-talk, were on the order of 1

radian. In practice, these phase excursions are usually greater than 1
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radian; therefore, compensation for amplitude-to-phase dye-layer
cross-talk is a necessity (and was performed, as mentioned in Section
2.3.6).

3.3.2 Phase-to-Amplitude Cross-talk, Sawtooth Grating Example

When phase-to-amplitude cross-talk is present, then the complex

transmittance of the hologram is of the form

Ho= |Fle™V™® = Fe™®¥ (3-7)
where we have used the phase-to-density proportionality rule and the

-density/2

fact that amplitude transmittance equals 10 Then we have

H o= F e Vo prgie V) ~ fopfrg(y)
+ L2 FRFLp1*F () + ... (3-8)

for small B .

To give a more concrete example, consider the sawtooth phase
grating pattern of Figure 2.9a. In the presence of phase-to-amplitude
cross-talk and a mismatch of phase, the complex transmittance would be
of the form (over one period, L/2 < x < L/2)

- (x+L/2)D /2 o1 (27M/L) (x+L/2)

t(x) = e (3-9)

where DSL js the density excursion due to phase-to-amplitude cross-
talk. Inserting (3-9) into (2-5) and evaluating the integral, we obtain
—DSL/2+1WM

-e

+DSL/4+iﬂ(M-n)]
@ T (D L72)+72n(M-n

-D_L/4-im (M-
)l; (L/4-im(M-n) .

(3-10)

Therefore
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= +
(DSL/2)2+[?W(M-n)}2 © )

D_L/2 -
2 e ° DLz +DsL/2_e-i2n(M-n)_e+12n(M-n)}

-DSL/2 -
= e 5 =12 cosh(DSL/2) - 2 cos 2n(M-n)}
(D.L/2) +[2n(M-n) »

, -D L/2 _ 2

e h(DL/2) - 1) + 2 sin(M- )} |

(DSL/2)2+I?N(M-n)]2 écos (D sinmn(M-n
(3-11)

Note that for DSL = 0 (no phase-to-amplitude cross-talk), (3-11) reduces

to (2-7). For perfect phase-matching (M = 1) , (3-11) reduces to

|2 o, e-DsL/Z[}osh(DSL/Z) - 1] (3-12)
(DSL/2)2+[}W(n-1)]2 .

The most immediately noticeable effect of increasing DsL is the decrease
in intensity of the reconstruction, due to increased absorption by the
hologram. This decrease in intensity, however, does not degrade the

quality of the image. The total intensity transmitted by the hologram

is given by
-D_L/2 _.
L/2 L/2 -(x+L/2)D S sinh(D_L/2)
1 2 1 S e S
= t(x)|%dx = = e dx =
L J, ! L (0,L72)

(3-13)

The normalized intensity (the fraction of the total intensity) of the

nt" order, [a7|?, is obtained by dividing (3-12) by (3-13):
ocf2 Z[C?sh(Dst/Z) - 1 . (D L/2) (3-10)
sinh(DsL/2) (0,L/2)%+ 2n(n-1)
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Figure 3.4 shows a plot of |ocr’]|2
values of |ar’l|2

VS. DSL for n=1, 2 and 3. The
12
|

for
n 0

for n =0, -1, -2, etc., are the same as |a
n=2,3, 4, etc., respectively. Also shown in Figure 3.4 is 1 - |ai12,
the fraction of light going into noise. For cross-talk that is not too

strong (DSL < 1), (3-14) reduces to

2 4
,|2 (D L/2) - (DSL/2)2/12

. (3-15)

~

(D L/2)%+ 2n(n-1)
where use was made of the expansions coshx ~1 + x2/2 + x4/24 and
sinhx ~ x + x3/6 . Then the fraction of light going into the desired
image is given by

HEEEE (0 L/2)%/12 . (3-16)

Therefore, the fraction of 1ight going into noise is (DSL)2/48 . For
example, if phase-to-amplitude cross-talk results in density excursions
of 1.0 (equivalent to an amplitude transmittance factor of /10 ~ 3.16),
then only 2% of the 1ight goes into noise. |

We conclude from this analysis that except for extreme cases
(density excursion DL > 1) , phase-to-amplitude cross-talk can be
ignored (except, perhaps, for certain applications for which the ampli-
tude transmittance must be very accurate). While this analysis treated
only the special case of the sawtooth phase grating, we believe that it
is representative of the general case. The sawtooth phase grating example
did prove to be representative of the general case for the phase mis-
match analysis of Section 3.2.

The density excursions due to the phase controlling Tayer can be
predicted from the dye spectral density curves of Figure 2.3. For
example, when the green-absorbing and red-absorbing layers both have
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a density of 1.0 to their respective colors of light, then they also
contribute 0.24 and 0.03, respectively to the density to blue 457.9 nm
light.

The density excursions due to the phase controlling layer can
also be determined from the measured H&D curves, such as those in
Figure 3.5, which shows portions of H&D curves representing density to
blue light vs. log of exposure through a blue Wratten filter No. 98.

For this experiment, Kodachrome Il was also (in addition to the blue
exposure) exposed to green 1light through a Wratten filter No. 61 and

was flooded with red light. In Figure 3.5, each curve of the family of
H&D curves resulted from a different exposure to green 1ight. The differ-
ence in density to green light between the samples represented by the
top and bottom curves is 1.66, and the average difference in density to
blue light between the top and bottom curves is .456. Therefore, the
change in density to blue due to a 1.0 change in density to green (in
the green-absorbing layer) is .456/1.66 = 0.27. This value is greater
than the predicted value of 0.24 (which we consider to be more accurate)
because a band of wavelengths (rather than monochromatic 1ight) was used
to measure the densities for the H&D curves.

The amount of phase-to-amplitude cross-talk can be determined as
follows. The determination of the density excursions due to the phase
controlling layer (as described above) yields the density to the
reconstruction wavelength as a function of the density of the phase-
controlling layer to its corresponding color of light. The relationship
between the density of the phase controlling layer (to its corresponding

color of light) and the phase controlling exposure is given by the H&D
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curve (as in Figure 2.8). The relationship between the phase control-

1ing exposure and the resulting phase is determined as in Section 2.3.5.

By combining the relationships above, the relationship between the

density due to cross-talk and the phase (or the phase controlling exposure,
if desired) is determined.

3.4 Compensation for Amplitude-Phase Cross-Talk

Of the various types of cross-talks mentioned in Section 3.3, the
most severe is the amplitude-to-phase cross-talk due to phase excursions
in the absorbing layer (a dye laser cross-talk). In our experiments,
that was the only cross-talk for which we compensated, as discussed in
Section 2.3.6. For optimum results, the phase-to-amplitude cross-talk
can also be compensated for.

For simplicity, suppose that both the amplitude controlling and
the phase controlling layers are made on the Tinear parts of their
respective H&D curves. We will use the same notation here as in
Section 2.3.5 and 2.3.6. Using the phase-to-density proportionality rule,

the total phase contributed by both layers is

) (3-17)

<
[}

2nlog(E_/E )/olog E_ + sé]og(Ea/E

p’ “pmin pm amin

) if E and E are the

where Alog E__ = Tog(E___ /E pmin pmax

pm pmax’ “pmin
minimum and maximum phase controlling exposures that accomplish phase-
matching, B3 is an amplitude-to-phase cross-talk coefficient, and the
first and second terms are the contributions to phase due to the phase
layer and the amplitude layer, respectively. Solving (3-17) for log Ep

results in (2-12):
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Tog Ep = log E + (y/2n)Aalog Epm - Blog(Ea/Eamin) (2-12)

pmin
where B = (Bé/Zﬂ)A]Og Epm . Similarly, the density contributed by both
layers is given by

_ - 2
Da = Dpin = -2log t, = - g ]og(Ea/Eamax)

- Bplog(Ep/EpmaX) (3-18)

where the first and second terms are the contributions due to the ampli-
tude layer and to the phase layer, respectively, B = 2(10g Eamax -

log E -D ) , and Bp is a phase-to-amplitude cross-

amin)/(Damax amin

talk coefficient. Bp can be determined by the procedure described in

Section 3.3. Solving (3-18) for Tlog E, » we obtain

_ B -
log Ea = Tlog Eamax + 2[?109 ta Bplog(Ep/Epmaxﬂ .

(3-19)
Inserting (3-19) into (2-12) and solving for 1og Ep , we find that

(y/2n)alog By - BBlog t,
log Ep = const. + 1= BBpB/Z)

(3-20)

where const. = log E - [(BBpB/Z)Alog Epm + B]Og(Eamax/Eamin)J/

(l-BBpB/Z) , and the relationship 1log EpmaX = Tog Epmin + Alog Epm

pmin

was used.

The amplitude-to-phase cross-talk term can cause log Ep computed
from (3-20) to fall outside the linear region of the H&D curve. 109 Ep
can be brought back to the linear region of the H&D curve by substitut-
ing (v = 2n) for ¢ in (3-20). After computing it by (3-20), 1log Ep
is inserted into (3-19) to compute 1log Ea . In this manner the phase
controlling and amplitude controlling exposures are computed to compen-

sate for amplitude-phase dye-layer cross-talk. If the nonlinear regions
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of the H&D curves are used, then (3-19) and (3-20) cannot be used in the
nonlinear regions, but the exact shape of the H&D curve must be taken
into account.

When synthesizing computer-generated holograms, small changes in
the absolute Tevel of exposure from one day to the next are difficult to
avoid. These small changes in the absolute (effective) level of exposure
arise from changes in the level of brightness of the display device, in
the aperture (f - stop) of the lens used to photograph the display, in
the film speed from one emulsion to the next, and in photographic process-
ing. The result is the multiplication of all the exposure parameters
E

and E by a constant that is somewhat

EP ’ Epmin/max > a amin/max

greater than (if overexposure occurs) or less than (if underexposure
occurs) unity. An advantage of using the linear regions of the H&D

curves of the amplitude and phase layers is that the relative phase

delay (3-17) and the relative amplitude transmittance (3-18) are unaffected
by a small change in the absolute level of exposure. (A constant term is
added to the phase delay and the amplitude transmittance is scaled to a

new D . .)

It is possible to expose the different layers of Kodachrome II with
sufficient independence to make exposure cross-talk negligible, so com-
pensation for exposure cross-talk is not necessary. However, if other
materials are used, then such compensation might be required. A general-
ized compensation procedure for both dye-layer cross-talk and exposure
cross-talk is possible. A pair of exposures (Ea, Ep) will result in a
complex transmittance taeiw » Which can be specified by the pair

(ta,w) . When only the linear parts of the H&D curves are used, then
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the mapping (Ea’ Ep) > (ta,w) is described by (3-17) and (3-18);
and the inverse mapping (ta,w) > (Ea, Ep) , which is necessary to
determine the required exposures, is given by (3-19) and (3-20). In

the general case, the mapping of (Ea, Ep) > (ta,w) can be determined

by making a number of exposures (Ea’ Ep) , then measuring ta and v
with a densitometer or by interferometric techniques [Lamberts, Eisen,
and Kaspar, 1973] and listing the results in tabular form. Then for a
desired (ta,w) , the corresponding (Ea, Ep) is determined by inter-
polation from the values in the table. Such a procedure would automatic-

ally compensate for every type of cross-talk.

3.5 Resolution and Spatial Frequency Response

3.5.1 Resolution and Packing Density

The resolution (resolving power) of a material, usually expressed
in 1ines per millimeter (1/mm), indicates the closest practical spacing
of resolvable elements on the material. The resolution of a holographic
material indicates the packing density of Fourier coefficients that can
be achieved (that is, the number per unit area). The maximum packing
density is particularly important in the computer memory application,
for which it is desired to put the maximum amount of information in the
smallest possible space.

Since the image produced by a computer-generated hologram is the
spectrum of the hologram, the resolution required of a material for a
computer-generated hologram is proportional to the width of the image.
Since a ROACH produces only the desired image, the resolution required
by a ROACH is simply proportional to the width of the desired image.

Holograms on thin amplitude materials must produce a conjugate image
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as in (1-4), and, in order to avoid overlap, the total (desired and
conjugate) image has at least double the width of the desired image alone,
requiring at least double the resolution of the hologram material. If,

in addition, the image contains the autocorrelation term mentioned in
Section 1.2, then the resolution required is four times that required by

a ROACH. Of all the types of computer-generated holograms, the ROACH
requires the Teast resolution of a material for a given desired image.
Thus, a ROACH can be made on a material (ordinary color film) that is of
low resolution compared to the usual holographic materials.

As will be discussed in Appendix B, the number of Fourier coef-
ficients in a computer-generated hologram equals the number of sampled
points (picture elements) in the image. For the ROACH, only one resolu-
tion element of the hologram material is required to encode one Fourier
coefficient. Therefore, a ROACH made on Kodachrome II, which has a
resolution of approximately 100 1/mm [Kodak, AF—l], can reconstruct an
image of no more than approximately 1000x1000 picture elements per
square centimeter of the film. Since pushing a film to the limit of its
resolution usually results in a decrease in quality of the image, it is
inadvisable to require more than 50 1/mm resolution from Kodachrome II.
Materials suitable for the ROACH with far greater resolution than Koda-
chrome films are being developed [MacAna]]y, 1974], but are not readily
avai]ab]e at the time of this writing.

3.5.2 Spatial Frequency Response

Containing more information about a material than just its
resolution is the spatial frequency response, or, its modulation transfer

function (MTF) [Goodman, 1968, Ch.7]. The resolution of the film is
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given by the spatial frequency at which the MTF goes below a certain
(somewhat arbitrary) cutoff value (5 or 10%). The MTF of Kodachrome 25
js shown in Figure 3.7 [Kodak Data].

Analogous to the MTF 1is the phase response as a function of spatial
frequency. Phase excursions caused by a sinusoidal pattern of exposure
depend upon the spatial frequency as well as on the modulation of the
exposure pattern. Consequently, if phase-matching is achieved for one
spatial frequency, then there will be phase mismatch for other spatial
frequencies. Therefore, for optimal results compensation for the
variations of the phase response with spatial frequency is necessary.
The compensation procedure is described by Smith [1969] and requires
knowledge of the particular shape of the phase response vs. spatial
frequency curve.

A rough measurement of the phase response as a function of
spatial frequency was made. Phase gratings were produced by photograph-
ing the CRT, as described in Chapter 2. However, due to limitations of
the resolution of the CRT and the photographic magnifications possible,
only gratings of low spatial frequency (less than 10 1/mm) could be made
in this way. In order to cover a much wider range of spatial frequencies,
phase gratings were produced interferometrically. Sinusoidal intensity
patterns were produced by the interference of two coherent plane waves
of 501.7 nm 1light from an argon-ion laser. The sinusoidal intensity
patterns were recorded on Kodachrome 25, in which the blue-absorbing and
red-absorbing layers were equally exposed by the 501.7 nm light. Also,
the film was flooded with red 1ight to make it a pure phase grating

after processing. Unfortunately, interferometrically generated phase
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gratings are not exactly sinusoidal since there is a nonlinear relation-
ship between phase and exposure over most of the dynamic range of the
film. Phase is instead linear with the log of exposure over the linear
region of the H&D curve (which could be taken into account for the
patterns produced by the CRT). Consequently, in determining the phase
modulation from measurements of the different orders of diffraction of
the phase gratings produced, it is necessary to take into account the
nonlinear nature of the recording.

iklx ik, x . .
Let Ae and Be represent the two interfering plane
waves, where A2 and 82 are the intensities and k1 and k2 are

the x-components of the wave vectors of the respective plane waves. Then
the intensity of the interference pattern of the two plane wave is

1k1x 1k2x 2 2

I(x) = | Ae + Be = A" + B” + 2ABcoskx
= 10(1 + Mcoskx) . (3-21)
where IO = A2 + 82 , k= k1 - k2 is the grating vector, and

m= 2AB/I0 . If the film is exposed for a time <t , then the exposure
pattern on the film is

CE(x) = 1I(x) = Eq(1 +Mcoskx) (3-22)

where Ej =ty is the bias exposure and M= 2AB/(AZ + BZ) is the
modulation of the exposure. If the exposure is made over the linear
region of the H&D curve, then, using the phase-to-density proportionality

rule, the resulting phase pattern is
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p(x) 2nlog E(x)/alog Epm + const.

_ 2m
= Alog Eom log(1 +Mcoskx) + 2nlog Eg/alog E,, + const.

(3-23)

where Alog E is the excursion of the log of exposure needed to

pm
achieve a phase excursion of 2n radians. Using the identity log x =

(Tnx)/1n10 , the complex transmittance of the phase grating can be

expressed as
H(x) = JHv(x) _ ieln(l + Mcoskx)

; (3-24)
(1 + Mcoskx) '

where the constant phase terms are dropped and o = 27/ (Alog Epm-1n10)
is a phase modulation coefficient. Our goal in this section is to
determine how o varies with the spatial frequency of coskx. Using
the power series expansion (1 + x)q =1+qgx + q(q—l)x2/2! + q(g-1)-
(q-2)x3/3! + ... [Gradshteyn and Ryzhik, 1965, p.21]), (3-24) becomes

H(x) = 1 + iofcoskx + 1u(1u-1)ﬂ@coskx/2!

+ da(ia-1) (fa-2)M0cos kx/3"

¥ ia(ia-1)(ia-2) (ia-3)mcos kx/4"

¥ a(ie-1)(f0-2) (ia-3) (Ta-4)m0cos kx/5" (3-25)

From Table 2.6 it can be seen that the value of Alog Epm
(measured at 2.5 1/mm) is approximately 1.2 when both the blue-absorbing
and the green-absorbing layers are used for phase control in Kodachrome
25. Therefore, for this experiment, the value of o is approximately
21/(1.21n10) = 2.27 . Using 2.27 for the value of o , the modulus of

the coefficient of the term m"cos"kx in (3-25) is approximately 2.8
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for n =1 and decreases slowly with increasing n . Consequently,
the expansion (3-25) is not useful for values of M near 1.0, but is
good for mg 0.5.

Using the identities coszx = (cos2x + 1)/2 , cos3x = (cos3x +

3cosx)/4 , cos4x = (cosdx + 4cos2x + 3)/8 , and cossx = (cos5x + 5cos3x
+ 10cosx)/16 [Gradshteyn and Ryzhik, 1965, p.26], we find that
H0O = (14 (~eiai/e + («*-110% 1603 i6a it /64 ]
. 2 . 3., .3
+ 2coskx |[Tom/2 + (3a°-ia"+i24)M°/16
+ (-10a4+50a2+1a5-135a3+124a)n9/384]
¥ 2coszkx[}-a2-1a)n3/8 ¥ (a4-11a2+16a3-16a)nﬂ/96]

" 2cosskx[}3a2-1a3+12a»m3/48
+ (-1oa4+50a2+1a5-135a3+124a)nF/768]

+ ... (3-26)
where terms of order 3n6 and higher are dropped. Since 2cosnkx =
e1nkx + e'1nkX represents two plane waves going into the nth and -nth

orders, respectively, the complex amplitude of the nth order of dif-

fraction is given by the coefficient (in brackets) of 2cosnkx in
(3-26). The intensity falling into the nth order of diffraction is
given by the modulus squared of the coefficient of 2cos nkx in (3-26).
Thus, the intensity falling into the zero order (on-axis) is

4 2)

zero order ~ 1 - a2n€/2 + (30 -9 nﬂ/32 (3-27)

6

where again terms of order M° and higher are dropped. Similarly, the

intensity falling into the first order is
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first order ::aZnF/4 + (—a4+2a2)ﬂﬁ/16

+ (54°-850%+6002 M2/ 768 (3-28)

and the intensity falling into the second order is

second order ~ (a a2 )t/64 + (-a%+50 602 )/ 384 (3-29)
where terms of order 3n8 and higher are dropped.
Using the expansion (1 + x)'1 =1-x+ X2 = x3 + ... [Gradshteyn

and Ryzhik, 1965, p.21], we find that the ratio, R,y » of the intensity
falling into the first order to the intensity falling into the zero
order is

4 2)

u2m2/4 + (o +20 6

Ryp = w16 + (1168+174%60:2)m0/768  (3-30)

8

where terms of order T° and higher are dropped. Figure 3.6 shows plots

of R10 given by (3-30) vs. o for various values of M.

A purely sinusoidal grating with transmittance e1“nm05kx has

th order (as

intensity proportional to Jﬁ(ano falling into the n
discussed in Section 2.3.5). Then the ratio of the intensity of the
first order to that of the zero order would be

GWF

J%(aﬂU/JS(aﬂU = oAlsa + oMt/16 + 116007768 + ... (3-31)

which is obtained by using the expansions Jl(x) = x/2 - x3/(232!) +
#x%/(2%:31) - . and 300 = 1 - %827 4 x (2t - x8/(28(31)%) +
A comparison of (3-30) with (3-31) shows the effect of the non-
linear nature of the recording process; and, as expected, (3-30) agrees
with (3-31) for M<< 1.
Phase gratings of the form (3-24) were produced interferometrically.

The spatial frequency, v = k/2r , and the modulation, m , of the
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exposure pattern were varied in the manner described in Appendix C. The
phase gratings were reconstructed with 632.8 nm 1ight from a helium-neon
laser, and the intensities falling into the zero (on-axis) and first
orders were measured. R10 » the ratio of the measured intensities of
the first order to the zero order, was compared with Figure 3.6 to
determine o for various values of m and v . For a fixed v , the
values of o determined for different values of M were in good agree-
ment, indicating the validity of (3-30).

Figure 3.7 shows the resulting phase response vs. spatial frequency
curve for the combined blue-absorbing and green-absorbing layers of
Kodachrome 25. Interestingly, the phase response curve closely follows
the MTF curve. This characteristic contrasts with 649-F plate, which
has a constant MTF for this range of spatial frequencies, but has a very
sharply peaked phase response (due to surface relief) at 10 1/mm [Smith,
1968]. Both Figure 3.7 and similar results from CRT-generated patterns
indicate that Kodachrome shows significant phase response even at very
Tow spatial frequencies (< 1 1/mm). The MTF of Kodachrome II is
considerably flatter in the 1 to 15 1/mm range [Kodak Data], making it
even more suitable for computer holography.

3.6 Dynamic Range and ROACHs on Materials of Limited

Dynamic Range

The dynamic range of a material is defined as the ratio of the
maximum amplitude (or intensity) transmittance to the minimum amplitude
(or intensity) transmittance that can be achieved. Desired transmittances
that are below (or above) the achievable dynamic range are set equal

("clipped") to the minimum (or maximum) achievable value, and noise in
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the reconstructed image results from this approximation. For our own
experiments, the range of desired transmittances was always scaled so
that the maximum desired transmittance was achievable, and only the
lower values beyond the dynamic range of the film were clipped. The
effect of clipping has been investigated by Powers [1975, Ch. 4] and will
not be discussed here. Since the maximum density achievable in Koda-
chrome film is approximately 3, the maximum possible dynamic range is
1000 : 1 in intensity or 30 : 1 in amplitude. For blue 1ight, however,
the blue-absorbing layer alone contributes a density of only 2 (the
other two layers contribute considerable density to blue to bring the
total density of 3 for ordinary photographic purposes); so in practice
the dynamic range for blue Tight is only 100 : 1 in intensity or 10 : 1
in amplitude.

Analagous to the dynamic range in amplitude mentioned above, is
the "phase dynamic range", the number of radians of phase excursion
obtainable (at a given wavelength). A phase dynamic range of 27 radians
is required for phase-matching. The phase dynamic ranges of the differ-
ent modes of Kodachrome II and Kodachrome 25 are approximately given by
27-{(Alog E available)/log Epm » which can be determined from Tables 2.5
and 2.6, respectively.

Ordinarily, if there is a considerable phase mismatch in a ROACH,
then, just as in the case of the kinoform discussed in Section 3.2,
spurious images are produced that degrade the desired image. Therefore,
it was initially thought that a material would have to be capable of
producing phase excursions of at least 2m radians in order to be use-

ful as a ROACH material. However, as we will show in this section, it
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is possible to shape the complex spectrum (the Fourier transform) of
the object in such a way as to reduce the required dynamic range both
in amplitude and in phase, and, therefore, allow the use of materials
with 1imited dynamic range.

Let the object and its Fourier transform be given by f(x,y) D
F(u,v) . The dynamic range of |F(u,v)| can be reduced by phase-coding
f(x,y) , as will be discussed in Chapter 5. But here we consider
a more general problem: given F(u,v) , how can we encode it on a
holographic material in such a way as to minimize the dynamic range
required of the material?

First, consider the manner in which dynamic range can be reduced
in off-axis holograms. As described in Section 1.2, the addition of an
on-axis spot and a conjugate term to the object yields a hologram
function H(u,v) that is real and nonnegative and can be synthesized on

a thin amplitude material:
H(u,v) = A + 2|F(u,v)|cos(2mus/rf + p(u,v)) (1-4)

where A > 2-Max{|F(u,v)|} . Since the maximum amplitude transmittance
is unity, then it is required that the hologram function be normalized

so that A + 2Max{|F(u,v)|} <1 . By normalizing A and F(u,v) so
that Max{|F(u,v)|3/A 1is small, the dynamic range required of the
hologram material can be made arbitrarily small. The analagous procedure
(and one that is commonly used) for interferometrically-generated holo-
grams is to use a large reference beam to object beam ratio to reduce
dynamic range. Two undesired effects of reducing the dynamic range in
this manner are a reduction in diffraction efficiency and an increase

in the intensity of the undiffracted wave (the on-axis spot for the
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Fourier transform geometry). The above holds true for all off-axis
computer-generated holograms, including thin phase as well as thin
amplitude holograms.

The method of reduction of dynamic range for the ROACH is less
obvious. As described in Section 2.3.6, by multiplying F(u,v) by the
constant 1/Max{|F(u,v)|} , a function is obtained, the modulus of which
is less than or equal to unity everywhere. That is, if H(u,v) =
F(u,v)/Max{|F(u,v)|} , then all values of H(u,v) Tie within a unit
circle centered at the origin of the complex plane (see Fig. 3.8a). The
diffraction efficiency of an ideally synthesized ROACH is then

o |F(u,v)l%//Max{lF(u,v)lz} (3-32)
where the overbar indicates the mean value. o is less than one because
the maximum amplitude transmittance of a ROACH is one, and the amplitude
transmittance is controlled by the absorption of 1ight. Only when
|F(u,v)| s constant can a ROACH have 100% diffraction efficiency (then
it is indistinguishable from a kinoform). At this point, we redefine

f(x,y) so that f(x,y) D F(u,v)/Max{|F(u,v)|}. If we set
H(u,v) = BF(u,v)/Max{|F(u,v)|} (3-33)

which would correspond to the object Bf(x,y) , where 0 < B < 1 , then
all values of H(u,v) Tie within a circle of radius B , as shown in

Figure 3.8b, and the diffraction efficiency becomes 82 This

n .
0

hologram function can be synthesized on a ROACH material of maximum
amplitude transmittance B , where B can be arbitrarily small, but

at the expense of reduced diffraction efficiency.
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(a) (b)

Fig. 3.8 Dynamic range required of a ROACH. Shaded areas indicate
complex values that must be achieved. (a) Values ordinarily required;
(b) Values reduced by a factor of B; (c) Values reduced by a factor

of B and shifted by A.
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If an on-axis bright spot, As(x,y) , is added to the object, so
that the new object is As(x,y) + Bf(x,y) , then the corresponding

hologram function is

H(u,v) = A + BF(u,v)/Max{|F(u,v)]|} (3-34)

where 0 <A <1 - B . Then all values of H(u,v) 1lie within a circle
of radius B centered at point A in the complex plane. As shown in
Figure 3.8c, the amplitudes of H(u,v) 1lie between A - B and A + B

and the phases of H(u,v) Tlie between -6,ax and o, Consequently,

ax
this hologram function can be synthesized on a ROACH material that has
a dynamic range in amplitude of only (A+B)/(A-B) and a phase dynamic
range of only Zemax . From the geometry of Figure 3.8c we see that
sin Omax = B/A . Apparently, a ROACH can be synthesized on a material
with arbitrarily small dynamic range, both in amplitude and in phase,
by choosing a small enough B . The only effect on the image is a
decrease in diffraction efficiency and an on-axis spot. No other spuri-
ous images are produced.

For a given value of B , the diffraction efficiency is ano ,
independent of the value of A . Referring to Figure 3.8c, the effect
of decreasing the value of A would be to move the circle (within which
Tie the values of H(u,v)) toward the origin, reducing the intensity of
the on-axis spot, A2 (by increasing the absorption by the ROACH). A
reduction in A is desirable since a very intense on-axis spot will
obscure nearby image points. Another effect of reducing A is an
increase in Zemax » the required phase dynamic range. If A 1is less
than B , then the entire 2n radians of phase dynamic range is required.

Thus there is a trade-off between the intensity of the on-axis spot and
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the dynamic range, for a given diffraction efficiency, ano . The
minimum dynamic range is required when A =1 - B ; then the dynamic
range in amplitude is 1/(1 - 2B) and the phase dynamic range is given
by sin© ., = B/(1 - B) . Conversely, the value of B necessary to

ma

achieve a desired dynamic range zemax js B = sin @max/(l + sin @max) .
Figure 2.10 shows a plot of the dynamic range required of a ROACH as a
function of B, for A=1-B.

The method described above for reducing the dynamic range required
of a ROACH can also be used to reduce the phase dynamic range required
of a parity sequence hologram [Chu and Goodman, 1972]. For the parity
sequence hologram, the hologram complex transmittance for the (m,r)th

Fourier coefficient is given by [Chu, 1974, Eq.2-13]

Hm,r = exp{i[arg(F&,r) + cos'l(F&,rX]} (3-35)

where Fo . = Fm’r/Max{|Fm,rl} . Ordinarily, since the values of
F& v 1ie within a unit circle centered at the origin in the complex

plane, the phase dynamic range of Hm v is 2m radians. However, if

L]

Fé . in (3-35) is replaced by H in (3-34), the values of which lie

within a circle of radius B centered at point A in the complex plane,

then the phase dynamic range of Hm can be significantly reduced.

,r
As in the case of the ROACH, the diffraction efficiency is ano and
the intensity of the on-axis spot is A2 .

The reduced value of the phase dynamic range of Hm . can be

determined as follows. Referring to Figure 3.9a, Hp . s found by
adding to Fm,r a phasor Pm,r that is perpendicular to F&,r and
is of such a length that Hm,r = Fﬁ,r + Pm,r falls on the unit circle.

Referring to Figure 3.9b, the value within the circle of radius B
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(b)

Fig. 3.9 (a) Geometry for determining the complex coefficient H__ for
the parity sequence hologram; (b) Geometry for determining Zemax’ the
reduced phase dynamic range for the parity sequence hologram.
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F19.3.10 Reduced phase dynamic range, Zemax’ for the ROACH (a)
and for the parity sequence hologram (b); and reduced dynamic range

in amplitude for the ROACH (c), all for A = 1-B.
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that contributes to the largest phase angle of Hm,r > Onax ° is the
value at the intersection of the circle of radius B with the half-
circle of radius % that is tangent to the circle of radius B . (A11
values on the circumference of that half-circle yield the same value of
Hm,r)‘ From the geometry of Figure 3.9b, using the law of cosines,

the maximum phase angle, @max , is given by

cos 6 () : A2 - (5+B)°

max 2(%)A
(3-36)

where A + B <1 . The value of Omax is decreased by increasing A

and decreasing B . (Increasing A also increases the intensity of the
on-axis spot, and by the same amount decreases the intensity of the parity
sequence image.) Since the motivation for these manipulations is the
reduction of the phase dynamic range, 20 , the maximum allowable

max
value of A =1 - B is chosen. Then (3-36) reduces to

_1-3B
COS Cpax © 1< B
(3-37)
or . 2 - B
sin (OmaX/Z) = 1§
The phase dynamic range, 20 , is shown in Figure 3.10 as a function

max
of B . Note that a phase dynamic range of = radians (that is, half

the usual value) is obtained when B = 1/3 . By inverting (3-37), the
value of B necessary to achieve a desired phase dynamic range of

20 is
max . 2
1-coso sin“(e__./2)
B = max _ max . (3-38)

3 -c¢0s0 . 2
max 1+sin (emax/2)
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An additional disadvantage of reducing the dynamic range required
of the hologram material in the manner described in this section is an
increase in quantization noise. Quantization noise, which will be dis-
cussed in more detail in Chapter 5, results from the fact that only
certain discrete values of H(u,v) can be encoded on the hologram. For
example, since we control the exposure by the number of computer cycles

for which the electron beam of the CRT is turned on at a given point,

our exposure times are limited to integer multiples of one computer
cycle. So if we were to use an exposure time range of,say, 10 to 210
computer cycles, then there would be 201 guantized values of exposure
time. This number of quantized values is so large that it is for all
practical purposes continuous. However, if the ROACH were made with a
small dynamic range by making B small in (3-37), then there could be a
range of only a few quantized values of exposure time, and quantization
noise could be significant.

Two methods could be used to reduce quantization noise due to
reduced dynamic range. One would be to use the jterative procedure
that will be described in Chapter 5. Another method would be to optimize
the display gray level capability with respect to the Timited dynamic
range of exposures. The manner in which this latter method would be
accomplished depends upon the specific display device, but we will use
our particular display device as an example. Suppose that the range of
exposure times is, say, from 20 to 25 computer cycles, only six quantized
values. If we were to stop down the lens of the camera used to photo-
graph the CRT by 2 f-stops, then four times the exposure time would be

required. Then the range of exposure times would be from 80 to 100
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computer cycles, or 21 quantized values. In this manner quantization
noise would be greatly reduced.

3.7 Scattered Flux Spectrum

The most fundamental 1imit to the amount of information that can be
stored in a ROACH is set by the scattering of 1light by the film. It is
possible to compensate for the other potential sources of error mentioned
in this chapter, but not for scattered light. Contributing to scattering
are microscopic variations in amplitude transmittance ("film grain"),
variations in refractive index, and surface roughness. Figure 3.11 shows
a scanning electron micrograph of the surface of Kodachrome IT, magnified
1000x. Surface roughness detail in the one to two micron range is evident
and contributes substantially to scattering. The scattered flux appearing
in the Fourier plane is simply the squared modulus of the Fourier trans-
form of the complex transmittance of the transparency. The scattered flux
spectrum, also known as the power spectrum or the noise spectral density,
has been measured for most holographic materials by a number of authors
[Biedermann, 1970; Brandt, 1970; Thomas, 1972]). Theoretical studies
relating film-grain noise to the ultimate signal-to-noise ratio and error
rate in an image from a hologram were reported by Goodman [1967], Kozma
[1968], and Lee [1972].

Figure 3.12 shows the experimental setup used to measure the scattered
flux spectrum. In order to avoid edge-diffraction effects, the apertures
before the film plane (used to reduce stray light) were made wider than
the laser beam. Since surface relief effects are used te control the
phase delay for the ROACH, the scattered flux spectrum was measured

without a liquid gate. The spatial frequency in the Fourier plane is
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Fig. 3.11 Scanning electron micrograph
of the surface of Kodachrome II, magnified
one thousand times.

detector area .

apertures

Fig. 3.12 Schematic of experimental apparatus
used to measure the scattered flux spectrum
(not to scale).
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v = sino _ s . (3-39)

values of d used were 1020mm and 2040mm; and the area, A , of the
aperture at the detector was either 3.33mm2 or 31.7mm2 . Measurements
were made on samples of the uniformly exposed Kodachrome 11 transparencies
that had been used to determine the H&D curves of Figure 2.7. The area

of illumination was a circle of diameter 18mm.

Figure 3.13 shows the resulting scattered flux spectrum for a number
of different samples. Table 3.1 lists the filter through which the film
had been exposed before processing and the measured densities of each of
the processed transparencies used for Figure 3.13. The value of ¢ , the
scattered flux spectrum, is the measured value of flux divided by the
unscattered (on-axis) component, @O , and normalized to a detector
aperture of 1 (1/mm)2 (that is, multiplied by dZAZ/A) . The units of
)2

o are (1/mm Some authors [e.g., Biedermann, 1970] divide the

measured value of flux by the incident flux, @ , rather than by 2

inc
The curves in Figure 3.13 can be converted to this second type of normal-
jzation by dividing each @(v) by the corresponding value of Qinc/Qo
(which also is listed for each sample in Table 3.1). Our choice of
normalization is based on the fact that it is more pertinent to compare
the scattered flux with the unscattered component (which, if the trans-
parency were a hologram, would be proportional to the intensity of the
image) than with the incident flux, most of which would simply be absorbed
if the optical density of the transparency were greater than 0.3.

The scattered flux spectra of all the samples tested have the same

shape, decreasing steadily with increasing v . This shape is similar
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Fig. 3.13 Scattered flux spectra of varjous samples of
Kodachrome II (see Table 3.1)
Density
Sample (see Wratten
Fig. 3.13) Filter No. DR  Dg B %inc/% @t 50 1/mm
a 21 0.18 0.48 1.57 4.2 2.7 107°
b none 1.54 1.88 1.96  168.0 1.8 107°
c 21 .12 .26 .95 .6 9 10-6
d none 41 .57 .82 3 1.9 1076
e 36 22 .94 .43 2.5 2.0 1078
f 98 1.04 .46 .27 17.4 1.9 107°
g none 08 .14 .17 1.5 5.5 107/
Table 3.1 Kodachrome II samples measured for Fig. 3.13.
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to the shape of the scattered flux spectra of high-resolution films and
plates, such as Kodak 649-F, rather than Tow-resolution films such as
Pan-X [Brandt, 1970]. A comparison of samples g, d, and b 1in Figure
3.13 shows that scattering increases with increasing dye density. A
comparison of samples c, e, and T shows that the scattering due to
the blue-absorbing layer (the outermost Tayer in the film) is consider-
ably greater than the scattering due to either the green-absorbing or
the red-absorbing layer; and the scattering due to the green-absorbing
and red-absorbing layers is about equal. Much of the density to blue
1ight of sample b is due to absorption of blue 1ight by the green-
absorbing and red-absorbing layers. Therefore, there is more blue-
absorbing dye present in sample a than in sample b , accounting for
the greater scattering by sample a than by sample b .

The scattering of Kodachrome Il is approximately ten times that of
649-F, is comparable to that of Pan-X below 40 1/mm, and is Tess than
that of Pan-X above 40 1/mm [Brandt, 1970].

3.8 Binary-Amplitude ROACH

The ROACH described so far in this thesis modulates the amplitude
of a transmitted wavefront by variations in optical density. An unfortunate
side effect is the amplitude-to-phase cross-talk due to phase variations,
caused by variations in thickness of the amplitude controlling layer.
One can compensate for this cross-talk, as discussed in Section 3.4.
However, it is possible to eliminate this amplitude-to-phase cross-talk
(without compensation) by modulating the amplitude of the transmitted
wave in a binary manner. The amplitude is modulated in the same manner

as the binary detour-phase hologram of Lohmann [Brown and Lohmann, 1966].
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That is, the amplitude is controlled by the area of a transparent
aperture on an opaque background. No amplitude-to-phase cross-talk
results, because the transparent areas are all exposed identically. An
additional advantage is that the binary amplitude exposure is less
critical and not subject to film nonlinearity problems. Furthermore,
since the apertures have Tow optical density (ideally zero), the scattered
flux spectrum is at a minimum, as discussed in Section 3.7. The phase
transmittance of the binary amplitude ROACH is controlled in the same
manner as discussed in Chapter 2.

In the ordinary ROACH, a Fourier coefficient is encoded as a square
cell of width d and transmittance taeiw » uniform over the area of the
cell. The contribution to the image due to one cell centered at
(uo,vo) is

u0+d/2 v0+d/2

contribution (x,y) = %?-f / taeiw e"i(zn/Af)(ux+yy)dudv
uo-d/2 VO-d/2

+d/2

iy u +d/2 v y
- ta® fo e-i(ZN/Af)uxd ) 0 e 1(2“/>‘f)vydy
M ugrdre vg-d/2
iy .
t.e =i (27 /2 f) (ux+vay)
__a cdleinm[AX\ s (dy 0" "0
7 d s1nc<xf>s1nc<xf>e (3-40)

where the amplitude is controlled by the factor ta and the cell width

d 1is fixed (equal to the spacing between cells). For the binary-
amplitude ROACH, on the other hand, ty is fixed equal to 1 and the area
of the aperture is used to control the amplitude. If the apertures were
always square, then the area (and therefore the amplitude) would be

controlled by the d2 factor in (3-40). In both cases, an unwanted

- 103 -



attenuation near the edges of the image is caused by the sinc factors
in (3-40). In the case of the ordinary ROACH, the sinc factors depend
only on the location in the image (since d is fixed); hence this
attenuation factor can be compensated for by multiplying the desired image
by sinc-l(dx/xf)sinc-l(dy/Af) before Fourier transforming. Then during
reconstruction the sinc and sinc'1 factors cancel, leaving the desired
image unattenuated. In the binary-amplitude ROACH, on the other hand, the
value of d in the sinc factors is different for every Fourier
coefficient. Therefore, instead of a simple attenuation there is noise
added to the image near its edges and exact compensation is not possible.
(Near the center of the image the sinc factors are near unity and have
negligible effect). For apertures with shapes other than square, this
source of noise may be even more severe. If the aperture is not symmetric
about (uo,vo) , then phase errors are introduced in addition to amp1itude
errors.

The intensity transmittance of one cell in a binary-amplitude ROACH
(as well as its contribution to amplitude) is proportional to the area of
the cell. Let the maximum amount of flux transmitted by any cell be 1.0
(that is, an aperture transparent over the entire area of the cell). Then,
for a binary-amplitude ROACH, a cell with, say, 0.25 times the maximum
amplitude transmittance will transmit a flux of 0.25. A cell of amplitude
transmittance 0.25 in an ordinary ROACH will, however, transmit a flux
of only (.25)2 = .0625 . Therefore, a binary-amplitude ROACH will
transmit considerably more 1ight than an ordinary ROACH, even though the

images produced by them are equally bright. That additional flux trans-

mitted by the binary-amplitude ROACH goes into higher orders of diffraction,

- 104 -



away from the desired image. The higher-order images due to sampling
(see Chapter 6) are increased in intensity due to diffraction from the
sharp edges of the apertures of the binary-amplitude ROACH, where the
transmittance jumps between zero and one.

Another disadvantage of a binary-amplitude ROACH, is that, for ampli-
tude contro]} it requires a number of resolution elements per Fourier
coefficient on a display device (which must still have grey-level control
for the phase exposure). The number of amplitude levels that may be
achieved is equal to the number of resolution elements per Fourier coeffi-
cient plus one. Since all the resolution elements are used to determine
the amplitude (unlike a Lohmann hologram, for which there is a trade-off
between amplitude and phase quantization for a fixed number of resolution
elements [Gabe] & Liu, 1970]), only a few resolution elements per Fourier
coefficient are required for good amplitude control. An ordinary ROACH,
however, requires only a single resolution element per Fourier coefficient.

We successfully synthesized a binary-amplitude ROACH. We feel that
for most purposes the advantages of the binary-amplitude ROACH (as

compared to the ordinary ROACH) are outweighed by its disadvantages.
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CHAPTER 4

COLOR IMAGES FROM COMPUTER-

GENERATED HOLOGRAMS

4.1 General

In order to produce a full-color image, it is necessary to synthesize
three color-separation holograms, one for each of the three primary colors:
red, green, and blue. Each of the three color-separation holograms is
ilTuminated by the corresponding color of 1light to produce three mono-
chromatic images which are superimposed to form a full-color composite
image. If the images are reconstructed using the 632.8 nm red line from
a helium-neon Taser and the 514.5 nm green and 457.9 nm blue lines from an
argon-ion laser, then all the colors on a C.I.E. chart bounded by the
triangle defined by these three wavelengths can be produced (Fig. 4.8).

Any type of computer-generated hologram can be used to produce color
images, and the considerations that are important in ordinary monochromatic
computer holography are equally important for color imagery. In addition
to the ordinary considerations of hologram synthesis, two fundamental
problems present themselves. First, if a hologram for one color also
has two other colors passing through it, then there appear, in addition
to the desired image, false images. Second, since the angle of diffrac-

tion is proportional to wavelength, the three desired images will have
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Overlaying corresponding Lohmann-type cells of

different colors. Although the equation holds for
intensity transmittance, it does not hold for the complex
transmittance, due to a phase error in the region of
overlap, where the film is thinner.

A portion of a multiplexed binary detour-phase hologram
for a color image. Since the different colors do not
overlap, no undesirable phase variations result.

Image from multiplexed binary detour-phase hologram.
The desired and conjugate images are in the upper right
and lower left corners, respectively. Also seen are
zero order and other spurious images.

Three ROACHs for red, green, and blue 1ight, scaled
according to wavelength.

(a) Image from ROACHs.

(b) Image from parity-sequence holograms. The difference
in the spacing of the dots is a result of scaling the
digital representation of the object according to the
wavelength.

(a) A ROACH for blue light using the phase-null effect,
illuminated by blue 1ight. (b) the same ROACH
j1luminated by red Tight.

Reconstruction from a phase-null ROACH. The desired

central blue image is undisturbed while the undesired
red image is diffracted off to the sides.
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Fig. 4.2 ;

Fig. 4.5a,b

Fig. 4.3 Fig. 4.6a,b

Fig. 4.7
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three different magnifications, as illustrated in Figure 4.9, requiring
a scaling procedure if they are to superimpose in register.

Scaling according to wavelength can be accomplished in a number of
ways. Since image size is inversely proportional to the final hologram
size, exact scaling can be done by adjusting the sizes of the hoTogram
transparencies during their synthesis by adjusting the scale of the dis-
play device or the magnification when photographing the display. Alter-
natively, sca]ing can be done on the three sets of color-separation
digitized data before Fourier transforming, effectively scaling the
sampling intervals for the different colors. This latter scaling method
can distort and misalign the images by up to one-half of a sampling
interval, as will be demonstrated in Section 4.3; also, the image field
sizes remain unchanged, even though the images within them are scaled, so
part of the potential image space may go to waste (see Fig. 4.9).

Yet another method of scaling is accomplished by the readout geometry
of Figure 4.10. If a Fourier transform hologram is placed in a converging
beam, then the desired image is obtained in the focal plane of the lens,
with a magnification that is proportional to d , the distance from the
hologram to the image plane [Goodman, 1968]. Thus, the desired scaling
can be accomplished by choosing the three hologram-to-image distances
according to the wavelengths. Furthermore, since each hologram is
ilTuminated only by the color of Tight appropriate to its image, no false
images occur. Unfortunately, this setup requires the accurate position-
ing of three separate holograms, each in a different location. Other
complicated reconstruction geometries based on spatial frequency multi-

plexing have also been devised [Da]]as, Ichioka, and Lohmann, 1972].
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Fig. 4.8 The CIE chromaticity diagram:

Any color within the triangle can be obtained
by mixing red (632.8nm), green (514.5nm), and
blue (457.9nm) 1light.
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Figure 4.11 shows a much simpler setup which is particularly
desirable if the same laser is used to produce more than one color, since
all three planes waves have a common axis. A1l three holograms can be
made side-by-side as a unit on a single transparency. If the holograms
are properly scaled, then the three desired images superimpose correctly,
due to the shift invariance of this Fourier transforming geometry (see
Appendix A). Three color filters are inserted or some other optical
means may be used so that each hologram is j1luminated only by 1light of
the appropriate color; otherwise, six false images would appear in
addition to the three desired images.

The setup of Figure 4.11 would be made even more desirable if the
color filters could be eliminated without introducing false images, that
is, if the holograms themselves could be made to reject the false images.
If that were possible, then the holograms could be spatially multiplexed
(interleaving rows of Fourier coefficient cells of the different colors,
for example) instead of being positioned side by side. Spatial multi-
plexing is desirable when the image is viewed directly by the eye (i.e.,
the lens in Figure 4.11 is the lens of the eye) and is necessary for
Fresnel holograms, which do not possess the shift-invariance property
(Appendix A). 1In this chapter it will be shown that the extra degrees
of freedom in multi-emulsion color film do allow the holograms themselves
to reject false images.

4.2 Binary Detour-Phase Holograms

The obvious property of color film that can be used to eliminate
false images is the wavelength-selective absorption of its different

layers. One method of eliminating false images would be to make three
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Fig. 4.10 Reconstruction geometry allowing scaling.
Hb’ Hg » and Hr are holograms illuminated by blue,

green, and red light, respectively.

APERTURES '
: HOLOGRAMS
COLOR FILTERS | IMAGE
PLANE
-
!
|
1
f . '
- ' {
|
—>

j— f
RED, GREEN AND BLUE
CO-LINEAR PLANE WAVES
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binary detour-phase holograms on color film, each exposed through a color
filter appropriate to the color of its image. Then false images are
avoided because only light of the desired color is transmitted by each
hologram: the undesired colors are absorbed.

A disadvantage of binary detour-phase holograms is that they require
many resolution elements of the display device to represent one Fourier
coefficient; and if three color-separation binary detour-phase holograms
were spatially multiplexed, then three times the display capability would
be required. Attempting to reduce this extra display requirement, one
might simply overlay cells of different colors, as shown in Figure 4.1,
However, at least for Kodachrome, the film would be thinner where two
apertures overlap (the yellow area in Fig. 4.1), resulting in undesired
phase variations. Thus, if cells are to be overlayed, then it is necessary
to design the hologram cell in such a manner that apertures for different
colors do not overlap.

As demonstrated by Haske11[1973], the opening of a combination of
small binary apertures, or "subcells", within a cell can be used to
represent a Fourier coefficient. Powers [1975] in particular studied the
use of only one row of subcells within a cell to represent a Fourier
coefficient. Referring to Figure 4.12, if one uses only a combination of
five subcells along one line in a cell, then at the off-axis angle to the
hologram corresponding to the first order of diffraction, 1ight coming
from each of these subcells is 1/5 wavelength out of phase with its

neighbor. Any one of these apertures (subcells) contributes a unit phasor

*
Figures 4.1 to 4.7 are located on the color plate on page 109.
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Fig. 4.13 Phase-null method.
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(Fig. 4.12). By opening a combination of the five apertures, the
corresponding unit phasors are added, allowing 31 points in the complex
plane to be addressed. The attractive feature of this type of hologram
is that there is enough unused space in the cell to multiplex in two
more colors, without overlap and without requiring three times the display
capability. For multiplexed holograms, scaling is performed on the
digitized object. Figure 4.2 shows a (greatly magnified) portion of such
a multiplexed binary detour-phase hologram, which has a cell of five sub-
cells, 40x50 coefficients, and was replicated four times (in a 2x2 array)
to give the image shown in Figure 4.3

Three problems plague the detour-phase holograms: their Tow diffraction
efficiency (theoretically 10.3% maximum, but usually less than 1% in
practice), the large number of resolvable elements of the display device
needed to encode a single Fourier coefficient, and the abundance of
spurious images (which are seen in Figure 4.3). A1l three of these
problems are solved by the use of on-axis holograms.

4.3 On-Axis Holograms and the Phase-Null Effect

As discussed in Section 2.2.3, by using different combinations of
emulsions (modes) of Kodachrome, ROACHs can be made for illumination with
any of the three primary colors. Shown in Figure 4.4 are three ROACHs,
one each for illumination with red 1ight (lower left), green 1ight (upper
left) and blue 1ight (right). Scaling for the three wavelengths was
accomplished by adjusting the x and y gain controls on the CRT,
giving three different sizes of holograms. Each ROACH is replicated 4
times (in a 2x2 array), giving the image (Figure 4.5a) a dot structure.

(The original color picture, from which the color Xerox of Figure 4.5
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was made, is yellow in the upper center section, blue in the upper left
section and green in the lower right section.)

Figure 4.5b shows an image from three parity-sequence holograms
[Chu and Goodman, 1972] made on Kodachrome used in phase-only (kinoform)
modes. The considerable noise in the corners of the image arises from
the parity sequence elements added to the desired image to level the
spectrum. In this case sca]ing‘was done on the digitized object, in
order to demonstrate the difference in sampling rates for the three
different colors.

Both the ROACHs and the parity-sequence holograms that produced the
images shown in Figure 4.5 required color filters in the read-out geometry
(Fig. 4.11) in order to avoid false images. As will now be explained, it
1s'possib1e to remove this requirement and have the on-axis holograms
themselves reject the false images. For a given color-separation hologram,
one incident color produces the desired image, while the two other incident
colors produce false images. Of these latter two colors, one can be com-
pletely absorbed by one layer of the three-layer film, still leaving two
layers to control both amplitude and phase of the desired color. For
example, for a ROACH for illumination with blue light, the blue-absorbing
layer could be used for amplitude control and the red-absorbing layer
could be used for phase control, leaving the green-absorbing layer unex-
posed during synthesis so that the processed transparency absorbs green
Tight (unlike the usual manner in which the green-absorbing layer would
be eliminated--see Section 2.2.3). Similarly, the green false color
image from a parity sequence hologram for blue light could be eliminated

by using only the red-absorbing layer for phase control.
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The second color leading to a false image can be diffracted away
from the desired image by using the "phase-null" method {Chu, 1973].
Consider a single Fourier coefficient cell in a hologram designed for a
blue image. During ordinary synthesis, the cell is exposed uniformly
over its area to blue and red 1ight to give the processed transparency
the proper complex transmittance to blue Tight. For the phase-null
method, the cell is divided into two halves, as illustrated in Figure 4.13.
The right-hand half is exposed as usual to blue and red light to give the
processed transparency the proper complex transmittance to blue 1ight.
The left-hand half is exposed the same to red but much less to blue light
than is the right half. This difference in exposure to blue light causes,
in the processed transparency, a phase difference to red 1light between the
two halves of the cell. If exposed properly, this phase difference can
be made to be = radians, that is, % wavelength, of red 1ight. Then
for red 1ight, the net contribution on-axis due to this cell 1is zero,
since the two halves cancel one another, being equal in amplitude but
opposite in phase (Fig. 4.13). The red light is diffracted off to the
sides, away from the desired image.b To blue 1ight, however, the left-
hand half is opaque compared to the right-hand half, so only the right-
hand half makes a significant contribution to the phasor; and since the
right-hand half was exposed to give the proper complex transmittance,
then the blue image reconstructs as it should. Therefore, the result of
the phase-null effect is to attenuate a false image without disturbing
the desired image. So for a given hologram, of the two colors that could
form false images, one can be absorbed by the film (green in the example

above) and the other (red) can be diffracted off to the sides without
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disturbing the desired (blue) image. If this is done for all three
holograms, then no disturbing false images would appear, and the holograms
could be spatially multiplexed, if desired. A more detailed mathematical
treatment of the phase-null effect is given in Appendix D.

Figure 4.6a shows such a phase-null ROACH for a blue image i1lumi-
nated with blue Tight. Notice the alternating vertical bands of trans-
mitting and opaque blue half-cells. Figure 4.6b shows the same phase-
null ROACH illuminated with red light. Both halves of each square cell
transmit red Tight equally, but due to the difference in exposure to blue,
the two halves are out of phase with one another. Figure 4.7 shows the
reconstruction of such a phase-null ROACH illuminated with both red and
blue Tight. The blue image reconstructs on-axis as expected, while the
false red image is diffracted to both sides, away from the desired blue
image.

Unfortunately, the phase-null method is difficult to employ. Since
only one layer is used for phase control, that one layer alone must be
capable of phase-matching (producing a phase excursion of 2n radians).
As seen from Table 2.5, phase-matching is possible with a single Tayer
of Kodachrome IT only if it is illuminated by blue or green light.
Phase-matching for red 1ight cannot be accomplished strictly by the blue-
absorbing layer alone. However, if exposures are made through a blue
Wratten filter No. 98, then exposures above the value needed to eliminate
the blue-absorbing Tayer still cause an increased phase delay since, in
that region of exposure, the green-absorbing layer is also being
exposed (see Section 2.3.3). Thus, phase-matching for red light can be

achieved by using the blue-absorbing Tayer over the entire range of its
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H&D curve, together with the green-absorbing layer in the shoulder

region of the green H&D curve. In that region of the green H&D curve,
green light is still heavily absorbed, so the green false image would
still be greatly attenuated. Consequently, the phase-null method can be
successfully employed with Kodachrome II. Kodachrome 25, on the other
hand, is not suitable for the phase-null method since phase-matching
cannot be achieved for any color with a single layer (Table 2.6). If
color images are produced using only two of the primary colors (capable
of producing all the colors along one line of the triangle in Figure 4.8),
then only one false image per hologram must be avoided, and two layers can
again be used for phase control.

Implementation of the phase-null effect requires very accurate
control over the photographic process. The phase-null effect relies on
two phasors being exactly equal in amplitude and opposite in phase in
order to cancel one another. A small error in one of the phasors will
destroy that cancellation. Making exact cancellation even more difficult
is dye-density cross-talk. To the undesired color, in addition to a
difference in phase of = radians between the two half-cells, there is
also an amplitude difference, which requires compensation in the left
half of the cell if exact cancellation is to occur. Since the blue-
absorbing dye absorbs very 1ittle red 1ight, no compensation was required
for the example shown in Figures 4.6 and 4.7, but in general compensation
is required.

4.4 Conclusion
The additional problems involved in the production of color images

from computer-generated holograms can be solved in a number of ways. We
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have described three methods for taking care of the scaling problem: by

a digital step, during hologram synthesis, and during reconstruction. We
have also shown three ways to eliminate false color images: by the optics
of the reconstruction set-up, by wavelength-dependent absorption of color
film, and by the phase-null method.

When full-color imagery is required, the advantages of on-axis
holograms over binary detour-phase holograms (particularly their higher
diffraction efficiency and economical use of the display device) are
magnified (as is the principal advantage of binary holograms--ease of
synthesis). Table 4.1 compares the binary detour-phase hologram, the

parity sequence hologram, and the ROACH.
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CHAPTER 5
ITERATIVE PROCEDURE FOR REDUCING

QUANTIZATION NOISE

Due to the limitations of the display devices and materials used
to synthesize computer holograms, it is often not possible to exactly
represent any arbitrary complex Fourier coefficient. Instead, only a
certain set of quantized values can be represented, and all other values
aré approximated by the quantized values. For example, as illustrated
in Figure 5.1a, Lohmann's binary detour-phase hologram [Brown and Lohmann,
1969] can represent only a discrete (quantized) set of complex values,
depending upon the number of resolution elements of the display device
used to form one cell to represent a Fourier coefficient. The kinoform
(Fig. 5.1b) [Lesem, Hirsch, and Jordan, 1969] allows nearly continuous
phase control, but quantizes all the amplitudes to a single level. If
a gray-level display device used to synthesize a kinoform has a finite
number of gray-levels, then the phase is quantized as well. Similarly,
a ROACH or any other continuous-tone (not binary) computer-generated
hologram is quantized if a display device with a finite number of gray-
levels is used for synthesis.

Let the sampled object be {a} and its (discrete) Fourier transform

)th

be {A} : {a} D {A} . A desired (p,q complex coefficient A

Pq
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(p,q)M cell

\Imog. Qpq fimagq.
[ J
P8 Nog N
*/Apq
el Real Real
° ® e
®
[ ]
*
[ ]
@ (b)

Fig.5.1 (a) Lohmann binary detour-phase hologram. Ampli-
tude and phase are determined by the area and position,
respectively, of an aperture within the cell. For 5x5
subcells per Fourier coefficient, only 26 points in the
complex plane can be addressed. (b) Kinoform. Phase is
determined by the thickness of the film, and the amplitude
is quantized to a single level.

Imagqg.

N {0} D {a}
(8} < {a}
(o}+{n} < {a}(n)

Real

Fig.5.2 Quantization noise in the image produced by a
computer-generated hologram.
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(see Fig. 5./) is only approximated by a quantized value, qu » which
equals qu + Npq . Npq is the Fourier-domain quantization noise for
)th Fourier coefficient. In the image plane (Fig.5.2), the

the (p,q
result is quantization noise, {n} , the transform of {N} ,added to
the desired image. The actual image is {3} = {a} + {n} , where

{Q} c {a} . Studies of quantization noise have been performed by a
number of authors [Powers, 1975; Powers and Goodman, 1975; Gabel and

Liu, 1970; Goodman and Silvestri, 1970].

5.1 Previous Methods, Phase Coding

One method of reducing (or eliminating, in certain cases) quanti-
zation noise is by the parity-sequence method [Chu and Goodman, 1972;
Chu, 1974], but at the expense of additional complexity in the hologram
and the interlacing of parity noise with the desired image.

Another approach, using the fact that only the intensity of the
image is observed, is to assign various phase angles to the different
points in the object (phase code the object) to help level the spectrum,
which reduces the quantization noise in kinoforms. Better than random
phase coding or other deterministic phase codes (see, for example,
[Akahori, 1973]) is an iterative phase-coding method developed at IBM
[Hirsch et al., 1971] and later discussed by Gallagher and Liu [1973].
That method, which is outlined by the block diagram of Figure 5.3,
starts by random phase coding the object, then Fourier transforming,
then setting all the Fourier amplitudes to a constant, and then inverse
transforming, thereby calculating the image that would have resulted
from a kinoform. Then the phases of that image are used as a new phase
code for the object (and the cycle is repeated for a few iterations).

This method substantially improves the image from a kinoform by finding
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ASSIGN RANDOM PHASES {6}
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pLoT {¢} and
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Fig.5.3 Previous iterative phase-coding method.
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a very good phase code for the object.
We discovered a deficiency in the iterative phase-coding method
that is particularly important to the computer memory application.
After a number of iterations, the integrated squared error (noise)
decreases, apparently asymptotically approaching a certain minimum value
[Gallagher and Liu, 1973]. We followed the progress (at each iteration)
of each individual point in the image and noticed that, although the
error at most points generally decreased as the number of iterations
increased, the error at some points failed to decrease, stabilizing at
a high level. That is, the overall] quality of the image improves,
except at just a few points at which the error remains high. For the
computer memory application, the error at those few points prevents the
error rate (the fraction of incorrectly detected bits) from becoming
arbitrarily small, even after an arbitrarily large number of iterations.
In an attempt to correct that deficiency in the iterative phase-
coding method, the problem was attacked with a different approach, and
a new method was developed that goes beyond mere phase coding.

5.2 Input-QOutput Approach: Manipulating Amplitude and Phase

Referring to Figure 5.4, we view the problem in this way: what
we have is an input, {a} (the object), and an output, {a} (the image),
of a nonlinear computer-generated hologram system. The purpose of all
our manipulations is to have the amplitudes of the output approximate
as c]oseiy as possible some desired amplitude pattern {t} (and we are
not concerned with the phases of the output). The phase-coding methods
all choose the amplitudes of the input equal to {{} and manipulate the

phases of the input in order to optimize the output. However, we claim
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Imag. NON-LINEAR SYSTEM
ineut {a} —{ o {A}

quantize
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o (o Jefn)efo)-|e )= 2]+ {0}

Real

Fig.5.4 Input-output viewpoint. The desired output has

tla [} = {0 -

AQmn

x0C *

INPUT

g} < {a}
{a}+1{a8} < {o}+{ag}

(p,q)t" COEFFICIENT

OUTPUT

Fig.5.5 A change {Aa} , in the input results in a change,
{AQ} , in the kinoform and a change, {Aa} , in the output.
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that the input that gives the best output may have amplitudes different
from {t} ; that is, we should manipulate not only the phases, but
also the amplitudes of the input in order to optimize the output.

5.2.1 Changes in Kinoform Image

In order to see in what manner the amplitudes and phases should be

manipulated, we consider what happens in the kinoform system: if the
input is changed in some way, what is the effect on the output? Referring
to Figure 5.5, we start with an input {a} that results in an output
{5} . The input is changed by adding {Aa} to it. The corresponding
change in the Fourier domain is that {aA} , the transform of {pra} ,
is added to {A} , and the sum is used to determine a new quantized
value {Q”} . The change in the kinoform is {aQ} = {Q°} - {Q} .
The change in the output due to the change in the input is {Aé} » the
transform of {AQ} . 1In this section we will investigate the expected
value of {Aé} .

Let KO be the level to which all the Fqurier amplitudes,

1€
{|A]} , are set equal. Also, let A PA . From Figure 5.5,

pq = Apqgle

ig
= Pq - . th
we see that qu KO e K0 qu/lqu] » and the changed (p,q)

coefficient in the changed kinoform is

= Qg taQ,, = Ky(A (5-1)

- +
%q pg  2%q 0 Mpg)/ [Apg + oA

+ |
Pq Pq

At this point we assume that ]Aqu] << ]qu] for all (p,q) . This

assumption will be true for nearly all (p,q) if the changes in the

input are small, that is, if z]Aamn] << I ]amn]z . Then, by Parseval's
mn mn
2 2
theorem, 1 |AA A . A
pq' pq' << ;;] pq' Let the angle between & bq and qu
b Then AA_ /|aA H%pq"Fpq) i ]
e Bpq - en A pq/lA pq' = e . Also, as illustrated in
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Figure 5.6a, Aqu can be broken up into two components. We define

the following orthogonal components:
ig

AA;q = |Aqu|cos Bpq © Pq (5-2)
is the component of Aqu parallel to qu , and
AAEq = {Aqu|sin qu ei(gpq+ﬂ/2) (5-3)
is the component of Aqu orthogonal to qu » where
Aqu = AA;q + AA;q = |Aqu| ei(gpq+qu) ] (5-4)

From the geometry of Figure 5.5, using the law of cosines and the

jdentity cos{(s - g_..) = -cos 8__ , we find that

pq pq
1Apq * Aqu|-l ) (|qu|2 ¥ |Aqu|2 * 2 Apgl-18Aq] cos qu)_%
~ (1 - [Aqu|cos qu/Iqul)/|qu| (5-5)
= (1 oA /1AL DA
for |Aqu| << |qu| . Inserting (5-5) into (5-1), we obtain
Qpq = Ko(Anq * 8Asg)~ (1 = [8AC /1A /1AL
r
= K, |22:|'+ |qu|[}qu - |AAEq nggT-- B %%ﬁE%L] (5-6)
pq
AA;q
K
0+ o ()
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where the term of order |AA|2 was dropped. Therefore, the change in
the kinoform due to the change in the input is (for small changes)

K
t 0
A ~ AA _— . -7
qu - Pq <|qu|> (5-7)

This result (5-7) can also be seen from the geometry of Figure 5.6a
(similar triangles). Thus, we see that only one of two orthogonal
components of Aqu contributes to AQDq , the change in the kinoform.
We will investigate the average or expected change, E{ad} , treating
{aA} as given and treating the Fourier coefficients qu and the phase
angles qu as random variables. For example, if {a} 1is random phase
coded, then the amplitudes |qu| are identically distributed Rayleigh
random variables, and the phases gpq are uniformly distributed on
[O,Zn) [Powers and Goodman, 1975]. For this analysis we will assume that
the qu are independent of each other, that the amplitudes lqul are
jdentically distributed, and that the angles qu are uniformly distri-
buted on [0,2n). We will also assume that the angles qu are uniformly
distributed on [O,Zn) and are independent of each other and of the
A . AQ and AA;q will also be treated as random variables since

P9 Pq
they depend on 8__ . A justification of these assumptions will not be

Pq
given here; and, in fact, they are true only for special cases (see,
for example, [Pear]man, 1974]). However, the results based on these
assumptions are borne out by computer trials.

{Aé} js related to {aQ} through the (inverse) discrete Fourier

transform (see Appendix B):

Aa = =5 Y Q. exp l%ﬂ-(mp + ngq)t . (5-8)




Inserting (5-7) into (5-8) and taking the expected value, yields

. N-1 . K
iy =1y T ol ] el e 0| s
N™ p,q=0 Ppql
where AA;q and |qu|'1 are assumed to be independent.
In order to calculate E{AA;q} , we further break up AA;q into
two orthogonal components. Referring to Figure 2.6b, the component of
pAC that s parallel to tAnq has a magnitude [sAl |-[sin gl >

and the component that is orthogonal to AA has a magnitude

Pq

t . t .
. S A = A * s
|Aqu| | cos qu| ince |a pq| | pql [sin qu| then
t . 2 i(n/2)\ ..
A = AA + (AA . -
A b A bq sin qu <A bq e )s1n qu cos qu (5-10)

where the first and second terms are the components parallel to and

orthogonal to Aqu , respectively. The expected value of AA;q is

t . 2 i(n/2) .
ElaA } = 2A { } + (aA : :
;A bq Mg Eisin Bog (A pg © >E sin By, cos Boq .
(5-11)
Assuming that qu is uniformly distributed on [0,2r) , then
2n
(.2 1 . 2
Esi = d = L -12
ls n qu} > é sin qu qu 5 (5-12a)
and
1 2n
i = =— [ si g =0 . -12b
Eis]n Bpq €OS qu} 5 g sin qu cos qu qu 0 (5-12b)
Therefore (5-11) reduces to
E;AAt } Y : (5-13)
Pq pq

Inserting (5-13) into (5-9) and assuming that the |A__| are identically

pq
distributed (i.e., E{KO/IquI} is independent of (p,q) ), we obtain the

result
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- o 11 M i2n
el i | ::E{————— Lo explT&E (mpna)| - 08 (5-14)
mn A| $ N2 p,q=0 N Pq
or
R KO
~ 1/ A4 - -
E{Aamn} ~ % Aamn E{W ; . (5 15)

From (5-15) we see that the expected change in the output is a fraction
of the change in the input, that fraction depending on the statistics
of the spectrum, |A| . If the spectrum is nearly level (that is,

if ]qu|z: Kg for all values of (p,q) ), then the expected change
in the output is just half of the change in the jnput; that is, only
half of the change Al makes it through the kinoform system.

Similarly, we compute the variance of Aamn

- - 2) _ ~ 2 A 2
£ 148 07E | 8dn | = €]yl |- |E{Aamn;| : (5-16)

Taking the expected value of the squared modulus of (5-8), we obtain

N-1 .
~ 2 i2m * |
E}IAa | } Z ) exp{———[m(p-r)+n(q-sﬂ} -E{AQ NS
mn ‘1‘p §=0 r,$=0 N pPq rsf
(5-17)
Using (5-7), we have
K2
}AQ AQ ; %“K“g‘"ﬁf_'} E%AAt AAt*} (5-18)
[Apgl [ Prs]
where again the AAEq and IquI are assumed to be independent.
Using (5-10), the second factor in (5-18) can be expressed as
t t*% * . 2 . 2
A A = A . .
E{ ALLAAT | = A -BAY E{s1n 805 11 B
+ -i(m /2)s1n B sin B __cos B
Pq rs rs
i(n/2) .. . 2
+ e sin qucos qus1n B (5-19)

. . |
+ sin qu cos qu sin Brs cos Brs [ -
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There are two cases to consider. The first case is for (r,s) # (p,q) ;
then, assuming that qu and By are independent and @sing (5-12),

we find that only the first term in (5-19) survives, leaving

= 4 AquAA (rys) # (p,q) (5-20)

[t At
EIAquA o

The second case is for (r,s) = (p,q) ; then the pertinent integrals are

E{sin4s } - 1—-?ﬂ sin*e ds = 3/8 (5-21a)
paj ~ 2 g Pq ~"pq
E:sin36 cos 8 ; = l——?ﬂ sin36 cos g dg__ =0 (5-21b)
Pq Pq 2m 0 pq P9 " pq
and
E{sinzs coss } - l—-?ﬂsinzs cos’s_ds_ = 1/8 . (5-21c)
Pq paf ~ 2m g Pq Pq ""pq
Using (5-21), (5-19) reduces to
E}AAt = L AR AR (rys) = (p,q) .
pq rs pq rs _ (5-22)

Combining (5-18), (5-20), and (5-22) with (5-17) results in

(
12n
> E—- Z expv (mp+nq)§ Ao
(5-23)

T (mp+ns)

N H K|A|2‘ } ] 1{‘<E{_II<AO—I}>2L§10'AAPQ °

where E{(IquI-IArS])'l} = E{Iqul'l}-E{IArsl'l} = (E(]a] 11?2

AR*
rs

(rss) # (p,q) was used. Using (5-9) and Parseval's theorem, (5-23)

reduces to
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(5-24)
2 2
K K N-1
1 _~9__,_ - 0 _1_ 2
' {2# A2 % <E{ [A D:\NZ k,§=o|mk"l '

Combining (5-24) with (5-16) and (5-15), we obtain the result that the

variance of the change in the output is

A . 2 Kg Kq ¢
{3 = {2 }:%H NE } <E{Wm
N-1
1 2
= (2-25)
N k..sza=oIAakQI

Equations (5-15) and (5-25) suggest how to go about manipulating
the amplitude and phase in order to reduce quantization noise. If the
computed output is something other than what is desired, then (5-15)
suggests that if {Aad} is the difference between the desired output
and the actual output, then we should add to the input {aa} = 2(E{K0/
IAI})-I-{Aad} . Then the expected value of the change in the output
would be {Aad} , the desired change in the output. However, the actual
change in the output would not be exactly {Aad} , due to the finite
variance (5-25). The variance of the change in the output (5-25) can
be considered to be a measure of additional noise (besides the original
quantization noise) that is introduced into the output by the change in
the input, and that noise prevents us from obtaining exactly the desired
change in the output.

For the case of a kinoform of an object with a level (or nearly

level) spectrum, (5-15) reduces to
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3 ~ 1 -
E{Aamn} 5Aa (5-26)

and (5-25) reduces to

2 =~

E lAamn—E{Aamn} (5-27)

Equations (5-26) and (5-27) were tested by computer trials in which small
changes were made in the input and the resulting changes in the output
were computed. For small changes, (5-26) and (5-27) were found to be
very accurate.

In order to obtain some indication of the accuracy with which the
output can be changed, we will consider three cases. The first case is
for ]Aamn] = IAaOI for all (m,n) ; that is, the modulus of the change
in the input is the same for all points (m,n) . Then the standard
déviation of the change in the output, given by the square root of (5-27),
is equal to lAaol/Z . From (5-26), the modulus of the expected change
in the output is IE{Aamn}l ~%laa | = |aag|/2 . 1In this case, the
additional noise (introduced by the change in the input) is as great as
the expected change in the output; therefore, changing the input in this
case allows Tittle control over the change in the output.

The second case we will consider is for Aa ., = has . 6 ;  that

n 0"m,r'n,s °
)th

is, only the (r,s point in the input is changed. From (5-26),

E{Aamn} 23%Aa06m,r6 From (5-27), the standard deviation (a measure

n,s *
of the additional noise) of the change in the output is ]Aaol/(ZN) .

The average (expected) value of the additional noise at a given point
depends only on the total change in the input rather than on the change

in the input at that particular point. For an image of modest complexity,

2

N™ is greater than 1000. Therefore, the standard deviation is less than
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1/30 of the expected change at the (r,s)th point. That is, when only
one point is changed, then the change at the corresponding output point
can be controlled very accurately. Weak noise of average amplitude
|Aa0|/(2N) is spread over the entire output as a result of the change of
a single point in the input.

The third case we will consider is for [aa different for each

mn‘
point (m,n) . This is the case of interest, since the desired change in
the output is generally different for each point, depending on the error

at each point. Once again, the average additional noise at each output
point is independent of the change in the input at that particular point.
Therefore, similar to the first case mentioned above, for those points with
comparatively small values of |E{A$mn}| , the actual change in the output,

~

Aa s is heavily influenced by the additional noise and bears little
resemblance to E{A;mn} . However, similar to the second case mentioned
above, for those points with comparatively large values of |E{A3mn}| .
Aamn is only slightly influenced by the additional noise, and is approxi-
mately equal to E{Aémn} . That is, the output points which require the
greatest change (i.e., have the greatest error) are the ones that can be
changed most accurately. The output points with comparatively small
error cannot be changed accurately (and may actually have greater error
after the change than before); but there is less need to accurately
change the points with small error if there are points with much larger
error in the same output {more will be said about this later).

If the input is random phase coded, then the amplitudes |qu|
are identically Rayleigh distributed [Powers and Goodman, 1975]): the

probability density of |A] s
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2,, 2
p(|A]) = (lﬁ\l/oz)e'IAI /1297 0 < JA] < (5-28)

where 202 = E{|A|2} is the second moment. Using the identity
x ~axbdx = 1((n+1)/2)/2a(M1)/2 e find that
0

ECA]} = V@;c; (5-29)
EC/IAlY = Wi/ (202) . (5-30)

Thus, for the random phase-coded case, (5-15) reduces to

E{Aémn} ~ I/ZKO\/n/(zoZ) A . (5-31)

and

mn
Using K, = E{IAIZ} in order to keep I Kg = Z|A|2 » (5-31) becomes
Pq Pq
E(ra, } = /—TZTAamn = 0.886 83 . (5-32)
We also find that
E(1/[A]%) = fm——l——e'lAlz/ZGZdlAl—»oo . (5-33)

0 |A|02
Therefore, (5-25) diverges, due to the assumption that |Aqu| << |qu|
for all (p,q) , an assumption that cannot be used in the case of Rayleigh
distributed |A| . That is, (5-25) is invalid for any case that allows
,qul to be very small. The accuracy of (5-15) is also reduced for those
cases, making the prediction of E{KO/|A|} » the value of which needed
to control the change in the output, more difficult. In any case, though,
the value of E{KO/|A|} can be determined experimentally, by making a

change in one point of the input, calculating the resulting change in the

corresponding point in the output, and using (5-15). In this way
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E{KO/IAI} was found to be 0.90 for a random phase coded input, in close
agreement with (5-32).

5.2.2. The General Case

While Section 5.2.1 dealt strictly with the kinoform system, we
also found, by computer tests, similar behavior to (5-15) and (5-25)
in computer-generated holograms with other types of quantization. In
general, for all types of quantized computer-generated holograms, a
change in the input results in a fraction of that change in the output,
plus additional noise. That is,

E{Aamn} = oha o (5-34)

where the fraction o depends on the type of quantization and upon the
statistics of |A| . The average intensity of the additional noise, which
js equal to the variance of Aamn , depends on the type of quantization,
on the statistics of |A| , and on the amount of change in the input.
(5-34) suggests that, in order to achieve a desired change {aa,} ,
the input should be changed by

ay = o lisay . (5-35)

5.2.3. A Second Method

An alternate method can also be used. Suppose that an output {5}
is used as an input. Since {Q} , the transform of {a} , is already
quantized, then the quantization step will have no effect on it. There-
fore, if the output {a} 1is used as an input, then its output will
simply be itself. Thus, no matter what input actually resulted in the
output {a} , the output {a} can always be considered to have resulted

from itself as an input. Consequently, the change given by (5-35) can be
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added to the output, and the sum {5} + a-l{Aad} can be used as the new
input. This alternate method (adding (5-35) to the output to form a new
input) will be referred to as method II, and the previously discussed
method of adding (5-35) to the input will be referred to as method I.

In the Fourier domain, the effect of method II is to use the sum

+ AA th A+ AA to determi th antized
qu bq (rather than bq pq) 0 determine the new quantize

value Qﬁq . Then in the case of the kinoform system (see Fig.5.6) for
method II,
~ Apt _
qu ~ Aqu (5-36)

replaces (5-7). For method II, we find that (5-15) is replaced by
(5-26), and (5-25) is replaced by (5-27). That is, irrespective of the
actual statistics of |A| , method II produces changes in the output
that are the same as the changes obtained with method I for a perfectly
level spectrum (|qu| = KO) . In fact, for method II, {aa} is
treated as though it did result from an input with a perfectly level
spectrum, since pa s treated as being the input, and ra  does have
a perfectly level spectrum.

A disadvantage of method II is that o ! = L, whereas o 1 is
generally greater than % for method I, depending upon the statistics of
|A| (.89 for the case of a random phase coded input). Therefore, method
IT requires greater changes in the input (and a greater factor ZlAak£|2
in (5-26) contributing to the additional noise) than does methodkf, in
order to achieve the same change in the output. However, depending on
the statistics of |A| , the factor %[ZE{KS/IAIZ} - (E{KO/|A]})2] in
(5-25) may be considerably greater than the factor of % in (5-27);

therefore, in general there is no clear advantage of method II over
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method I or vice versa. In practice the two methods work with comparable
success.

Still other methods are possible, too. For example, the roles of
the object domain and of the Fourier domain can be reversed. That is,
the input and output could occur in the Fourier domain while the "system"
consists of an inverse transform, a setting of the object domain ampli-
tude equal to the desired amplitude {r} , and a forward Fourier transform.
However, only methods I and II were investigated in any detail.

5.2.4. The Choice of the Desired Change

Recall that the desired output has amplitude {1} and the phase
of the output is unimportant. Then for each output point 3mn s there
are an infinite number of possible desired outputs, one for each possible
value of phase, [0,2n) . Therefore, for a given output {3} ,» there
are an infinite number of possible choices of {Aad} , the desired
change in the output. The particular choice of {Aad} is very important,
as it determines the success with which the method works. A few of the
considerations that come into play in picking {Aad} will be discussed
in this section.

Desired Change Related to Noise

Consider the case for which the amplitude of the input, {|a|}
is {t} , the desired amplitude of the output. Then the quantization
noise is

(n} = {a} - {a} . (5-36)

Obviously a change in the output that would yield the desired output is
-{n} . However, as will be shown, the change -{n} 1is not effective

in changing the output. In this case, the new input is
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fa"} = {a} + {pa} = {a} - u'l{n} . (5-37)

In the transform domain, the change in the transform is

{8AY = -o"lny (5-38)

In the case of the kinoform, Figure 5.1b shows that the phase of Npq
and the phase of qu differ by either 0 or = radians. Therefore,
in this case the phase of qu + AA differs from the phase of A

Pq
also by 0 or = radians. In particular, the phases of qu and

Pq

qu + Aqu are the same if u'lleql < lqul and differ by = radians

if a'll Thus, the new quantized value in the Fourier

Noal > MAgq!

domain is either qu or -Q , respectively. When a-lleql < [qul

Pq
for all coefficients, the new quantized values do not differ from the old
quantized values, and so the result is that no change occurs in the output
at all. Similarly, no change whatsoever occurs in the output of a kino-
form system if the input is changed by {n}'const., if 0 < const. <1,
Note that const. = 1 is just the use of the output as the input. For
the case of {aa} proportional to {n} » the results of Section 5.2.1 do

not hold since the angle qu is then highly correlated with gpq

(that is, qu =+ ¢ ). Another case for which the results of Section

pq
. - 1(w/2). .
5.2.1 do not hold is for Aamn Nn€ const., again because qu
. . . . t
s highly correlated with . In thi » OMAZ ~AA , and th
1 ghly correlated wi gpq n S case pq pq and the

factor of % in the right hand side of (5-15) 1is replaced by unity.

From these Tast two cases we see that changes in the input that tend to
be orthogonal to {a} and to {n} tend to be much more effective in
changing the output than are changes that tend to be parallel to {a}

and to {n} .
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Other Considerations

Another important consideration is the magnitude of the desired
change, {|Aad|} . Since the additional noise increases with increasing

z |Aak£l2 , it is desirable to minimize the magnitude of the desired
ke
change. The desired change that has the smallest magnitude is

rmn(amn/|amn|) -a s which has magnitude

Still another important consideration is the fact that the previous

R LIE

jterative phase-coding method is effective in reducing the dynamic range
of the spectrum, which is highly desirable. In terms of the input-output
point of view, that method uses a {aa} that rotates the phase angle

of the input toward the angle of the output. Therefore, it is desirable
to choose a {Aad} that tends to rotate the angle of the input toward
the angle of the output.

A Good Choice of the Desired Change

Taking all the aforementioned considerations into account, the
optimal choice of {Aad} is not clear. A number of different types of
change were made in computer trials. In addition, various modifications
were tried, such as changing the input only at the few points which
contained the most errors. Rather than discuss the many possible types
of changes and the modifications of the basic method that might be used,
we will present here only one of the best methods found. A way of
changing the input that worked particularly well is as follows. If an

input a results in an output amn , and the desired amplitude of the

mn
output is Ton then an effective choice of Aamn is one that has two

components:

- 146 -




a a a ~
mn_ _ lamn + mn a £0

da = 2| ! (5-39)

0 ,Tmn=0

in which the first component (of the upper Tine) rotates the angle of the
input toward the angle of the output, and the second component boosts
(or shrinks) the amplitude of the output to the desired level. (For the
images we worked with, Ton = 1 or 0only.)

It should be noted that the change (5-39) used with method I is

equivalent to using the change

a T
mntmn
2 !5 | " %n ’ Tan 7 O
Adyn = mn (5-40)
_a T -
mn . mn 0

with method II. From the point of view of method II, for which o = 5,
the change (5-40) is expected to produce a new output with the desired
amplitude Tin (rmn # 0). Furthermore, the previous iterative phase-

coding technique can be interpreted as being method II with

a T
mn'mn -
!3 | " ’ Ton 7 O
_ mn
Aamn = ) (5 41)
“%mn > Tan = O

which is only half the change in the input (Tmn # 0) needed to

achieve the desired output. It can also be seen why the previous iterative
phase-coding technique works its way into a situation in which the errors
stabilize. After a few iterations the quantization noise tends to line

up its phase with the phase of the input. Then the change (5-41) is
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just “Non and as discussed earlier, the result is no change in the
output. This behavior was observed in computer trials. However, the new
method never gets into that situation, since, even if the noise were to
line up in phase with the input, then (5-40) would become ra = -2n. o

Tn # 0 and Aamn = -nmn , T =0, which results in Aqu that is not

lined up with A in the Fourier domain, and so the change continues to

pq
be effective.

The exact nature of the change in the output due to a change in the
input is only partially understood. Particularly important is the fact
that there generally is some correlation between {Aa} and {a} , so
we would expect there to be some correlation between {aA} and {A} as
well, which would change the results of Section 5.2.1. However, the
relationships are understood well enough at this time to make practical
use of them.

5.2.5 Procedure

Figure 5.7 shows a block diagram of the procedure used to reduce
quantization noise in computer-generated holograms. The procedure is
started by random phase coding the input, which at the start has amplitude
equal to the desired amplitude {t} . Then the input is transformed, the
transform is quantized (according to the type of computer-generated
hologram to be synthesized), then inverse transformed, thereby computing
the output that would result from the quantized hologram, {Q} . Then
the change aa_ (into which the o 1 factor is incorporated) is computed
and added either to the previous input (for method I) or to the last
output (for method II), to form a new input. The procedure is then
continued for a fixed number of iterations or until an error criterion

is met.
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5.3 Experimental Results

The results in this section are for binary objects (Tmn =Q0orl),
and the images shown are computer simulations of the reconstructions from
quantized holograms (displayed on a CRT). Gray scales were included
below each image in order to insure a valid comparison of different
results.

The first example is for.a hologram with four amplitude and four
phase quantized levels, plus the zero level, as would be the case for a
Lohmann binary detour-phase hologram using only 4x4 display resolution
elements per Fourier coefficient. Figure 5.8a shows the intensity pattern
that results when the object is random phase coded in the ordinary way.
Figure 5.8b shows the result if the hologram is computed with 13
iterations of the procedure described in Section 5.2.5, using (5-39)
with method I. A comparison of Figures 5.8a and 5.8b shows that the
image is greatly improved by the iterative method.

When the application is to an optical memory, the quality criterion
is the error rate. While the error rate has been computed for the
random phase-coding case [Powers and Goodman, 1975], a similar study
has not yet been performed that takes into account the iterative method.
However, it is instructive to compare the intensities of the weakest
one (rmn = 1) bit and the strongest zero (Tmn = 0) bit in the image.
When a one bit is less intense than a zero bit, then a wrong decision
would be made in detecting the output. The graph of Figure 5.9 shows the
weakest one bit and the strongest zero bit in the image, plotted against
the number of iterations performed. Also plotted is the strongest one
bit. Random phase coding (before any iterations) produced an image in

which the weakest one bit is nearly equal to the strongest zero bit,
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Fig. 5.8 Computer-simulated images from hologram with
4 amplitude and 4 phase quantized levels. (a) object
random phase coded; (b) after 13 ijterations of the
present iterative method.
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indicating a high error rate (perhaps on the order of 10'3). After just
a few iterations there is a comfortable gap between the weakest one bit
and the strongest zero bit, indicating a very low error rate (a few

orders of magnitude Tower than 10'3).

Thus, using the iterative method,
it is possible to achieve very low error rates, even with a severely
quantized hologram.

The second example is for the kinoform, which has continuously
controlled phase but only one amplitude level. Figure 5.10a shows the
result of random phase coding in the ordinary way. Figure 5.10b shows
the result after 8 iterations of method I using (5-39). For comparison,
Figure 5.10c shows the result after 8 iterations of the previous iterative
phase-coding method [Ga]]agher and Liu, 1973]. The image is greatly
improved by both iterative methods. However, the variations in the
intensity of the one bits is greater in the image shown in Figure 5.10c
(previous iterative phase-coding method) than in the image shown in
Figure 5.10b (new iterative method). For both iterative methods the
weakest and strongest one bits and the strongest zero bit are plotted in
Figure 5.11 for each iteration. As can be seen from Figure 5.11, the
new iterative method of manipulating the amplitudes as well as the phases
of the input allows better control over the errors in the image than the
previous iterative phase coding method.

When comparing the images from different computer-generated holograms,
the choice of the "best" image may depend on which quality criterion is
used. For the memory application, the error rate is most appropriate,
but is usually difficult to compute. Other common quality criteria are

signal-to-noise ratio and mean squared error. Gallagher and Liu [1973]
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OUTPUT INTENSITIES

Fig.5.11 Range of output intensities vs. number
of iterations for kinoform: solid lines for

the present method, dashed lines for the previous
iterative phase-coding method.
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used the mean squared amplitude error,.
(5-42)

as a quality criterion. However, since the actual quantity measured is
the intensity of the image, a more pertinent guality criterion would be
the root-mean squared intensity error,

N-1 5
0, = {—17 T (la|? - <2 )2} . (5-43)

N® m,n=0 mn

For the image for the random phase-coded case (Fig. 5.10a), o, = .0381
and ¢ = .163 ; for the image after 8 iterations.of the previous
iterative phase-coding method (Fig. 5.10c), o, = .0195 and o5 = .103
for the image after 8 iterations of the present method (Fig. 5.10b),

o, = .0231 and o = .0728. Comparing the present method to the previous
jterative phase-coding method, the previous method is better if judged

by oy but the present method is better if judged by 25 . However,
neither ¢, nor ¥ gives any direct indication of the error rate, since
both g and ¢. are the sum of the errors at all points in the image,
whereas the error rate depends only on the error of the worst (one or

few) points in the image. For example, if the error at nearly all the
points in the image were very small, but the error at just one or a

small number of points were large, then 5 and 2 would be small,

but the error rate would be very high (an error rate of 10'3 is con-
sidered to be very high). On the other hand, if the error at all the

points in the image were moderately large, but not enocugh to cause an

jncorrect decision, then g and o would be moderately large, but
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the error rate would be very low. Therefore, a better indication of the
error rate than either 2, or o, would be the difference between

(or possibly the ratio of) the weakest one bit and the strongest zero
bit. Using this quality criterion, the present method would be judged

to be better than the previous iterative method. Computer-generated
holograms computed by the present method are expected to have error

rates that are orders of magnitude better than holograms computed by the
previous iterative method, for the following reason. The previous method
does improve the mean squared error, but does nothing in particular to
decrease the error at the individual points in the image where the error
is greatest (and, as mentioned in Section 5.1, the worst errors tend to
stabilize at high Tevels). However, the present method of manipulating
the amplitude as well as the phase of the input works particularly well
to reduce the error at the points with the worst error, as discussed in
Section 5.2.1f Therefore, while the present method significantly reduces
the mean squared error, it reduces the error rate to a far greater degree.

5.4 Further Applications

The iterative method outlined in Section 5.2.5 is extremely versa-
tile and has applications far removed from computer holography. The
iterative method (or a modified version of it) can be used to solve any
problem of the following type: given a set of constraints placed on the
object (or image) domain and another set of constraints placed on the
Fourier domain, find a Fourier transform pair (i.e., an object or image
and its Fourier transform) that satisfies both sets of constraints.

The reduction of quantization noise is this type of problem: the image-
domain constraint is that the amplitude pattern of the image must have a
certain desired shape, and the Fourier-domain constraint is that the
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Fourier transform is quantized according to the quantization levels of
a particular type of computer-generated hologram.

Problems that can be solved by the iterative method fall into two
categories. The first category includes problems in which the sets of
constraints arise from physical measurements or conditions, and an exact
Fourier transform pair exists between the physical quantities of concern.
For the first category, the uniqueness of the Fourier transform pair is
an important question. The second category includes problems, such as
those in computer holography, in which the constraints are such that
an exact Fourier transform pair may or may not exist. The problem is
considered to be solved if a Fourier transform pair is found that closely
approximates the constraints. The basic method is the same for both
categories.

Both the iterative method based on the input-output approach and
the previous iterative phase-coding method can be used to solve this
type of problem. Which method works best depends upon the specific
problem. For example, the iterative phase-coding method was unsuccessful
for the 4-amplitude, 4-phase quantized hologram example of Section 5.3.
In practice, a combination of methods (i.e., one method for a few iter-
ations, then the other method for a few more iterations) can work better
than either method alone.

Two problems were previously solved by methods similar to the
iterative phase-coding method. The first problem is the following:
given the intensity (or amplitude) of an object both in its image plane
and its Fourier plane, determine the phase in either plane [Gerchberg

and Saxton, 1972]. The second problem is the following: given the finite
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width of an object and given the object's Fourier transform for low
spatial freauencies, determine (analytically continue) the Fourier
transform to higher spatial frequencies [Gerchberg, 1974]. These problems
can also be solved by the present iterative method.

5.4.1 Spectrum Shaping

Analagous to the first problem solved by Gerchberg and Saxton [1972]
is the following problem in computer holography: given a specified image
intensity pattern, compute the hologram in such a way that the hologram
itself looks like a second specified pattern. For example, as illustrated
in Figure 5.12, we might desire the image of a fish to be reconstructed
from a hologram that is itself a picture of a bird. Figure 5.13 shows
the actual bird and fish patterns used for the computer trial. The fish
object was random phase coded and Fourier transformed. The transform
amplitude was set equal to the bird pattern, and then inversed transformed,
thereby computing the image (shown in Fig. 14a) that would result from
the bird hologram. The iterative procedure of Section 5.2.5 was then
used for seven iterations, setting the Fourier amplitudes equal to the
bird pattern at each iteration, resulting in the improved image shown
in Figure 5.14. Increasing the number of iterations resulted in a
further increase in the quality of the image.

5.4.2 Phase Retrieval Problem

The phase retrieval problem can be stated as follows: given the
fact that an object function is real, nonnegative, and spatially bounded,
and given the modulus (ampliitude) of its Fourier transform, determine
the phase of the Fourier transform (or, equivalently, determine the

object function). This problem arises (for example) in speckle inter-
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Fig. 5.12 Bird transforms into fish,
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Fig.5.13 Bird hologram Fig.5.14 Fish image: (a) random phase
and desired fish image. coding; (b) after 7 iterations.
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ferometry [Labeyrie, 1970]. Ordinarily, if an astronomical object is
viewed or photographed through a very large telescope, atmospheric turbu-
Tence Timits the resolution of detail to an upper spatial frequency that
is far below the diffraction 1imit of the telescope. However, by using
the speckle interferometer of Labeyrie, the modulus of the Fourier trans-
form of the intensity pattern of the object can be measured out to the
diffraction Timit of the telescope. The transform of the modulus

squared of the object's Fourier transform is the autocorrelation of the
object [Bracewell, 1965]. The autocorrelation is sufficient to determine
only very limited information about the object, such as its width.

The phase problem was attacked with a modified version of method II
of the iterative procedure of Section 5.2.5. The known modulus was the
only Fourier-domain constraint used. The input-output domain was taken
to be the object domain. The object-domain constraints were as follows:
that the output be real and nonnegative and that it be restricted to the
width of the actual object (this width can be determined from the
autocorrelation of the object). Since the object is real rather than
complex, the considerations in choosing the desired change are different
than those discussed in Section 5.2.4. Rather than discuss the many
different ways that the change can be chosen to achieve the desired
output, we will present here only two of the best methods investigated.
The first method consists of choosing the new input to be equal to zero
if the output does not satisfy the constraints, and equal to the output if
the output does satisfy the constraints. It can be shown that the mean
squared error of the modulus of the Fourier transform of the input can

only decrease when this first method is used. The second method
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consists of choosing the new input to be equal to the difference between
the previous input and the output if the output does not satisfy the
_constraints, and equal to the output if the output does satisfy the
constraints. The second method does not necessarily decrease the mean
squared error of the modulus of the Fourier transform of the input, but
in practice it usually converges more quickly than the first method.
Figure 5.15 shows the nonzero portion of the one-dimensional object
used (only % of the object field is shown - the object is zero outside
this interval). The Fourier transform of the object is computed, and
only the modulus information is kept. The initial input is chosen to
be a sequence of random numbers (uniformly distributed on [0,1) )
over the known width of the object. The mean squared error of the modulus
of the Fourier transform of the input is found to decrease very rapidly
with each iteration and level off only after that error is less than 10'3
(after 20 or 30 iterations). At that point the solution is considered to
be found, since it would agree with the sets of constraints in both
domains to well within the expected accuracy of the measurement of the
modulus. Different solutions are found, depending upon the initial value
of the input, because the solution to the phase problem is not unique
(see, for example, [Roman and Marathay, 1963]). However, despite the
non-uniqueness of the solution, some useful additional information about
the object can be extracted. Figure 5.16 shows, superimposed on the
object, the output solutions resulting from 15 different random initial
inputs. As can be seen from Figure 5.16, there is a fair degree of
correlation between each of the solutions and the object. Therefore,

while it is not possible to absolutely determine the object, the iterative
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Fig.5.16 Test object and 15 solutions to the phase problem.



procedure can be used as an easy method of generating possible solutions,
from which an idea of the general appearance of the object can be inferred.

5.4.3 Further Proposed Applications

Due to the general nature of the iterative method, it can probably
be used to solve a number of other problems. Two problems that might be
solved by the iterative method are discussed in this section.

One problem in computer holography to which it might be applied is
as follows. As discussed in Section 3.6, the diffraction efficiency of
an ideal ROACH, which is given by (3-32), is less than 100% because it
is necessary for the hologram to absorb light in order to control the
amplitude of the wavefront. Neither do kinoforms have 100% diffraction
efficiency in the general case, since a substantial fraction of the light
intensity goes into noise rather than into the desired image. A method
of making computer holograms having a diffraction efficiency of 100%
(irrespective of the dynamic range of the Fourier amplitude) is to
modulate the wavefront by two different kinoforms. The first kinoform
would be placed in the object plane of Figure A.1 and would be illuminated
by a plane wave. The function of the first kinoform would be to produce
the desired Fourier amplitude pattern in the hologram plane (Figure A.1).
The second kinoform would be placed iﬁ the hologram plane and would
modulate only the phase of the wavefront (which already has the desired
amplitude pattern). The second kinoform would have a phase transmittance
equal to the difference between the phase of the desired wavefront and
the phase of the incident wavefront. By the combined effects of the two
kinoforms, a desired wavefront F(u,v) could be produced with no loss in

intensity. The problem is to find a phase-only function (the first
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kinoform) that has a Fourier transform of amplitude [F(u,v)| . The
iterative procedure of Section 5.2.5 was designed for that purpose.
Unfortunately, it is not generally possible to find a phase-only function
that has a Fourier transform of amplitude exactly equal to |F(u,v)]
However, |F(u,v)| can be manipulated by assigning a phase code to the
desired image f(x,y) . Therefore, we can instead try to solve an
alternative problem: find a phase-only function (the first kinoform)
and a phase code for f(x,y) so that the phase-only function and f(x,y)
have Fourier transforms with the same modulus. This problem probably has
an exact solution (or many exact solutions) whereas the previously
mentioned one probably does not. The second approach would require a
more complicated procedure, requiring four Fourier transforms per iteration
(to go from the image plane to the plane of the first kinoform and back
again to the image plane).

A second problem for which the iterative method might be used 1is
the “hidden line" problem. Suppose a computer-generated hologram is made
in the ordinary way for a three-dimensional object that consists of two
planar objects separated by a certain distance. Upon reconstruction of
the hologram it will be found that the image in the first plane is
degraded by the out-of-focus image from the second plane. This degra-
dation could be reduced by phase-coding the object in the second plane so
that the amplitude of its near-field diffraction pattern in the first
plane is approximately the same as the amplitude pattern of the object
in the first plane. If a sampled hologram is used to produce the image,
then the solution cannot be obtained simply by substituting a Fresnel
transform for the Fourier transform in the iterative method of Section
5.2.5 and working between the two image planes. Instead, four Fourier
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transforms are required per iteration, to go from the second image plane

to the hologram plane, then to the first image plane, then back again.
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CHAPTER 6

CONCLUDING REMARKS

The most important contribution of this thesis is the ROACH, a
new computer-generated hologram based on the simultaneous and independent
control of the amplitude transmittance and the phase transmittance of
a material. ROACHs have been successfully synthesized on Kodachrome II
and on Kodachrome 25, using ordinary commercial processing. The properties
of Kodachrome film as a holographic material were studied with sufficient
depth to enable us to exert a considerable degree of control over the
material and to understand its limitations.

The materials presently available for the ROACH were designed for
other purposes. It is safe to say that the present technology of photo-
graphic emulsions would allow the production of a ROACH material that is
far superior to Kodachrome II. Only two layers would be necessary, except
when the film itself is used to rejeét false color images. The develop-
ment of superior ROACH materials would be most welcome.

Practical methods of producing full-color images from computer-
generated holograms were formulated and successfully employed. Methods
for eliminating false color images were demonstrated.

A new iterative procedure for reducing quantization noise in

computer-generated holograms was developed. The new method, based on an
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input-output point of view, was found to be far superior to previous
methods in reducing the error rate (due to quantization noise) in
computer-generated holographic memories. Other applications of the
jterative method were found. Particularly exciting is its use to find
solutions to the phase retrieval problem. Since the phase of the Fourier
transform can often be measured at low spatial frequencies, the Tow-
frequency phase is one more constraint that can be imposed on the trans-
form domain and might poséib]y enable us to extract still more information
about the object by narrowing the set of possible solutions. It would
also be interesting to apply the iterative method to other problems,
such as those suggested in Section 5.4.3. How the iterative method works
is only partially understood. A better understanding of the relationship
between the change in the input and the change in the output might lead
us to an improved iterative method.

A problem briefly mentioned in Appendix B that deserves attention
is the problem of speckle in the images from computer-generated holograms.
We eliminated the speckle by repeating the hologram to give the image a
dot structure. However, since the speckle is an effect of phase coding,
it should be possible to eliminate it by an appropriate phase-code,
without repeating the hologram. One such phase code might be to assign
every other point to be real (+1) and interlacing with them every other
point to be pure imaginary (+i) , in a checkerboard fashion, where the
sign (+ or -) is chosen quasi-randomly. Other ways of creatively mani-
pulating the phase code to produce various effects on the microstructure
of the image should be possible.

The contributions of this thesis can be briefly summarized as follows:

1. The development of a method to control the complex transmittance
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of a material.

2. The measurement of pertinent characteristics of Kodachrome
film.

3. The development of a versatile iterative procedure and applying
it to reducing quantization noise in computer-generated holograms,
spectrum shaping, and the phase retrieval problem.

4. The experimental realization of full-color images from computer-

generated holograms and verification of the phase-null effect.
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APPENDIX A
FOURIER TRANSFORM HOLOGRAMS

In this appendix we will discuss the nature of the Fourier transform
geometry and the properties that make it ideal for the holographic memory
application. This discussion is included for the sake of completeness
and is not an original contribution (see, for example, [chu, 1974]).

Referring to Figure A.1, if an object transparency with complex
transmittance fO(xo,yO) is placed in the object plane and is illumi-
nated by a plane wave, then by (1-1), the wavefront produced in the holo-

gram plane is

w =i (2n/Af) (ux+vy )

F(u,v) = %f—ffmfo(xo,yo)e 0 deodyo ) (A-1)
OBJECT HOLOGRAM IMAGE
PLANE PLANE PLANE

] \
~ =" -l f -—f

Fig.A.1. Fourier transform geometry. Reconstruction
of the hologram is accomplished by placing a mono-
chromatic point source on axis in the object plane.
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If no hologram were present, allowing the undisturbed wavefront to
propagate to the image plane, the wavefront in the image plane would
be (using (1-1) again)

—i(2w/xf)(uxi+vyi)

folxy;) = %?jj: Flu,v)e dudv . (A-2)

Inserting (A-1) into (A-2), we find that

1

fi(x55y5) = on? f{m fo(Xg2¥g)

) l:f{: eXp{_ifZ:Tr [U(Xo"‘Xi) + V(y0+y1-)” dudvj] dxody0
"\‘——----'-———“\\/’—---I--————”’
(1F) %8 (xg#x; )8 (ygtyy)

= fO('Xi’_yi) . (A_3)

That is, if no hologram is present, the wavefront in the image plane is
equal to the wavefront in the object plane reflected through the origin
(optical axis). Similarly, if (A-1) is used to compute the hologram, and
if the hologram (which is assumed to be a ROACH) is placed in the hologram
plane and is illuminated with a plane wave (which could be obtained by
having a point source in place of the object), then the reconstructed
jmage is the same as the object reflected through the origin. In order
to obtain the correct orientatation of the image, one of three things can
be done: either the holograms can be rotated 180° about the optical
axis, or the hologram can be computed by the inverse Fourier transform,
or the coordinate system of the image plane can be redefined. This
question of the orientation of the image is sometimes a cause for confu-

sion. In particular, for the analysis of Chapter 5, the output from the
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hologram is computed by the inverse Fourier transform rather than the
forward Fourier transform; this is done so that the input and output
have the same orientation. An actual image produced by a hologram computed
by the iterative procedure of Chapter 5 is reflected through the origin
compared to the computed output. As a matter of convenience, we occasion-
ally use the terms "object" and "image" interchangeably, referring to
both as f(x,y) , even though they may have different orientations.

An extremely useful property of the Fourier transform geometry is
the shift-invariance (translation-invariance) property. That is, the
hologram can be translated without affecting the intensity pattern of
the image. This property can be shown by replacing F(u,v) by

F(u+u0,v+v in (A-2). Then the new image is

0’
—1(2w/xf)(uxi+vyi)

. _1 7
fi(xi’yi) = F f{mF(u+u0,v+v0)e dudv

%?'f{:F(u’V)?Xp{'1<%%)EU'UO)X1 + (v-vo)yi}fdudv (A-4)

exp§1(§%)@oxi+voyi)1fi(X1’yi)

Since the image from the translated hologram differs from the original
image only by a phase factor, the intensity patterns (which are actually
detected) of the two images are the same. Therefore, holograms in the
Fourier transform geometry do not require accurate x-y positioning in
order for the image to appear in the correct location.

A second extremely useful property of the Fourier transform geometry
is that the effect of small localized defects, dust particles, or scratches
on the hologram result not in Tocalized defects in the image, but in a
slight general Toss of fidelity of the entire image. This property can

be shown by adding to F(u,v) a term representing a localized defect at
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(uO,vO) , a'a(u—uo,v—vo) . Inserting this term into (A-2), the result
is fi(xi,y1)+(a/kf)exp{—(12n/xf)-(u0x1+v0yi)} . The second term, which
is due to the defect in the hologram, is spread uniformly over the image
plane.

A third useful property of the Fourier transform geometry is
that the hologram can be repeated a number of times, side by side,
thereby increasing the hologram area and redundancy, without requiring
additional computation. The only effect of the repetition is to give the
image a dot structure, which is desirable for the binary data of a
holographic memory. This property is discussed further in Appendix B

and is demonstrated by the image shown in Figure 2.13, which resulted

from a ROACH repeated in a 4x4 array.
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APPENDIX B

THE DISCRETE FOURIER TRANSFORM

AND SAMPLED HOLOGRAMS

In this appendix, we will discuss the effect on the image of using
the discrete Fourier transform to compute a sampled hologram.

We use the notation

[eo]

comb(x/d) = )  §(x/d-n) (B-1)
n:—OO
0, |x/d] > %
rect(x,d) = L, |x/d| = % (B-2)
1, IX/dl <k
sinc(x/d) sin(mx/d) (B-3)

mx/d

The symbol O denotes the Fourier transform relationship and * denotes
convolution [Bracewell, 1965].

If the object is considered to be an array of point sources on a
square lattice (which may be used to approximate a sampled object), then

it can be represented by the summation (NxN sampled points)

N-1
f(x,y) = ) fmné(x-ms,y-ns) (B-4)
m,n=0
where s is the spacing of the object points. The case of a rectangular
lattice with different spacings in the x and y directions is a

trivial extension of this analysis. Inverse transforming (B-4), we find
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that

N-1
F(u,v) = %¥- ) Ofmnexp{i(Zw/xf)-(ums+vns)} . (B-5)
m,n=

Since f(x,y) is sampled, F(u,v) is periodic, with period Af/s ,
which can be seen from (B-5). If a hologram were made of the form
(B-5), then the reconstruction would consist of a single image of the
form (B-4). However, when calculating (B-5) on a digital computer and
displaying that information on a CRT or plotter, it is necessary to use
only samples of F(u,v) vrather than the continuous complex function.
We use only the sampled values (Fourier coefficients)

F = F(pd,qd) =

b nexp{(12n/>\f)(mpsd+nqsd)} (B-6)

1 Nil
== f
Af m,n=0 m
where d is the spacing of the samples in the hologram. If d is chosen

so that there are also NxN samples of F in one period, that is,

pq
d = Af/Ns , then (B-6) reduces to
N-1

= ] f pexp{(i2n/N)(mp+nq)} (B-7)

F
P9 m,n=0

where the constant factor (Af)_1 is dropped. The inverse of (B-7) is

fn = ié-pTgionqexp{(-12n/N)(mp+nq)} . (B-8)

The relations of (B-7) and (B-8) are the discrete Fourier transform
relations ordinarily used in computer holography. The (inverse) discrete
Fourier transform (B-7) yields sampled values of the (inverse) Fourier

transform of a sampled object. A particular advantage of the discrete

Fourier transform is the existence of a fast algorithm (fast Fourier
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transform) for its computation [Coo]ey and Tukey, ]965].
The ROACH consists of an array of square cells of width d and

spacing d , the (D,Q)th

cell having a complex transmittance qu
uniform over the area of the cell. That is, the complex transmittance of

the ROACH of f(x,y) is (omitting a scaling factor)

H(u,v) = rect(%3§)*[F(u,v)-comb(%3%)] (B-9)
where

F(u,v)-comb(%,%) = ) qué(u/d-p,v/d-q) . (B-10)
P»q=-=

b

The image produced by a ROACH is given by the Fourier transform (contin-

uous, not discrete) of (B-9):

h(x,y) = F{H(u,v)}

sinc(%%)sinc(%%)-[f(x,y)*comb(§%3§¥)J. (B-11)

Using the substitution d/af = 1/Ns , (B-11) becomes
= 1 X— 1 L. X_L -
h(x,y) s1nc(NS)s1nc(Ns) [f(x,y)*comb(Ns,Ns)] (B-12)

where Ns 1is the width of the object (B-4). The convolution of f(x,y)
with the comb function causes f(x,y) to be repeated in an array of
spacing Ns , due to the sampling of the hologram. The sinc factors,
due to the finite cell size, cause the repeated off-axis images to be
suppressed. Except for the partial attenuation of the edges of the on-
axis image due to the sinc factors, the on-axis image term in (B-12) is
identical to the object (B-4). The attenuation at the edges can be com-
pensated for by multiplying (B-4) by sinc-l(x/Ns)sinc_l(y/Ns) before

computing the hologram.
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If only M periods of the periodic discrete Fourier transform are

used, then (B-9) becomes

olc

H(u,v) = : rect(%;%)*[F(u,v)-comb( ’%)]s.reCt(MﬁH‘ﬁﬁH) (B-13)

which results in the image

h(x,y) = {sinc(ﬁg)sinc(%g)[f(x,y)*comb(ﬁga%gjﬁ*[sinc(gﬁ)sinc<%l)].
(B-14)
That is, each point in f(x,y) 1is convolved (in both dimensions) with
a sinc function of width equal to s/M , 1/M times the spacing of the
sampling points. If M is an integer, then the function sinc(Mx/s)
is zero for x =ns , n = +1, +2, ... . Therefore, if we look only at

the locations of the sampling points in the image, we find that
= cine[M)sine(™. i
h(ms,ns) = s1nc(N)s1nc(N) fmn . (B-15)

And if, as previously mentioned, the sinc factors are compensated for,

then the image at the sampling points is given by

h(ms,ns) = fon . (B-16)

That is, exactly the desired image is reconstructed at the sampling

points [Chu, 1974].

If only one period of the discrete Fourier transform is used (M=1),
then the sinc functions with which f(x,y) is convolved in (B-14) have
width s , the spacing of the sampling points. In between the sampling
points, the value of the image is influenced by all nearby sampling
points, due to the convolution with the sinc functions. Adjoining sampling
points may have complex values opposite in phase, and h(x,y) must vary
continuously in the complex plane between the sampled values. Therefore,
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even if all the amplitudes of h(ms,ns) 1in a region of the image are
the same, |h(x,y)| may vary considerably in that region, and in some
locations may even be zero. The result is a "speckle" pattern in the
image from a computer-generated hologram of a random phase-coded object.
Phase codes other than random produce other characteristic patterns,
depending on the particular form of the phase code. By an appropriate
choice of phase code it is possible to obtain various kinds of patterns
or even to reduce the variations in |h(x,y)| between points. For
example, if the phase difference between two adjoining sampling points
of equal amplitude is 78° , and if those two points are isolated, then
the value of |h(x,y)| , for (x,y) between those two sampling points,
varies by Tess than 2%. Alternatively, by using M > 1 , the width of
the sinc(Mx/s)sinc(My/s) term in (B-14) is decreased, and the result

in the reconstructed image is a dot-structure that can be seen in the
image shown in Figure 2.13, which resulted from a ROACH with M = 4. For
M =2 or greater, the dot-structure dominates, and the particular form
of the phase code no Tonger significantly affects the appearance of the

image.
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APPENDIX C

PRODUCTION OF SINUSOIDAL INTENSITY PATTERNS

OF ARBITRARY MODULATION AND SPATIAL FREQUENCY

In order to obtain the intensity pattern of (3-21), it is necessary

to produce two coherent plane waves of intensities A2 and 82 , respect-
ively, and cause them to intersect at an angle ¢ given by
sineg = 2mx/k = (C-1)

where v s the spatial frequency. If two plane waves (expanded and
collimated laser beams) were made to intersect at a beamsplitter, then
the angle between one transmitted beam and one reflected beam could be
easily varied by changing the tilt of the beamsplitter. Unfortunately,
this method would require a beamsplitter flat to within a fraction of a
wavelength over the area of each beam; and such a beamsplitter was not
available to us. Therefore, it was necessary to vary the angle in a less
direct way, and a method suggested by Tichenor []974] was employed.

A holographic diffraction grating is made by recording the inter-
ference of two plane waves A and B at an angle %9 (Fig. C.1a).
After processing, the grating is replaced in its original position and
is illuminated by both A and B . A number of plane waves are produced
corresponding to the various orders of diffraction from each ofbthe two

plane waves A and B . Referring to Figure C.la, we will concentrate
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B\ SO B.. A, ¢° Ri+6 B
S R °

(a) (b)
Ao

Fig.C.1 (a) Beams A and B that form the grating are also used
to illuminate the grating to produce beams A, and Bj. (b) Geo-
metry for determining ¢ , the angle between "By an AO, as a
function of o , the angle of rotation of the grating.

1.0

Fig.C.2 Beam ratio vs. modulation
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only on two waves: AO , the undiffracted component of A , and B1 R

the first order diffracted wave arising from B . B1 can be thought

of as being the reconstruction of the wavefront A from a hologram

that had B as the reference beam and A as the object beam. Therefore

B, and A0 coincide exactly (as do the similar pair A1 and BO). If

the grating is rotated about its axis (about B—BO) then AO is unaffected,

but B, is rotated (out of the page in Fig. C.1). The rotation of B1

1
introduces an angle ¢ , between AO and B1 (which overlap) that can

be easily varied by the amount of rotation of the grating. In this manner
the spatial frequency of the sinusoidal intensity pattern caused by the
interference of AO with B1 can be easily varied without the need for

a high quality beamsplitter.

Referring to Figure C.1b, the angle between AO and B0 is g »
and the rotation of the grating through an angle of 360° causes B1 to
sweep out a cone about B0 . By the geometry of Figure C.1b, the angle
6 » between AO and B, is given by (X/2)/L = sin(¢/2) . Similarly,
R/L = sin %0 and (X/2)/R = sin(e/2) , where o0 1is the angle of rotation

of the grating. Combining these expressions, we obtain
sin(¢/2) = sin(e/2)-sin 49 - (C-2)

(which reduces to ¢ =~ osin ¢0 for © << 1). Since sin2x = 2sinx-cosx,,
we have sin ¢ = 2sin(¢/2)cos(¢/2) = 251n(¢/2)/1-sin2(¢/2) . Combining

this expression with (C-1) and (C-2), we find that

sin ¢
ElX_Q. = 2sin(o/2)- - 0 /{—sin2(6/2)51n2¢0

(C-3)
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A grating was produced by exposing 649-F plate to the interference of two
plane waves of wavelength 501.7 nm from an argon-ion laser, with a beam
ratio of .38,and a mean exposure of 25 uJ/cmZ. The plate was prehardened,
developed in D-19 for five minutes, and bleached [Lehmann, Lauer, and
Goodman, 1970]. The angle, v > at which the two beams intersected was
8.66° , or sin ¢O = .15 , making the spatial frequency of the grating

(sin ¢0)/A = 300 1/mm . Since only spatial frequencies up to 170 1/mm

were desired, the maximum angle of rotation of the grating needed was

33°; and for those small angles, (C-3) can be approximated by

. sin ¢
SILe - sin(0/2) — 0

(C-4)

v =
which was used to determine the angle of rotation of the grating, © ,

required to produce the desired spatial frequency,

2

Let A2 be the intensity of beam AO and B“ be the intensity of

2 2)

beam B1 . A° (or B“) is measured by blocking off beam B (or beam A).

The modulation, M , in (3-21) is given by

m = 2AB/(A%+B%) ~ZB—/L7 (C-5)
1+(B/A)
Solving (C-5) for (B/A) , assuming 82 < A2 , yields
B/A = (1-/1-m?)m . (C-6)

Squaring, we find that the ratio of the intensities of the two beams

needed to produce a given M is

8202 = (1-A-m2)2 2 = (2-m2 -2/1-m%)
~ (Mm/2) for Mg .3

Figure C.2 shows a plot of BZ/A2 vs. M . In order to produce a given
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modulation, M, neutral density filters are placed in the paths of beams
A and B (Fig. C.1) until the beam ratio BZ/A2 determined from

(C-7) 1is produced.
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APPENDIX D
PHASE-NULL MATHEMATICS

In this appendix we derive the actual image produced by the phase-
null method. The same notation is used as in Appendix B, in which it

was shown that a hologram of the form
H(u,v) = rect(g3§)*[}(u,v)-comb(%3%)] (B-9)

produces an image

h(x,y) = ${H(u,v)}

= sinc(ﬁ;)sinc(%;)-[f(x,y)*comb(ﬁ§3ﬁ§>] (B-12)

where Ns = xf/d is the width of the sampled object f(x,y) . Whether

H(u,v) contains many or only one period of the discrete Fourier transform
does not matter for the purpose of this analysis, since that affects only
the microstructure of the image.

(B-9) is the form of the ordinary ROACH, which consists of an array
of square cells of side d . Each cell has uniform transmittance over
its area.

Now suppose that each hologram cell is divided into two halves along
the u-direction. The right half has the same complex transmittance as
before, and the left half has that complex transmittance multiplied by

A , a complex constant (Fig.D.1b). Then we have
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Hla
P B

_

(a) (b) (c)

Fig.D.1 Dividing the Fourier coefficient cell for the phase-
null method. Shaded areas have complex transmittance equal to
A times the transmittance of the unshaded areas. (a) regular
cell, (b) phase-null method in one dimension, (c) phase-null

method in both dimensions.
2u oV [ . uyv
] + g,d)]* F(u,v) comb(d,d)] O

+ A-exp(+12n Zﬁg)]Sinc(§ﬁ§) .
ceineld—). Xy -
s1nc(Ns) [F(x,y)*comb(Ns,Ns)] , (D-1)

where the relation Af/d = Ns is used.

H(u,v) = [%ect(%g-- %,%) + A-rect

—

X

Dhix,y) = l/z[exp(-iZn NG

-h~
~——

To the desired color, the left half of the cell is opaque, that is,

[A| ¥ 0 . Then the reconstruction becomes

h(x,y) ?’%exp(—izn Zﬁg)-sinc(iﬁg)-sinc(%§>-
: Xy )
[f(x,y)*comb(Ns,Ns)] X (D-2)

This is the same as our original reconstruction (B-12) except that the
sinc factor falloff is more gentle in the x-direction and the overall
image is less intense. The phase factor is the result of shifting the
centers of the hologram cells by %d (Fig. D.la,b).

To the undesired color, the left half of the cell is = radians
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out of phase with the right half, that is, A = -1 . Then the recon-

struction is
U £.2.90 VTR D S YN A
h(x,y) = -i S1n(2Ns) s1nc(2Ns) s1nc(Ns)
—-—X -
[f(x,y)*comb-(Ns,LNs)] . (D-3)

Due to the sin(mx/2Ns) factor, this undesired image is attenuated near
the center.

Figure D.2 shows the squares of the factors attenuating the various
image amplitudes, the intensities of which are actually observed. We see
that even with the phase-null effect, the false image will reconstruct
with one half its previous intensity at the edge of the pattern, but that
the degree of attenuation increases toward the center. Thus, by imbedding
the image in a sufficiently large field of zeros, the false image can be
attenuated to any degree desired. A much greater attenuation of the
false image can be achieved by dividing the cell still further, as in
Figure D.1c, for example, in which the phase-null effect is used in both
(

the u and v-directions. Then the attenuating factor is sin“(wx/2Ns)-

sinz(ny/ZNs) . In this case, if the image is imbedded to half the size
in both the x and y-directions, then the false image position in the
corner will reconstruct with only 0.0215 times its original intensity,
and the interior positions are attenuated still further. Thus the phase-

null method can be very effective in eliminating an undesired color.
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Fig.D.2 Phase-null effect. (a) sinz(wx/ZNs) factor
attenuating the undesired color; (b) sinc2(x/2Ns) factor
attenuating the desired color; (c) sinc(x/Ns) factor that
would attenuate the image if the phase-null method were

not used.
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