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CHAPTER TWENTY

Diagnosing the
Aberrations of the
Hubble Space Telescope

J.R. Fienup

20.1. INTRODUCTION

Soon after the U.S. National Aeronautics and Space Administration (NASA) launched
the Hubble Space Telescope (HST) into orbit in the spring of 1990, its operators
discovered that it was producing severely blurred images. They recognized the point-
spread function (the image of a point-like star taken through a narrowband spectral
filter) as having the characteristics of spherical aberration. NASA quickly called together
panels of experts to determine what had gone wrong. The commission chaired by John
Allen from the Jet Propulsion Laboratory (JPL) analysed the records saved from the
manufacturer of the telescope and the still-existing optical equipment used to test the
telescope’s primary mirror during polishing. They called these records and equipment,
most of them a decade old, the fossil evidence, since they were the tangible remains of
the manufacture of the telescope still on earth. The commission determined that the
reflective null assembly, used with an interferometer to measure the primary mirror
during its figuring and polishing, contained a mis-spaced element that could account
for most of the spherical aberration.

An accurate characterization of the telescope is of great importance. To correct the
telescope and restore it to its designed performance, we must know exactly what is
wrong with it. However, the fossil evidence was not entirely satisfactory. Could there be
other sources of error besides the mis-spaced reflective null? Furthermore, it is no
longer practical to put the telescope in an interferometer and test it, since it is orbiting
500 km above the earth’s surface.

An alternative to interferometry for determining aberrations (or, more generally,
measuring wave fronts) is phase retrieval. Instead of putting the optical system in an
interferometer, we can shine coherent light through the system and measure the
intensity of the pattern of light that it produces in some plane. Using an iterative
computer algorithm, we can determine what aberrations, when imposed on an
optical wave front and propagated through the system, could result in the measured
intensity.
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Starting in June 1990, several groups of researchers rushed to apply a variety of
phase retrieval techniques to characterize the aberrations of the HST. Their efforts
played an important role in determining the optics required to correct the aberrations.
NASA scheduled the installation of the replacement optics in the HST for late 1993.

In the remainder of this chapter we briefly review phase retrieval for wave front
sensing in Section 20.2, describe how phase retrieval was adapted to the special circum-
stances of the HST in Section 20.3, show some example results in Section 20.4, and
draw conclusions and give opinions in Section 20.5. Further details and descriptions of
other approaches to characterizing the HST can be found in references [1] and [2].

20.2. WAVE-FRONT SENSING BY PHASE RETRIEVAL

We can accomplish wave-front sensing in several ways, including by interferometry, by
a Hartmann (wave-front slope) sensor, or by phase retrieval [3]. In the case of the HST,
we have most interest in phase retrieval because it uses the data collected by the
cameras available in the telescope. Phase retrieval for wave-front sensing is mathemati-
cally similar to the problem of reconstructing an image from the modulus of its Fourier
transform, which we described in the first volume of this book series [4]. For wave-front
sensing by phase retrieval we typically assume that we have information about the wave
front in more than one plane as it propagates. An optical wave front (coherent optical
field) f(x, y) in one plane propagates to become a wave front F(u, v) = F[ f(x,y)] ina
second plane, where ¥[s] may be a Fresnel or Fourier transform, for example. Both
wave fronts are generally complex-valued, for example, f(x, y) = | flx, y) [exp[i6(x, »)],
where | f(x, y)| is the modulus (the square root of the intensity), and 6(x, y) is the
phase, of the wave front. In neither plane do we know the phase of the wave front. In
the (u, v) plane we measure the intensity |F(u, v)|% In the (x, y) plane we either
measure the intensity | f(x, ») |? or know the shape of an aperture in that plane through
which the wave front has passed. The latter is equivalent to knowing the intensity if the
wave front originated from a point source, in which case the intensity would be a
constant within the aperture and zero outside it. In other cases we may know only that
the intensity is zero outside the aperture, and not know the intensity distribution within
the aperture — that is, we have a support constraint.

Researchers have investigated several approaches to determining the phases of the
wave fronts F(u, v) and f(x, y) from their intensities. Gerchberg and Saxton [5,6]
pioneered an iterative transform approach for a similar problem in electron
microscopy. Their algorithm iteratively transforms back and forth between the two
planes, repeatedly replacing the computed modulus with the measured modulus (or
setting the modulus to zero outside the support) in each plane before transforming the
wave front back to the other plane. We have made extensions of, and improvements to,
that algorithm [7]. Several groups have applied the iterative transform algorithm to
optical wave-front sensing as well [8-10].

A second approach to wave-front sensing by phase retrieval is to use a gradient-
search algorithm [7,9]. We digitally propagate a model of the wave front from the aper-
ture plane to the plane where the intensity measurement was made. We define an error
metric that measures the difference between the detected intensity distribution and the
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distribution we predict from the model of the wave front. We can specify the model of
the wave front either by the coefficients of a polynomial expansion of the phase func-
tion [9] or by a point-by-point description of the phase function [7]. The number of
unknown parameters might be a few to a few dozen in the case of the polynomial coef-
ficients, and a few hundred to several thousand for the point-by-point description of
the phase. We compute the partial derivative of the error metric with respect to each of
the parameters of the model to form the gradient. Then we can use any standard gradi-
ent search routine to minimize the error metric. Examples include steepest descent,
which is usually the slowest of the algorithms, and conjugate gradient, which is much
faster. We assume that the model that minimizes the error metric has a phase that is
close to the true phase of the wave front. We make the gradient search approach
computationally efficient by using an analytic expression for the gradient [7].

20.3. PHASE RETRIEVAL FOR THE HST

For phase retrieval to work we must have constraints on the wave front in two planes
and must be able to digitally propagate the wave front between those two planes. A
smeared image of an isolated point-like star detected by a CCD array in the focal plane
of the HST gives us the intensity distribution |F(u, v)|?, which is one constraint. Light
from a single distant star striking the entrance pupil would be in the form of a plane
wave with constant intensity. Therefore knowing the shape of the pupil function gives
us the aperture-plane intensity distribution | f(x, y) |?, which is the second constraint.

Although the light emitted by the star is spatially and temporally incoherent, the
detected light is effectively coherent. If the star is unresolved by the 2.4 m aperture of
the telescope, then the wave front from the star is spatially coherent over the aperture,
and if the star is imaged through one of the narrowband spectral filters in the camera’s
filter wheel, then the wave front is quasi-monochromatic as well. Consequently we can
digitally propagate a coherent wave front f(x, y) from the entrance pupil to the image
plane, where the wave front would become F(u, v). The major aberrations of the HST
are in the primary mirror, so we can include the aberrations in the phase of the wave
front f(x, ) in the entrance pupil.

We can most conveniently determine the parameters of the propagation integrals by
the ABCD matrix method [11]. We calculate the coefficients of the ABCD matrix from
the spacings, thicknesses and curvatures of the optical elements in the telescope or
from paraxial ray-traces through a model of the optical system.

For the Wide-Field/Planetary Camera (WE/PC) mode of the HST, the digital propaga-
tion of a wave front through the system is complicated by the nature of the relay tele-
scope. The main telescope, the Optical Telescope Assembly (OTA), consisting of a
2.4 m primary mirror and a secondary mirror, forms an image too large for a single CCD
array to detect. Therefore several different cameras look at different parts of the field of
view, each using a small relay telescope to form an image on a different CCD array. For
each of the WF/PC relay telescopes, the central obscuration and the spiders (struts)
holding it in place absorb light and we must include them in the wave-front propagation
calculations. Unfortunately the WF/PC obscurations are in a plane that is not conjugate
to the obscurations associated with the OTA. This causes two difficulties when we try to
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compute accurately the wave front F(u, v) in the image plane from the aberrated wave
front f(x, ) in the entrance pupil.

The first difficulty is that the apparent lateral position of the WF/PC obscurations
(with respect to the OTA obscurations) depends on the location of the star within the
field of view. Furthermore, early on we discovered that the translation of the obscura-
tions differed from what was designed for the telescope. For this reason we had not
only to retrieve the phase errors but also to infer the position of the WE/PC obscura-
tions from the measured images of stars.

The second difficulty is that simply computing the shape of the exit pupil as the product
of the obscurations in the OTA and the WE/PC is not quite accurate enough, because the
obscurations are not in planes conjugate to one another. Instead we must first propagate
the wave front f(x, y) from the entrance pupil to the plane of the WF/PC obscurations,
multiply by the transmittance of the obscurations, and then propagate that wave front to
the image plane. To compute the first propagation, we need a large (about 2048 x 2048)
fast Fourier transform (FFT) to satisfy the sampling requirements. We greatly reduce this
size by performing that propagation in two steps: first, propagate f(x, ) to the focal plane
of the OTA; second, propagate from there to the WE/PC obscurations. Then the sizes of
the two FFTs can be as small as 256 x 256 or 512 x 512. Therefore we must use three prop-
agations (FFTs) to compute F(u, v) from f(x, y) accurately and efficiently.

When propagation through a complicated system having additional obscurations is
necessary, we must modify both the gradient search and iterative transform algorithms.
Letg(x,y) = | f(x, )| exp[ifx, )] be our estimate (model) of f(x, ), where O(x, y) is
our estimate of the phase error, and let G(u, v) be the result of propagating g(x, y) 10
the image plane. We wish to minimize the error metric

2
E= Z W(u, v)[l(}(u,ﬂ)‘ = \F(u,u)” (20.1)
u,v

where |F(u, v)| is the measured modulus and W(x, v) is a weighting function that is
zero at the locations of bad detector pixels. For the partial derivative of E with respect

to a sample value of 6(x, ), we have [12]

dE

ab(x, )

where g“(x, y) is the wave front obtained by propagating the wave front

=2 lm{g(x, _p)g“”'(x,y)} (20.2)

G(u,v)
|G(u_. y)‘

G" (u,v)=W(u,v) ‘F(u, U)l - G(u,v) (20.3)

backwards through the optical system from the detector plane to the entrance pupil.
Alternatively, since the aberrations are largely a smooth function, with spherical aberra-

tion dominating, we can advantageously express the aberrations in terms of a polyno-
mial expansion:

S
6(x, ¥)= 3. a,Z,(%,¥)_ (20.4)

j=1
For the HST, the panel agreed to employ the modified Zernike polynomials orthonor-
mal over an annular aperture with a 0.330 obscuration ratio, which are given in refer-
ence [13], Appendix A. The partial derivative of £ with respect to a polynomial



DIAGNOSING THE ABERRATIONS OF THE HUBBLE SPACE TELESCOPE 283

coefficient is [12]

;ff =2 Im{z 8(x, 1)Z,(x, 1)g"" (x, y)} 0.5)
) xy
With these analytical expressions for the partial derivatives, we can compute the entire
gradient of the error metric with just two propagations through the system, no matter
how many parameters we use to describe the phase.
For complicated optical systems we must replace the familiar four steps of the itera-
tive transform algorithm [5,7] by the following [12], at the kth iteration:

1. Propagate an input wave-front estimate, g,(x, ), to the detector plane, giving
Gp(u, v).

2. Compute G(u, v) from G,(u, v) by equation (20.3) above.

3. Inverse propagate G(u, v) back to the input plane, giving g¥(x, y). Then compute

8h(x.y) = &¥x.y) + 8(x,)) (20.6)

4. Form the new input wave front, g, ,(x, ¥), from gf(x, ¥), g,(x, ¥), and the support
constraint, using any version of the iterative transform algorithm [7].

For example, consider the case where we know only a support constraint. If m(x,y) is
unity within the support and zero outside it, then for the error-reduction (extended
Gerchberg-Saxton) algorithm, step 4 is

&1 (x, ) = m(x,y) gfx,y) (20.7)

and for the hybrid input-output algorithm, step 4 is
8ra1 (X, y) = m(x, y)gi (x, y) + [1 = m(x, p)][g,(x, ) - Bgl (x, )] (20.8)

where B is a feedback parameter [7,12].

In practice, we found that the iterative transform algorithm by itself worked poorly for
this application, in contrast to its success for image reconstruction [7]. The gradient
search algorithms optimizing the coefficients of a Zernike-polynomial expansion of the
phase-error function worked much better. This is true probably because we can fairly well
approximate the phase-error by just a few polynomial coefficients, and constraining the
solution to be smooth by the use of a few polynomials proved to be an effective a priori
constraint. After finding an initial phase-error estimate using polynomial coefficients, we
could then use that phase-error function as the initial estimate to the iterative transform
algorithm to find the fine-scale structure of the phase error. This worked because we
started the iterative transform algorithm with an estimate close to the true solution.

The actual retrieval procedure was complicated by the fact that the effective aperture
function was not known, owing to the unexpected shift of the WF/PC pupil function
relative to the OTA pupil function. A misalignment of the optical axis of the WF/PC relay
telescope relative to the optical axis of the OTA is the probable cause of this problem.
Consequently we used a boot-strapping approach to characterize the system. We first
crudely determined the aberrations using an approximate value for the shift of the
WE/PC pupil function. Next we used the iterative transform algorithm together with the
estimated aberrations to estimate the translation of the WF/PC obscurations (as will be
shown later). Then with the new pupil function we estimated the aberrations again, and
so on. At the end we used the iterative transform algorithm to estimate a point-by-point
phase map that includes the fine-scale phase errors.
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For several months after the discovery of the error in the HST, the phasc
retrieval groups continued to add more features to their algorithms to model mor¢
fully the physics of the HST and to allow a better fit between the computed point-
spread functions (PSFs) and the measured PSFs. The features that could be
included in the system model include (1) multiple planes of diffraction, (2) recon-
structed (as opposed to designed) pupil functions, (3) telescope jitter during the
integration time of a specific PSF, (4) optimization over imperfectly known system
parameters, such as plate scale (arc-seconds per pixel), or at least the use of the
latest (field-position-dependent) estimates of these parameters, (5) finite optical
bandwidth, (6) geometrical effects not modelled by Fresnel propagation (but that
could be modelled by ray tracing), (7) the effects of undersampling by the CCD
pixels and integration by CCD pixels over finite areas, (8) statistical model of the
noise and bias properties of the detected PSFs, (9) higher-order phase terms
beyond 22 Zernike polynomials, (10) knowledge of locations of glitches (e.g., bad
pixels) in the measured data, (11) measured flat fields, (12) accounting for the
possibility of aberrations in both the OTA primary and the OTA secondary, (13)
knowledge of the ray-trace design aberrations as a function of field position, and
(14) accounting for the possibility of non-point-like stars. Also being included to
improve the solution are (15) different PSFs simultaneously and (16) the phase
maps reduced from the fossil interferograms of the finished OTA primary and
secondary mirrors. Also necessary is the subtraction of the spherical aberration esti-
mated to be present in the camera in order to arrive at the spherical aberration of
the OTA. With increasing sophistication, the algorithms can require prodigious
amounts of computation (many giga-floating-point operations per reconstruction,
which are manageable with modern computers).

Various phase-retrieval groups made several other phase-retrieval innovations. One
having far-reaching potential for optical testing is “prescription retrieval” [14]. Like the
phase retrieval algorithms described above, prescription retrieval minimizes the differ-
ence between a measured optical intensity distribution and one predicted by a
computer model to arrive at an accurate model. But it computes the intensity distribu-
tion using a ray-trace computer program, and the parameters over which it optimizes
are the optical design parameters common to ray-tracing software with which the
optical system was designed. It more directly retrieves the parameters of interest to the
optical designer. Thus to test an optical system or component, one could shine light
through it, measure the intensity distribution in one or more arbitrary planes, and use
prescription retrieval to determine the actual parameters of the system or component
that would be consistent with the measurements. This approach could replace inter-
ferometry and eliminate the expense of null lenses necessary for testing aspheric
elements by interferometry.

20.4. EXAMPLE RESULTS

Figure 20.1 shows an example of the reconstruction of the pupil function. We accom-
plished this by one iteration of the simplified iterative transform algorithm, as follows.
We started with an estimate of just the spherical aberration across an annular
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a) (b)
Figure 20.1  Pupil reconstruction. (a) Pupil function reconstructed by one iteration of the iterative transform
algorithm; (b) model of pupil function inferred from the reconstructed pupil.

aperture to form an aperture-plane wave front. We transformed the wave front to the
detector plane; replaced the magnitude of that wave front with the square-root of the
measured intensity; and transformed the resulting wave front back to the aperture
plane, giving the result shown in Figure 20.1(a). This result gives a clear indication of
the additional obscurations in the optical system that we did not include in the origi-
nal wave front: (1) the four spiders (struts holding the secondary mirror) of the OTA,
(2) the three pads (bolts holding the primary mirror in place) near the edges of the
aperture, (3) the offset secondary obscuration in the relay telescope, and (4) the
three spiders holding the secondary mirror of the relay telescope (yes, it has only
three). By measuring the positions of the spiders we inferred the appropriate shift of
the WE/PC obscurations, a model of which is shown in Figure 20.1(b) superimposed
on the OTA obscurations.

Most of the early phase retrieval results were hampered by either poor signal-to-
noise ratio, too-wide an optical bandwidth, too much telescope jitter, or having the
image taken too close to the paraxial focus. Nominally in-focus images have a bright
core, or main lobe, in the PSF. In order to avoid saturating the detector in the main
lobe, the side lobes receive relatively few photons. However, the phase retrieval algo-
rithms are most sensitive to the fine structure in the sidelobes of the PSF.
Consequently, images taken far from focus, having lower dynamic range — having the
energy spread more uniformly in the area of the PSF — were much more suitable for
phase retrieval [13].

One of the most suitable images from the “HARPIA” collection was taken
through a narrowband filter centred at 889 nm through planetary camera number 6
at a position well out of focus, and was designated PC6-F889N_P2. Using the poly-
nomial-fitting algorithm we obtained the coefficients of spherical aberration (the
eleventh Zernike polynomial) given in Table 20.1. We found that the value of plate
scale that minimized the error metric was larger than the one originally assumed;
S. Brewer, who used ray tracing of the designed system, later found that larger value
to be close to the true value [13]. As can be seen from the results in Table 20.1, as
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Table 20.1 Retrieved values of spherical abberation coefficient (um RMS wave front
deviation) for PC6-F889N_P2

dayy Reconstruction algorithm version
-0.28 Single-plane diffraction
-0.295 Multiple-plane diffraction
—-0.299 Multiple-plane diffraction, optimizing over plate scale

the level of sophistication and accuracy in modelling the system increased, our esti-
mate of the magnitude of the spherical aberration increased as well. For this reason
all the earliest results with phase retrieval, which used single-plane diffraction and
too small a value of plate scale, may be biased toward underestimation of spherical
aberration.

The relationship between a,, and the conic constant, , of the primary mirror of the
OTA that would produce that aberration is k = —1.0023 + 0.043841a,,. For example, a,,
= —0.299 um corresponds to a conic constant of -1.0154.

20.5. CONCLUSION AND REMARKS

Phase-retrieval groups estimated values of the spherical aberration that were
substantially larger in magnitude than that predicted by the initial fossil evidence,
the mis-spaced element in the null corrector. This discrepancy motivated NASA to
perform further tests that they would otherwise have skipped due to their cost.
These tests revealed that indeed there were additional small errors: the curvatures
of the mirrors in the null corrector were slightly different from their design [1]. This
additional fossil evidence brought their predictions closer to those of the phase
retrieval results. The Jet Propulsion Laboratory (JPL) also searched through their
records of the WF/PC relay optics, and they found that the relay optics also suffered
from a small amount of spherical aberration which was equivalent to —-0.0010 in
conic constant on the OTA. Since the phase retrieval results would predict the
combined spherical aberration of the OTA and WF/PC, we subtract this spherical
aberration from that predicted by phase retrieval to arrive at an estimate of the
spherical aberration of the OTA equivalent to a conic constant of —1.0144, which
was closer still to the fossil evidence. When the effort to characterize the telescope
was ended due to lack of further funds, the spherical aberration of the OTA esti-
mated by phase retrieval was still slightly larger in magnitude than that predicted by
the fossil evidence, which gave a conic constant of —=1.0139 [15]. The committees
deciding on the prescription to be used to correct the spherical aberration of the
HST chose to use the aberration implied by the fossil data rather than that esti-
mated by phase retrieval. The difference is small, so by using either estimate the
telescope would be largely corrected. Nevertheless, after the astronauts install the
correction optics (currently scheduled for December 1993), it will be interesting to
see whether the HST is slightly under-corrected, as predicted by the phase retrieval
results.
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Note added in proof

The December 1993 Hubble repair mission was a success. The image quality has vastly
improved. Researchers have analysed the new data in detail, and have concluded that
the actual conic constant of the Optical Telescope Assembly is —1.0144 [C. Burrows and
J. Krist, “Phase Retrieval Analysis of Pre- and Post-Repair Hubble Space Telescope
Images,” submitted to Applied Optics, 1994]. This new result agrees exactly with the
value we predicted from our earlier phase retrieval results. Although the telescope
appears to be not fully corrected for spherical aberration, the residual error is slight and
not of great concern.
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