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For optical metrology by transverse translation diversity phase retrieval (or ptychography), information theoretic
limits on the ability to estimate subaperture translation, essential for accurate metrology, are assessed as a function
of the optical aberrations of the system being measured. Special attention is given to the case that an unknown
linear phase aberration, or equivalent detector or target motion, is present that varies with each point spread
function in the measured data. © 2016 Optical Society of America
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1. INTRODUCTION

Transverse translation diversity phase retrieval (TTDPR) [1–4]
is an image-based wavefront sensing method similar to the co-
herent diffractive imaging technique known as ptychography
[5–10]. In TTDPR, point spread functions (PSFs) of an aber-
rated optical system are typically acquired as a subaperture
moves in a plane perpendicular to the optical axis somewhere
inside the system. This plane is usually conjugate to a pupil
plane of the system and for simplicity this discussion will be
restricted to that case. The subaperture motion allows each
PSF to come from the light passing through different regions
of the plane but with some overlap. The wavefront over the
union of these regions is then reconstructed by a phase retrieval
algorithm. The measured PSF data, knowledge of the transmis-
sion function of the subaperture, and the subaperture transla-
tion for each PSF can be used in a TTDPR algorithm to find
the exit pupil field. In this discussion, we assume it is just the
phase of the complex field that is unknown, but it is also pos-
sible to estimate the amplitude and thus retrieve the complex
field. If there is error in the subaperture translation knowledge,
estimates of these values can be refined by including them as
unknowns in the phase retrieval process [1]. In this case, the
PSFs themselves must supply the information necessary to de-
termine the missing subaperture translation knowledge, which
is the central concern of this paper. We assume here that it is
necessary to estimate subaperture translation from the contents
of each PSF. For brevity, we will just refer to “translation”
whenever translation of the subaperture is referenced.

Our motivation to understand translation estimation in
TTDPR comes from monitoring the aberrations of the
long-wave channel on the near-infrared camera (NIRCam)

[11] of the James Webb Space Telescope. In this TTDPR ap-
plication, a Lyot stop in a long-wave pupil plane serves as the
subaperture. The Lyot stops are intended for coronographic im-
aging [12] but also enable TTDPR wavefront sensing [2,4].
The long-wave channels of NIRCam’s two modules lack the
weak defocus lenses present in the short-wave channels that
permit conventional focus-diverse phase retrieval [11,13].
TTDPR provides an opportunity to track the aberrations of
NIRCam (separate from the rest of the telescope) during
ground testing and on orbit. However, hardware and test spe-
cifics prevent the exact nature of the translation from being
known to the necessary precision and must be estimated from
the PSF data. Other test constraints require that the target
being imaged be allowed to move by an uncalibrated amount
between each PSF acquisition in some test applications.
Provided such target motion is within the isoplanatic patch
of the system, it can be modeled as a phase aberration linear
in subaperture plane coordinates under the paraxial assump-
tions of Section 2. This additional unknown linear phase com-
ponent must be estimated by the phase retrieval algorithm
separately for each PSF. We refer to TTDPR measurements
where these linear phase terms must be estimated separately
for each PSF as the unshared linear phase (USLP) case.
When the linear phase is the same for all PSFs, we refer to
it as the shared linear phase (SLP) case.

For unobscured systems, like NIRCam imaging its internal
source, most PSFs in a TTDPR measurement will derive from
exit pupils lacking significant amplitude variations besides the
imposed subaperture. Similarly, in the experimental results of
[1], the subaperture did not overlap the edge of the aperture
stop. Assuming other amplitude variations can be neglected,
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we will show that estimating translation from PSF data is equiv-
alent to estimating the phase retrieved from the PSF. We will
parameterize that phase by coefficients of a Zernike polynomial
description [14], though other basis functions may be similarly
useful. We then calculate the Cramer–Rao lower bound for un-
biased estimators of translation as a function of the pupil phase
aberrations of the system under test. We show how they differ
significantly in the SLP and USLP cases. In the SLP case, the
ability to assume that each PSF shares the same linear phase
contributes subaperture translation information that is unavail-
able in the USLP case. Translation estimation in the USLP case
is entirely dependent on the existence of aberrations higher in
order than defocus and astigmatism (those higher than second
radial degree) in the optical system under test. Through Monte
Carlo simulation, we evaluate translation estimation for a spe-
cific population of aberrations to quantify the error in transla-
tion estimation for the two cases. In higher fidelity simulations,
we performed TTDPR to determine the actual error in trans-
lation estimation. Both simulations show that large defocus
aberrations will significantly decrease translation estimation er-
ror in the SLP case but not for the USLP case, which must rely
on the higher-order phase errors for translation estimation.
Translation estimation is still possible in the USLP case when
the higher-order aberrations are sufficiently large in magnitude
and the inherent wavefront sensing error due to noise is
sufficiently low.

2. SUBAPERTURE TRANSLATION ESTIMATION
ACCURACY

In this section, we will estimate the accuracy of translation
estimation using PSFs derived from an aberrated optical system
using a simplified model suitable for Cramer–Rao lower
bounds. For translation estimation methods useful for actual
translation computation, see [1,4,7–10].

It is presumed that the optical system under test obeys the
scalar linear-systems theory for isoplanatic imaging with the
aberrations. If the target is an unresolved point, the observed
noise-free irradiance for the kth PSF in the detector plane is

I k�x; y� � jGk�x; y�j2; (1)

where Gk�x; y� is the field in the detector. Let gk�u; v� be a
generalized pupil function [15] whose phase, ϕk�u; v�, is the
phase aberration of the system. The phase of the USLP case
will depend on the conditions in place while measuring the
PSF, so ϕk�u; v� is subscripted with PSF index k. We will
assume that Gk�x; y� is well approximated by a Fraunhofer
propagation P of gk�u; v� with [15]

Gk�x; y� � P�gk�

� A
λL

ZZ
∞

−∞
gk�u; v� exp

�
−
i2π
λL

�xu� yv�
�
dudv;

(2)

where A is a constant amplitude, λ is the wavelength of light,
and L is the distance between the exit pupil and detector planes.
Any quadratic phase in the detector field due to the propaga-
tion is omitted from Eq. (2) as it would not alter the PSF in-
tensity. A derivation similar to the following can be done if P is

a Fresnel propagation but the result is complicated by the need
to track the additional quadratic phase in u and v. For simplic-
ity, this derivation will be in the Fraunhofer limit, or equiva-
lently, the quadratic phase term within the Fresnel integral is
made part of the phase of gk�u; v�.

Let AF�u; v� be the amplitude of the fixed field that would
have been in the exit pupil had the subaperture not been in-
troduced into the system. This fixed aperture arises from (i) the
aperture stop of the system, (ii) the illumination provided by
the unresolved target being imaged to yield PSFs, and (iii) mod-
ifications to the illumination made by vignetting surfaces of the
system which may not be conjugate to the pupil. Further, as-
sume for simplicity that the subaperture is in a plane conjugate
to the exit pupil and that it is perfectly reimaged to the exit
pupil yielding a real, nonnegative, transmission function
AS�u; v� in the plane of the exit pupil. We model the amplitude
of the exit pupil as the product of the translated subaperture
and the amplitude of the fixed field, making the complex field
of the generalized exit pupil

gk�u; v� � AS�u − s; v − t�AF�u; v� exp�iϕk�u; v��; (3)

where �s; t� is the translation in exit pupil coordinates. In gen-
eral, s and t will depend on k but in this discussion we consider
the estimation of translation for an arbitrary but specific PSF,
so the index k is suppressed for brevity.

We will require that ϕk�u; v� be a slowly spatially varying
phase function that can be expressed by a Zernike polynomial
expansion,

ϕk�u; v� �
XJ
j�1

aj;kZ j�u; v�; (4)

where the coefficients ak;j of the jth Zernike polynomial
Z j�u; v� are indexed by PSF number k as necessary for the
SLP and USLP cases. The assumption that ϕk�u; v� is slowly
varying is usually true in a well-corrected optical system. We
use the Noll-ordered polynomials [14,16], the first 11 terms
of which are listed in Table 1. We will require that u and v
are normalized such that the region of the exit pupil accessed
by all subaperture translations is encompassed by the
circle u2 � v2 ≤ 1.

Table 1. Zernike Polynomials in Cartesian Coordinates
with j , the Index of the Polynomial, and n, the Radial
Degree

j n Z j�u;v� Aberration

1 0 1 Piston
2 1 2u u linear
3 1 2v v linear
4 2

ffiffiffi
3

p �2u2 � 2v2 − 1� Defocus
5 2 2

ffiffiffi
6

p
uv Astig. 45°

6 2
ffiffiffi
6

p
�u2 − v2� Astig. 0°

7 3
ffiffiffi
8

p �3u2v � 3v3 − 2� v coma
8 3

ffiffiffi
8

p �3u3 � 3uv2 − 2� u coma
9 3

ffiffiffi
8

p �3u2v − v3� v trefoil
10 3

ffiffiffi
8

p �u3 − 3uv2� u trefoil
11 4

ffiffiffi
5

p �6�u2 � v2�2 − 6�u2 � v2� � 1� Spherical
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In the SLP case, the only parameters of the system changing
between PSF acquisitions are the subaperture translations �s; t�.
The phase coefficients aj;k will all be independent of k and thus
the same values are shared among all PSFs. In the USLP case,
the linear phase terms a2;k and a3;k will be different for each
PSF. We next consider two experimental conditions that lead
to the linear phase terms becoming unshared. First, consider a
detector that shifts in its plane between PSF acquisitions. This
motion is equivalent to a modification of the linear Zernike
coefficients by the Fourier shift theorem. If the detector plane
is shifted by a vector �ϵk; ηk�, then from Eq. (2) the field in the
detector plane is

Gk�x − ϵk; y − ηk� � P
�
gk�u; v� exp

�
i2π
λL

�uϵk � vηk�
��

≡ P�hk�u; v��; (5)

where hk�u; v� is an instance of gk�u; v� with the linear phase
coefficients a2;k and a3;k increased by πϵk∕λL and πηk∕λL, re-
spectively. The PSF detected by a shifted detector is identical to
the PSF due to hk�u; v� with modified linear phase terms since
by Eq. (5),

jGk�x − ϵk; y − ηk�j2 � jP�hk �j2: (6)

Thus, a detector that moves between PSF acquisitions is equiv-
alent to each PSF having arisen from its own unique linear
phase coefficients giving rise to a USLP situation. Second, sup-
pose instead that the detector was fixed and it was the unre-
solved target being imaged that was translating. Also, let the
amount of the target translation be bounded so that the target
stays within an isoplanatic patch of the optical system under
test. The effect of target translation inside the isoplanatic patch
is a translation of the PSF but by an amount scaled by the mag-
nification of the system. The target translation can be modeled
as an exit pupil phase that has appropriately varying linear phase
terms. Consequently, an unknown and varying target transla-
tion also yields a USLP situation.

The subaperture positions for the kth PSF can, in principle,
be recovered if the PSF for that subaperture position is different
than a PSF derived from identical conditions but with an erro-
neous subaperture position. Since the PSF arises exclusively
from the field in the exit pupil, these differences must be
due to changes in the amplitude and/or phase of gk�u; v�. If
the fixed aperture has hard-edged features, these variations
act as fiducials against which translation can be estimated.
This is the case when the moving subaperture overlaps a
hard-edged aperture stop in AF�u; v� during one or more
PSF acquisitions. However, if the subaperture is smaller than
the aperture stop and vignetting of the subaperture by the aper-
ture stop is mild or nonexistent, the utility of amplitude varia-
tion is limited since those PSFs will come from regions of the
fixed aperture not overlapping any such amplitude fiducials.
For this reason we focus our attention on the more difficult
case that the effects of AF�u; v� on each PSF are negligible and

AS�u − s; v − t�AF�u; v� ≈ AS�u − s; v − t�: (7)

The fixed amplitude for the experiment in [1] was consistent
with Eq. (7) aside from some very small imperfections, referred
to as “digs,” in the surface under test.

The reduced role of fixed aperture features differentiates
translation estimation in TTDPR from the established position
refinement methods in ptychography for coherent diffractive
imaging [9,10]. In coherent diffractive imaging, specimens gen-
erally have a multitude of well-defined edges in amplitude, in
phase, or in both. These edges yield far-field diffraction patterns
that change robustly with small variations in translation or
“probe position.” For TTDPR wavefront sensing, there are
typically few such amplitude fiducials contributing to the sub-
aperture positions, and it is variations in the phase that must be
relied upon for translation estimation.

Assuming Eq. (7), Eq. (3) can be approximated as

gk�u; v� � AS�u − s; v − t� exp�iϕk�u; v��: (8)

Next, consider the PSF intensity that would be expected from
an incorrect subaperture translation. Let the subaperture be
translated by an additional error vector �q; r�, also implicitly
dependent on k, as in the exit pupil field:

g 0k�u; v� � AS�u − s − q; v − t − r� exp�iϕk�u; v��: (9)

The PSF intensity is

I 0k�x; y� � jPfAS�u − s − q; v − t − r� exp�iϕk�u; v��gj2: (10)

Making the variable substitutions u → u 0 � q and v → v 0 � r
in the integral implicit in Eq. (10), one gets

I 0k�x; y� �
���� AλL

ZZ
∞

−∞
AS�u 0 − s; v 0 − t� exp�iϕk�u 0 � q; v 0 � r��

× exp
�
−i2π
λL

�xq � yr�
�

× exp
�
−i2π
λL

�xu 0 � yv 0�
�
du 0dv 0

����
2

�
���� AλL

ZZ
∞

−∞
AS�u 0 − s; v 0 − t� exp�iϕk�u 0 � q; v 0 � r��

× exp
�
−i2π
λL

�xu 0 � yv 0�
�
du 0dv 0

����
2

; (11)

where the complex exponential in xq � yr from the first line
disappears because it does not affect the intensity. Since inside
Eq. (11) is a propagation,

I 0k�x; y� � jPfAS�u − s; v − t� exp�iϕk�u� q; v � r��gj2:
(12)

From Eq. (12), we observe that the change in the PSF due to a
misestimation of the translation by �q; r� is equivalent to a shift
in the exit pupil phase ϕk by �−q; −r�. Evaluating the shift in
terms of the Zernike polynomials gives

ϕk�u� q; v � r� �
XJ
j�1

aj;kZ j�u� q; v � r�: (13)

A shifted Zernike polynomial term, Z j�u� q; v � r�, can
be exactly expressed as a weighted sum of unshifted Zernike
polynomials Z j�u; v� by endnote 36 in [17]. That proof in-
volves expanding Z j�u� q; v � r� as a Taylor series about
the point �u; v� in the shift variables �q; r� and various partial
derivatives of the unshifted Zernike polynomial [17]. Since
derivatives of the unshifted Zernike polynomial of an order
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higher than the polynomial’s radial degree are zero [14], the
Taylor series is finite in length. Of the terms in the Taylor
series, those involving first derivatives of Zernike polynomials
are themselves each finite series of Zernike polynomials of lower
radial degree [14,18]. The Taylor series terms involving higher-
order partial derivatives can be found by repeatedly differenti-
ating a first derivative series to find the finite series of Zernike
polynomials that equals the higher-order partial derivative.
Since every term in the Taylor series can be expressed as a finite
series in Zernike polynomials, the shifted Zernike polynomial
can be written exactly as a weighted sum of unshifted Zernike
polynomials of lesser radial degree. We use this to write the
apparent change in a Zernike polynomial as a function of trans-
lation estimation error �q; r� as

Z j�u� q; v � r� � Z j�u; v� �
XJ
j 0�1

γj;j 0 �q; r�Z j 0 �u; v�; (14)

where γj;j 0 �q; r� is a matrix of polynomials in q and r. The poly-
nomials in the matrix γj;j 0 �q; r� for the significant terms up to
spherical aberration were evaluated algebraically and are listed
in Table 2. It is possible to evaluate γj;j 0 �q; r� for shifted-
Zernike polynomials of arbitrarily high radial degree but we
stopped at spherical aberration for simplicity. Terms that when
shifted yield only a constant phase are invisible to phase
retrieval, so terms of γj;j 0 �q; r� where j 0 � 1 are omitted from
Table 2. For example, shifted versions of the linear phase term
are the same phase unshifted but with an additional constant:

Z 2�s � q; t � r� � 2�s � q� � 2s� 2q

� Z 2�s; t� � qZ 1�s; t�: (15)

Substituting Eq. (14) into Eq. (13) yields

ϕk�u�q;v�r��
XJ
j�1

aj;kZ j�u;v��
XJ
j�1

aj;k
XJ
j 0�1

γj;j 0 �q;r�Z j 0 �u;v�

�
XJ
j�1

aj;kZ j�u;v��
XJ
j 0�1

XJ
j�1

aj 0 ;kγj 0 ;j�q;r�Z j�u;v�

�
XJ
j�1

�
aj;k�

XJ
j 0�1

aj 0 ;kγj 0;j�q;r�
�
Z j�u;v�; (16)

where we note that the labels j and j 0 have been permuted in the
right-hand part of the sum in the second step to yield the sim-
plification. From Eq. (12) it is observed that the change in the

PSF due to a translation misestimation is equivalent to altering
the phase that contributed to the PSF. According to Eq. (16),
the apparent alteration in phase is equivalent to modifying the
Zernike coefficients aj;k by adding an erroneous contribution ofPJ

j 0�1 aj 0 ;kγj 0 ;j�q; r� to each coefficient.
Suppose there is some calculation involving the PSFs with

indices not equal to k that estimates aj;k . For instance, if we
perform a successful TTDPR phase retrieval operation on all
of the PSFs that are not the kth PSF, and the kth PSF comes
from the same optical system, then we would expect the
TTDPR solution from the other PSFs to be a good estimate
of aj;k. This is not possible for a2;k and a3;k in the USLP case
and we address this later. Also suppose that it is possible to per-
form a single-PSF phase retrieval on the kth PSF assuming er-
roneous values for �s; t� and that the results of this successful
phase retrieval solution are polynomial coefficients cj;k for the
jth Zernike. Note that performing this single-PSF phase
retrieval may be ill-posed if the subaperture extent does not
allow unique estimation of each of the Zernike coefficients
of interest. For this argument, we assume this single-PSF phase
retrieval accesses enough of the field to uniquely estimate the
necessary Zernike phase coefficients.

In this case, Eq. (16) suggests a way to solve for the un-
known translation as follows: the error �q; r� in the translations
is governed by the nonlinear system of equations,

cj;k − aj;k �
XJ
j 0�1

aj 0 ;kγj 0;j�q; r� �
XJ
j 0�2

aj 0 ;kγj 0 ;j�q; r�; (17)

according to Eq. (16) and the fact that γ1;j�q; r� � 0 for all j,
since Z 1�u� q; v � r� � 1 � Z 1�u; v� � 0. If this system of
equations is solvable for �q; r�, the resulting estimates of �q; r�
can be added to the erroneous values of �s; t� to re-estimate the
true �s; t�.

Incidentally, we suspect that the translation estimation prob-
lem as posed in this section is similar to translation estimation
in some forms of subaperture stitching interferometry (SSI)
where (i) the interferometer aperture is confined to translate
in the plane of the acquired interferograms, (ii) the translation
must be estimated from acquired interferograms, and (iii) it is
not possible to track the change in constant piston phase be-
tween acquisitions. A particular interferogram with unknown
translation could then be processed to yield an estimate for
cj;k. If aj;k were estimable from the ensemble of interferograms,
the system of equations represented by Eq. (17) would exist for

Table 2. Nonzero Terms of the Zernike Translation Matrix γj 0 j �q;r� for j < 12

j 0 j � 2 3 4 5 6 7 8

4 2
ffiffiffi
3

p
q 2

ffiffiffi
3

p
r

5
ffiffiffi
6

p
r

ffiffiffi
6

p
q

6
ffiffiffi
6

p
q −

ffiffiffi
6

p
r

7 6
ffiffiffi
2

p
qr 3

ffiffiffi
2

p
q2 � 9

ffiffiffi
2

p
r2 2

ffiffiffi
6

p
r 2

ffiffiffi
3

p
q −2

ffiffiffi
3

p
r

8 9
ffiffiffi
2

p
q2 � 3

ffiffiffi
2

p
r2 6

ffiffiffi
2

p
qr 2

ffiffiffi
6

p
q 2

ffiffiffi
3

p
r 2

ffiffiffi
3

p
q

9 6
ffiffiffi
2

p
qr 3

ffiffiffi
2

p �q2 − r2� 2
ffiffiffi
3

p
q 2

ffiffiffi
3

p
r

10 3
ffiffiffi
2

p �q2 − r2� −6
ffiffiffi
2

p
qr −2

ffiffiffi
3

p
r 2

ffiffiffi
3

p
q

11 2
ffiffiffi
5

p
q � 12

ffiffiffi
5

p �q3 � qr2� 2
ffiffiffi
5

p
r � 12

ffiffiffi
5

p �q2r � r3� 4
ffiffiffiffiffi
15

p �q2 � r2� 4
ffiffiffiffiffi
30

p
qr 2

ffiffiffiffiffi
30

p �q2 − r2� 2
ffiffiffiffiffi
10

p
r 2

ffiffiffiffiffi
10

p
q
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the SSI translation estimation problem as it does in the
TTDPR case.

Since γj;j 0 �q; r� involves nonlinear terms, it is difficult to pre-
dict the invertability of the system of equations in Eq. (17) for a
general aberration. When the expected translation estimation
errors �q; r� are small, however, it is possible to make a linear
approximation that is more easily analyzed. Suppose that the
guesses for s and t used to find cj;k are sufficiently accurate that
jqj and jrj are much smaller than unity. The linear terms will
then dominate the terms in γj;j 0 �q; r� that are quadratic and
higher in q and r. In this case, the matrix of polynomials
γjj 0 �q; r� can be split into the portion listed in Table 3 that
is linear in q and the portion listed in Table 4 that is linear
in r, which we label γqjj 0 and γrjj 0 , respectively. Neglecting the
higher-order terms in q and r in Eq. (17), we can produce a
linear approximation for small q and r,

cj;k − aj;k ≈
XJ
j 0�2

aj 0;k�γqj 0 ;jq � γrj 0 ;jr� � qQj � rRj; (18)

where

Qj �
XJ
j 0�2

aj 0 ;kγ
q
j 0 ;j ; Rj �

XJ
j 0�2

aj 0 ;kγrj 0 ;j (19)

can be seen as vectors in the space of the differences of cj;k − aj;k
that depend on the aberrations of the system.

Let c, a,Q , and R be column vectors representing the values
of cj;k, aj, Qj, and Rj, respectively, starting at j � 2 in the SLP
case and j � 4 in the USLP case. The SLP case column vectors
begin at j � 2 because a0 in Eq. (18) is unknowable. In the
USLP case, the vectors begin with j � 4 because a2;k and
a3;k vary with each PSF and are thus unknowable a priori.
For simplicity, we have terminated γ

q
j 0j, γ

r
j 0j, cj;k , aj, Qj, Rj

and their vector equivalents at spherical aberration but, as with
γj;j 0 �q; r�, they could be extended to include aberrations with
arbitrarily high Zernike polynomial index.

Given Eq. (18), one can approximate the process of estimat-
ing q and r given noisy measurements of cj;k using a linear
model,

c � Hθ� a� η; (20)

where H � �Q R�, the values to be estimated are θ � �q r�T,
and η represents noise in the measurement c as a result of the
single-PSF phase retrieval. We will approximate the error in the
phase retrieval measurement as an additive, white, Gaussian
noise with variance σ2j for the jth Zernike coefficient and with
zero covariance between terms. The results of a phase retrieval
measurement for cj;k are not really going to be distributed in
this manner [19], but it suffices for the purposes of understand-
ing the basic sensitivity of estimators of q and r to aberrations
aj;k. A minimum-variance unbiased estimator [20] can be cal-
culated for Eq. (20) yielding an estimator θ̂ for θ. The estimator
will have a covariance matrix,

C θ̂ � �HTC −1
η H �−1; (21)

where C η is the covariance matrix of the noise η. Since we as-
sume zero covariance between terms, C η and C −1

η are diagonal
matrices with values of σ2j and σ−2j along their diagonals, respec-
tively. Equation (21) involves a 2-by-2 matrix inverse and a
closed-form evaluation gives

C θ̂ �
1

det�HTC −1
η H �

�
RTC −1

η R −QTC −1
η R

−RTC −1
η Q QTC −1

η Q

�
; (22)

from which the individual variances for estimators of q and r
can be extracted and written more simply as

var�q̂� �
�
QTC −1

η Q −
�QTC −1

η R�2
RTC −1

η R

�−1
;

var�r̂� �
�
RTC −1

η R −
�QTC −1

η R�2
QTC −1

η Q

�−1
: (23)

If the variances are small for a particular aberration and wave-
front sensing accuracy, then translation estimation is expected
to be robust. Since the coordinates u and v have been normal-
ized as fractions of the radius of the circle u2 � v2 ≤ 1 and are
hence unitless, var�q̂� and var�r̂� are similarly unitless. A mini-
mum-variance unbiased estimator of a linear model is efficient
[20], so, assuming Eq. (20) and our simplified model for wave-
front sensing error are true, var�q̂� and var�r̂� are Cramer–Rao
lower bounds for any unbiased estimator of translation.

The scalar values QTC −1
η Q , RTC −1

η R, and �QTC −1
η R�2 are

always positive, so Eq. (23) has the lower bounds:

var�q̂� ≥ �QTC −1
η Q�−1;

var�r̂� ≥ �RTC −1
η R�−1: (24)

Thus a necessary condition for robust estimation of translations
along the u and v coordinates is that the optical system have
aberrations that yield QTC −1

η Q and RTC −1
η R large in compari-

son to 1. To ensure robust estimation it is also required that
�QTC −1

η R�2 is small in comparison to the product of QTC −1
η Q

and RTC −1
η R, according to Eq. (23).

Table 3. Nonzero Terms of the Linearized Zernike
Translation Matrix γqj 0j for j < 12

j 0 j � 2 3 4 5 6 8

4 2
ffiffiffi
3

p
5

ffiffiffi
6

p
6

ffiffiffi
6

p
7 2

ffiffiffi
3

p
8 2

ffiffiffi
6

p
2

ffiffiffi
3

p
9 2

ffiffiffi
3

p
10 2

ffiffiffi
3

p
11 2

ffiffiffi
5

p
2

ffiffiffiffiffi
10

p

Table 4. Nonzero Terms of the Linearized Zernike
Translation Matrix γrj 0j for j < 12

j 0 j � 2 3 4 5 6 7

4 2
ffiffiffi
3

p
5

ffiffiffi
6

p
6 −

ffiffiffi
6

p
7 2

ffiffiffi
6

p
−2

ffiffiffi
3

p
8 2

ffiffiffi
3

p
9 2

ffiffiffi
3

p
10 −2

ffiffiffi
3

p
11 2

ffiffiffi
5

p
2

ffiffiffiffiffi
10

p
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3. SUBAPERTURE TRANSLATION ESTIMATION
WITH SHARED LINEAR PHASE

In the SLP case for which the terms a2;k and a3;k are inferable
from PSFs with all indices but k, evaluating the components
of Eq. (19) for arbitrary aberrations aj yields

QT �
h
2

ffiffiffi
3

p
a4 �

ffiffiffi
6

p
a6 � 2

ffiffiffi
5

p
a11;

ffiffiffi
6

p
a5; 2

ffiffiffi
6

p
a8;

2
ffiffiffi
3

p
�a7 � a9�; 2

ffiffiffi
3

p
�a8 � a10�; 0; 2

ffiffiffiffiffi
10

p
a11

i
;

RT �
h ffiffiffi

6
p

a5; 2
ffiffiffi
3

p
a4 −

ffiffiffi
6

p
a6 � 2

ffiffiffi
5

p
a11; 2

ffiffiffi
6

p
a7;

2
ffiffiffi
3

p
�a8 − a10�; 2

ffiffiffi
3

p
�a9 − a7�; 2

ffiffiffiffiffi
10

p
a11; 0

i
: (25)

The components of Eq. (24) in the SLP case are therefore

QTC −1
η Q� σ−22

�
2

ffiffiffi
3

p
a4�

ffiffiffi
6

p
a6�2

ffiffiffi
5

p
a11

	
2�6σ−23 a25

�24σ−24 a28�12σ−25 �a7�a9�2�12σ−26 �a8� a10�2
�40σ−28 a211;

RTC −1
η R� 6σ−22 a25�σ−23

�
2

ffiffiffi
3

p
a4 −

ffiffiffi
6

p
a6�2

ffiffiffi
5

p
a11

	
2

�24σ−24 a27�12σ−25 �a8 −a10�2�12σ−26 �a9 − a7�2
�40σ−27 a211: (26)

Equation (26) indicates that the lower bounds for the variance,
Eq. (24), are inversely proportional to a series of sums depend-
ing on second and higher radial degree aberrations adding in
quadrature. If there are no phase aberrations in the exit pupil,
Q � R � 0 and the lower bounds in Eq. (24) are infinite.
Hence, subaperture translation estimation is not practical
for systems with completely unaberrated exit pupils or those
with only piston or linear phase terms. If the translations were
uncertain prior to TTDPR in these cases, no additional infor-
mation about what region of the subaperture plane was unaber-
rated could be gained through TTDPR. Phase retrieval would
indicate just that an unspecified region of the subaperture plane
was aberration-free.

The expected variance and Cramer–Rao lower bound in
Eq. (23) also require that the square of

QTC −1
η R � �σ−22 � σ−23 �a5

�
6

ffiffiffi
2

p
a4 � 2

ffiffiffiffiffi
30

p
a11

	

�6�σ−22 − σ−23 �a5a6 � 24σ−24 a7a8

�12�σ−25 � σ−26 ��a8a9 − a7a10�
�12�σ−25 − σ−26 ��a7a8 − a9a10� (27)

be small compared to the product of QTC −1
η Q and RTC −1

η R in
Eq. (26) for a low variance of the bound. If the wavefront sens-
ing errors in linear phase and astigmatism are independent of
rotation, then σ3 � σ2 and σ6 � σ5, and Eq. (27) simplifies to

QTC −1
η R � 4σ−22 a5

�
3

ffiffiffi
2

p
a4 �

ffiffiffiffiffi
30

p
a11

	

� 24σ−24 a7a8�24σ−25 �a8a9 − a7a10�: (28)

For highly aberrated systems, which are described by many
Zernike coefficients that are large in magnitude, QTC −1

η Q

and RTC −1
η R are likely large as well, and thus the lower bounds

in Eq. (24) on translation estimation error are small. These
bounds are more problematic on nearly unaberrated systems
where QTC −1

η Q and RTC −1
η R will be much smaller; thus,

we concentrate on that case.
Cramer–Rao analysis of defocus-diverse phase retrieval

shows that wavefront sensing in the presence of noise performs
better when defocus has been induced in the system [21,22], so
it can be expected that some defocus has been induced to im-
prove wavefront sensing. When this intentionally added defo-
cus dominates the other aberrations, the expected translation
estimation error in the SLP case is approximately

σ−22 var�q̂� ≈ 1

12a24
;

σ−23 var�r̂� ≈ 1

12a24
; (29)

according to Eqs. (26), (27), and (23), under the assumption
that aj ≪ 1 for j ≠ 4 and that the variance of wavefront sens-
ing error is comparable for all aberrations. For example, if the
aberrations are dominated by a defocus of a4 � 4.62 rad
RMS, equivalent to 2.55 waves center-to-edge of the circle
u2 � v2 ≤ 1, Eq. (29) is

σ−22 var�q̂� � σ−23 var�r̂� ≈ 3.91 × 10−3 rad−2: (30)

In general, for any single aberration that dominates all of the
others, the variance of translation is inversely proportional to
the square of the dominating aberration with the constant
of proportionality determined by the factors in Eq. (26).

If there is not just one dominating aberration such as defo-
cus, Eqs. (26), (27), and (23) must be evaluated for the specific
phase aberrations of the system and wavefront sensing error var-
iances to predict translation estimation performance. If the spe-
cific aberration of interest is unknown, these equations can be
evaluated over a specified population of aberrations to establish
expected behavior. This is done in Section 5 for a specific
population of aberrations in a Monte Carlo experiment.

4. SUBAPERTURE TRANSLATION ESTIMATION
WITH UNSHARED LINEAR PHASE

In the USLP case, c, a, Q , and R become column vectors rep-
resenting the values of cj;k, aj, Qj, and Rj for 4 ≤ j ≤ 11 since
a2;k and a3;k are unshared and unknown. For this case,
evaluating Eq. (19) yields

QT �
h
2

ffiffiffi
6

p
a8;2

ffiffiffi
3

p
�a7 � a9�;2

ffiffiffi
3

p
�a8 � a10�;0;2

ffiffiffiffiffi
10

p
a11

i
;

RT �
h
2

ffiffiffi
6

p
a7;2

ffiffiffi
3

p
�a8 − a10�;2

ffiffiffi
3

p
�a9 − a7�;2

ffiffiffiffiffi
10

p
a11;0

i
:

(31)

Therefore,

QTC −1
η Q � 24σ−24 a28 � 12σ−25 �a7 � a9�2

� 12σ−26 �a8 � a10�2�40σ−28 a211;

RTC −1
η R � 24σ−24 a27 � 12σ−25 �a8 − a10�2

� 12σ−26 �a9 − a7�2�40σ−27 a211; (32)
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and

QTC −1
η R � 24σ−24 a7a8 � 12�σ−25 � σ−26 ��a8a9 − a7a10�

�12�σ−25 − σ−26 ��a7a8 − a9a10�: (33)

The aberrations that contribute to improved subaperture
estimation in the USLP case are those of third radial degree
and above. Notably missing are the second radial degree terms:
defocus and the two astigmatisms. This is due to the first two
entries in Q and R in the SLP case, which include the second
radial degree terms, being absent from the Q and R of the
USLP case. These terms are excluded from Eq. (20) in the
USLP case because a2;k and a3;k are unknown and thus c2;k −
a2 and c3;k − a3;k are unusable equations of Eq. (18). In less
mathematical terms, an errant subaperture translation samples
a mean wavefront slope different than the mean slope across the
subaperture in the correct translation. If the second radial
degree aberrations are nonzero, the difference in mean wave-
front slope has a component linear in pupil coordinates and
that yields a translation of the PSF relative to where it would
be expected, given a. This PSF shift constitutes information
about the subaperture translation and it is due to the existence
of the second radial degree aberrations. However, this shift is
indistinguishable from unknown detector or target motion
since that also produces a translation of the PSF. Thus, the sec-
ond radial degree aberrations in the optical system contribute
no subaperture translation information if the detector or target
are also translating. We observe that it is necessary to have
aberrations of the exit pupil higher in order than defocus and
astigmatism to estimate translation in a system for which the
linear phase terms vary unpredictably between PSFs or, equiv-
alently, when the detector or target are undergoing unknown
translation. Similarly, in the USLP case with a dominant
defocus or astigmatism aberration, it is much more difficult to
estimate the variance of translation estimation without specify-
ing the smaller aberrations of higher radial degree. In the next
section, we turn to Monte Carlo analysis to evaluate the behav-
ior of the variance of translation estimation with a particular
population of aberrations.

5. MONTE CARLO EXPERIMENTS

We compared the Cramer–Rao lower bounds on translation
estimation in the SLP and USLP cases for a specific aberration
population using a Monte Carlo experiment. Five hundred
random aberration coefficient vectors aj were composed by
drawing independent and normally distributed random num-
bers from distributions having standard deviations of 10, 0.2,
0.1, 0.1, and 0.3 rad RMS for the linear, astigmatism, coma,
trefoil, and spherical aberration terms, respectively. For each
vector, the defocus term was assumed to be the arbitrary con-
stant a4 � 4.62 rad RMS used in Section 3 and the piston
term was assumed zero. The mean wavefront aberration aver-
aged across the population of aberration vectors was 4.64 rad
RMS with linear phase excluded, but just 0.429 rad RMS with
defocus phase also excluded. An example exit pupil phase syn-
thesized from one such aberration vector is plotted in Fig. 1(a)
and in Fig. 1(b) with the defocus subtracted. In both figures,
the phase has been plotted over the circle u2 � v2 ≤ 1. In ad-
dition to an aberration coefficient vector, evaluation of Eq. (23)

requires the variance of wavefront sensing error by Zernike co-
efficient for a single-PSF retrieval. Such variances will depend
on the particular aberration coefficient vector but we assume
that the variance of wavefront sensing error for a given
Zernike coefficient averaged over the ensemble of coefficient
vectors is adequate. In Section 6, a particular simulated wave-
front sensing experiment is described for which ensemble-
averaged variances have been estimated by a Monte Carlo
process described in that section. In this section, we take these
mean wavefront sensing error variances as a given and they are
listed in Table 5. To the extent that the astigmatism variances
are larger than that of defocus and the defocus variance is larger
than the coma terms, these mean variances are consistent with
the variances calculated numerically in [19], though the exact
values and the experiment simulated differ.

For each of the coefficient vectors, the value of var�q̂� was
evaluated in the SLP and USLP cases using Eq. (23) assuming
the wavefront sensing error variances in Table 5. A log histo-
gram of var�q̂� values over the population of 500 vectors is
shown in Fig. 2. Since the aberration statistics chosen do
not have an orientation bias, a log histogram of var�r̂� would

Fig. 1. (a) Sample exit pupil phase with linear phase subtracted and
a color bar in radians, (b) sample wavefront phase having also had the
defocus subtracted with a color bar in radians, (c) map of the suba-
perture/pupil plane with a color bar indicating number of subaperture
positions overlapping the pupil, and (d) simulated noisy PSF from the
sample exit pupil phase and one of the subaperture positions.

Table 5. Mean Wavefront Sensing Error Variances
Estimated from the Simulated Phase Retrieval
Experiment in Section 6

Term Mean Value (rad2)

σ22 9.44 × 10−5

σ23 9.49 × 10−5

σ24 9.15 × 10−5

σ25 1.58 × 10−4

σ26 1.55 × 10−4

σ27 1.84 × 10−5

σ28 1.83 × 10−5
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yield nearly identical distributions. Of particular note, the
SLP cases are clustered around an average value of 3.58 × 10−7.
Substituting σ24 from Table 5 into the defocus-dominant limit
in Eq. (30) yields a prediction for var�q̂� of 3.57 × 10−7. This
confirms that Eq. (30) is useful for predicting the expected
variance of translation estimation in this defocus-dominated
SLP case without requiring a Monte Carlo experiment, just
as Section 3 noted. The maximum variance of the population
is about 1.3 times the mean variance and the mean variance is
about 2.9 times the minimum. The square root of the mean
variance yields a standard deviation of the subaperture transla-
tion estimation error of 0.03% of the width of the reference
circle described by u2 � v2 ≤ 1.

In contrast, the histogram for the USLP case in Fig. 2 is
far more spread out and denotes variances much larger than
the SLP case. The USLP variances range over almost 4 orders
of magnitude with a maximum 44 times that of the mean
and the mean variance is 214 times the minimum. The mean
variance of 6.75 × 10−5 in the USLP case is about 189 times
larger than the mean in the SLP case. The standard deviation
of subaperture translation estimation error corresponding to the
mean variance is 0.41% of the width of the circle u2 � v2 ≤ 1
while the maximum variance corresponds to a standard
deviation of 2.7% of the width of the circle. A worse-case trans-
lation error of 2.7% could be unacceptably large for some
demanding applications.

Since Eqs. (26)–(28) and Eqs. (32) and (33) are linear in the
inverse of the wavefront sensing error variances, Eq. (23) would
be linear in any constant factor change that was applied to all
wavefront sensing error variances equally. Supposing that
the wavefront sensing errors in Table 5 were each 100 times
larger, the variance statistics calculated in this section would
also be 100 times larger and the standard deviations larger
by a factor of 10. In this case, the worst aberration vector would
yield a translation error of 27%, which is almost certainly
unacceptably large, since it would be very unclear to what part
of the exit pupil each PSF’s phase measurements corresponded.

6. COMPARISON WITH PHASE RETRIEVAL
SIMULATION

Next, we used Monte Carlo analysis to examine whether the
bound suggested by Eq. (23) is consistent with the variance

of translation estimation error of phase retrieval in simulation.
For each of the aberration coefficient vectors, 30 TTDPR
experiments were simulated for the SLP and USLP cases with
varying noise realizations. In each of these TTDPR experi-
ments, seven PSFs were simulated from varying positions of
a circular subaperture defined by u2 � v2 ≤ 0.25. The subaper-
ture positions were arranged as indicated by the map of
subaperture overlap in Fig. 1(c). This arrangement of the sub-
apertures just inscribes the circle u2 � v2 ≤ 1. To each of the
PSFs, different realizations of simulated Poisson- and Gaussian-
distributed detector noise were applied. It was assumed that
the peak pixel received 7,000 photoelectrons and there was
a read noise of 30 photoelectrons. The simulated detector
pixels were Nyquist sampled in intensity for a notional circular
aperture defined by u2 � v2 ≤ 1. No such circular aperture
stop was simulated in the fixed aperture, though, to be consis-
tent with the assumptions of Section 2 that specify no ampli-
tude fiducials. TTDPR computation using the method of
[1] was applied to each of the simulated data to estimate exit
pupil phase and subaperture translation assuming the SLP and
USLP cases.

TTDPR is a nonlinear optimization technique that locates
a minimum of an error metric given a starting point for the
unknown phase aberrations and translations. For this analysis,
we wished to assess the translation estimation accuracy of the
TTDPR algorithm limited primarily by detector noise and
independent of stagnation issues associated with converging
to the correct exit pupil phase estimate. Therefore, we chose
as starting aberration coefficient values the actual aberration co-
efficients used in the simulated data. Doing the same with the
translation estimates, however, does not yield representative
translation estimation errors in our testing. If we start the min-
imization process at the true subaperture translations, it has a
tendency to find a minimum of the error metric near the true
solution even when deeper minima of the metric exist some-
what further away from the true solution. In metrology where
the true translation estimation is unknown, it is the translation
estimation errors associated with these deeper minima that are
of interest since these are likely to be found by the minimiza-
tion process. To increase the chance of locating these deeper
minima, 20 phase retrievals were done for each PSF noise
realization with different initial subaperture translation esti-
mates perturbed from the true values by a Gaussian-distributed
random error having a variance of 2.25 × 10−2. Of these 20
retrievals, the retrieval with the lowest final error metric was
selected as the result for a given PSF noise realization.

We evaluatedMSE�s�, the mean squared difference between
the retrieved translations and the actual translations present
in the simulated PSF data, over the selected phase retrievals
from each of the 30 noise realizations for each aberration vector.
If the subaperture estimation in the TTDPR performed in
simulation is unbiased, it would be expected that

MSE�s� ≳ var�q̂�; (34)

where var�q̂� is calculated using Eq. (23) since it is a Cramer–
Rao lower bound. The validity of this bound is contingent on
the assumptions of Section 2 including the approximation
used to model the effects of detector noise on single-PSF

Fig. 2. Log histogram of var�q̂� over the population of coefficient
vectors in the SLP and USLP cases.
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phase retrieval. In particular, it was assumed that the noise in
the PSF induces errors in the retrieved Zernike coefficients
equivalent to uncorrelated, independently distributed Gaussian
noise. Though TTDPR applied to PSFs corrupted by Gaussian
and Poisson noise yield different error statistics, we take the
variance of actual single-PSF phase retrieval to be an estimate
for the variances σ2j in C η. We assessed the variance of single-
PSF phase retrieval through additional Monte Carlo simulation
experiments involving one PSF arising from an untranslated
subaperture centered in the pupil. For each of the σ2j in C η,
a Monte Carlo experiment was performed to estimate the vari-
ance of phase retrieval wavefront sensing error with respect to
wavefront sensing error in just the jth Zernike term in the
presence of PSF noise. Thirty noisy PSFs were synthesized
for each of the randomly drawn aberration coefficient vectors
used in the main simulation described earlier. For each noisy
PSF and selected aberration type, phase retrieval was performed
to estimate the jth Zernike coefficient while the other aberra-
tions had their coefficients assumed to be the true value.
Subaperture translation was not estimated and the phase
retrieval algorithm used the correct translation. The squared
errors of the wavefront sensing error for each Zernike term were
averaged over the population of aberration coefficient vectors
and noise realizations. These results are listed in Table 5. By
estimating the error in each Zernike term individually, we
excluded from our variance estimates the effects of the
covariance of errors between different Zernike terms. This
made our experimentally estimated variances consistent with
the assumption of no covariance made in Section 2.

In Fig. 3, the value ofMSE�s� for each aberration coefficient
vector is plotted versus var�q̂� assuming the mean covariances
in Table 5 for both the SLP and USLP cases. Also plotted is a
line representing the Cramer–Rao lower bound in Eq. (34).
Each of the 500 aberration coefficient vectors yielded a
MSE�s� consistent with the Cramer–Rao lower bound inequal-
ity in Eq. (34) for the SLP case. In the USLP case, three of
the vectors out of the 500 had MSE�s� slightly less than the
bound predicts, the least of which had a MSE�s� 12% smaller

than the bound. Still, the vast majority of aberration coefficient
vectors had estimation errors consistent with the bound. This is
remarkable given the significant approximations made in
Section 2 and simplification of the wavefront sensing noise
to a Gaussian model that neglects covariance. It is also impres-
sive that the translation errors of the simulated TTDPR are
correlated to the simplified variance model in Eq. (23) as they
are over the 3.8 orders of magnitude encompassed by Fig. 3.
We found that 89% of the aberration vectors had a MSE�s�
between var�q̂� and 4 × var�q̂� suggesting that Eq. (23) is a use-
ful predictor of translation error for the actual phase retrieval
simulated and not just an approximate lower bound. Since the
TTDPR algorithm was estimating both the subaperture trans-
lations and the phase aberrations shared between PSFs, it would
not be expected to achieve the Cramer–Rao lower bound for
estimating translation alone. That it approximately follows the
bound Eq. (23) but with a constant scale factor is unexpected
but potentially useful for predicting the behavior of real mea-
surements that involve maximum-likelihood estimators rather
than minimum-variance estimators.

Next, we compared MSE�s� values in the experiment
involving simulated TTDPR between the USLP and SLP cases.
TheMSE�s� across the population in the USLP case was 1.51 ×
10−4 and 230 times that of the MSE in the SLP case. The ratio
predicted by comparing the mean values of var�q̂� between
USLP and SLP cases in Section 5 was 189 so the actual ratio
of 230 is only slightly more than expected. The error between
189 and 230 of just 21% suggests that the theory outlined in
Section 5 is useful for comparing the behavior of SLP and
USLP cases of real systems when averaged across an ensemble
of potential aberrations.

Finally, we compared the wavefront sensing accuracy by
finding the mean of the RMS error between the retrieved
aberrations and the true aberrations for each simulated phase
retrieval. These RMS errors were averaged to estimate the ex-
pected wavefront sensing error over the population of aberra-
tions. In the SLP case, the mean RMS error was 7.6 × 10−3 rad
while in the USLP case it was 1.1 × 10−2 rad. If the wavefront
sensing requirements for the simulated wavefront sensing
experiment were one-hundredth wave RMS, or 6.2 × 10−2 rad
RMS, TTDPR in both the SLP and USLP cases could be ex-
pected to succeed for the selected population of aberrations.

7. CONCLUSION

In TTDPR, PSFs of an optical system are acquired for use in a
phase retrieval algorithm to estimate the aberrations of that
system. A subaperture in a plane conjugate to the exit pupil
is translated to a different position for each PSF. In cases
where the knowledge of this translation is insufficiently accu-
rate or unavailable, it must be estimated from the PSF data.
Misestimation of the translation of the subaperture leads to
misestimation of the aberrations, so the accuracy of this
translation estimation is critical. In Section 2, we developed
analytic expressions for the variance of a minimum-variance un-
biased estimator and a Cramer–Rao lower bound for subaper-
ture translation estimation assuming various approximations.
Notable among these approximations, we assumed that the exit
pupil does not have fixed amplitude features that would aide

Fig. 3. Log–log scatter plot of MSE�s� of simulated TTDPR
experiments for a given aberration vector versus the σ−2 var�q̂� for
the aberration for both the SLP and USLP cases. Includes line repre-
senting the predicted Cramer–Rao lower bound of Eq. (34).
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subaperture translation estimation. For unobscured imaging sys-
tems, most PSFs will derive from subaperture translations that
do not overlap an amplitude feature that would aide translation
estimation. The Cramer–Rao lower bound depends on wave-
front sensing quality and the composition of phase aberrations
of the system. Which aberrations contribute to the variance
varies according to whether each PSF arose from identical linear
phase terms or dissimilar linear phase terms due to unknown
translations of the detector acquiring the PSF or of the target
being imaged. We refer to these two cases as the shared linear
phase and unshared linear phase cases, respectively.

The expressions for the bound on translation estimation
vary significantly between the SLP case evaluated in Section 3
and USLP cases evaluated in Section 4. The aberrations with
radial degree of 2 contribute to lowering the variance of trans-
lation estimation in the SLP case but do not directly contribute
in the USLP case according to the model of Section 2. In the
common situation that a significant defocus has been intro-
duced to improve wavefront sensing, USLP is at a significant
disadvantage because this additional defocus does not directly
aid translation estimation as it does in the SLP case. We note,
though, that the model in Section 2 does not take into account
the variation of wavefront sensing error σ due to the compo-
sition of aberrations. In practice, increasing the magnitude of
defocus and astigmatism will likely decrease wavefront sensing
error for all aberrations and thus aide translation estimation
even in the USLP case.

Evaluating whether translation estimation is viable for a
particular experiment requires knowledge of the noise inherent
in the wavefront sensing process and predictions for the actual
aberrations expected in the subaperture plane. For instance, if
the aberrations are dominated by large coma or spherical aber-
ration terms, translation estimation may perform acceptably
well in both SLP and USLP cases, depending on the wavefront
sensing error. In Section 5, we chose a specific large population
of randomly generated aberrations and evaluated the predic-
tions of the theory to understand and evaluate the differences
between the SLP and USLP cases assuming one had an efficient
estimator that met the Cramer–Rao lower bound. From this
analysis, we observed that the mean value of translation
variance over this population of aberrations should be about
189 times larger in the USLP case than in the SLP case. In
Section 6, we simulated TTDPR using simulated PSFs and ac-
tual TTDPR algorithm evaluations. Translation estimate errors
from this actual phase retrieval algorithm would not be ex-
pected to meet the Cramer–Rao lower bound but they should
not be lower than the Cramer–Rao bound derived in Section 2.
This was the case for all of the aberrations examined in the
SLP case and virtually all of the aberrations in the USLP case,
suggesting that the bound was plausible. The 0.6% of the aber-
rations that violated the bound in the USLP case did so by at
most 12%, which is understandable given the nature of the
approximations in the bound. For this set of experiments,
the mean squared error of translation was 1.51 × 10−5 in the
USLP case where the units of translation are radii of the circle
u2 � v2 ≤ 1. This mean squared error was 230 times larger
than the average SLP case or, alternately, more than 15 times
larger if the RMS error values were compared. Our comparison

between theory-predicted Cramer–Rao bound for the variance
and the actual mean squared error achieved by TTDPR sug-
gested a strong correlation, as shown by Fig. 3. We found that
89% of the aberrations yielded translation variances between
the predicted Cramer–Rao bound and 4 times the bound over
a range of bound values encompassing 3.8 orders of magnitude.
This level of agreement is remarkable given that the model for
the Cramer–Rao bound does not take into account the varia-
tion of wavefront sensing error with aberration composition or
the covariance of the wavefront sensing errors between the
sensed wavefront coefficients. The simulation in Section 5
demonstrated a phase aberration sensing error better than
one-hundredth wave RMS in both the SLP and USLP cases.
On average, the USLP cases exhibited slightly higher wavefront
sensing error than the SLP cases due to the effects of additional
subaperture translation misestimation.

It is likely that these results derived for TTDPR have an
analog in conventional subaperture stitching interferometry
when the position of the subaperture has errors that must
be estimated from interferogram data.

Finally, we return to evaluating TTDPR for use with the
long-wave channel of the NIRCam on the James Webb Space
Telescope. The USLP case arises in ground testing involving
external pupil illumination as well as when the internal light
sources of NIRCam are used for ground testing or on-orbit test-
ing of NIRCam. The results of Section 4 indicate that addi-
tional defocus does not directly aid translation estimation in
the USLP case, which must rely solely on higher-order aberra-
tions. Consequently, the lack of weak defocus lenses in the
long-wave channel does not significantly hinder translation
estimation for that case. If weak lenses were present, the im-
provement would only be that due to the indirect effect of
increasing wavefront sensing accuracy. Instead, it is the third
radial degree aberrations like coma and trefoil in NIRCam that
directly assist TTDPR. Fortunately, the NIRCam system devel-
ops such aberrations when the Lyot stops are introduced. This
is because the Lyot stop is patterned on a prism substrate that
shifts the field of view of NIRCam when selected in the filter
wheel [12]. NIRcam involves a collimating lens assembly and a
camera lens assembly whose individual aberrations cancel most
ideally when the prism is not introduced between them. We
have observed that introduction of the prism element unbal-
ances the overall aberration correction in NIRCam enough
for successful USLP TTDPR. In cases where NIRCam is pre-
sented with an input beam having well-defined fixed amplitude
features, such as the segment boundaries of the telescope’s pri-
mary mirror, estimation is likely to be even better than that
achieved using pupil phase alone.

In conclusion, we have computed a Cramer–Rao lower
bound for subaperture translation estimation in TTDPR aber-
ration retrieval when amplitude fiducials are unavailable in
the pupil. This estimation is essential to phase measurements
when the translation must be estimated using the PSF data.
The bound shows that Zernike coma, trefoil, and those terms
of higher radial degree are critical to estimation when the linear
phase terms of the pupil are effectively unknown and also vary
from PSF to PSF. Monte Carlo experiments involving simula-
tions of TTDPR were consistent with the lower bound and also
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correlated with the bound, suggesting that it could approximate
the average MSE expected. We believe that the insights
provided by this approximate but analytic bound will be invalu-
able for designing robust optical metrology experiments using
TTDPR in difficult situations.
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