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1. INTRODUCTION

Ptychography, as described in Refs. [1–5], and transverse-
translation diversity phase retrieval (TTDPR), as discussed in
Refs. [6–10], are techniques for inferring the unknown com-
plex-valued field in a plane from intensity measurements col-
lected in another plane. The unknown and measurement
planes are typically connected by a propagation such as a
Fraunhofer or Fresnel transform, but only certain regions of
the unknown field are allowed to propagate for any particular
intensity measurement. Which regions are selected is controlled
by translating some feature within the unknown field or the il-
lumination prior to it. This translating feature takes different
forms, depending on the application. In coherent diffractive
imaging, the unknown field is due to a coherently-illuminated
transmissive object. Ptychography has been demonstrated with
partially coherent illumination and with thick unknown objects
where volume information is resolved, but we will consider just
the coherent two-dimensional unknown case. If the coherent
beam illuminates only a small region of the object, then this beam
may be the feature translated; alternatively, the object may be
translated through the beam. Intensities are collected for various
translations of the beam, illuminating different and overlapping
regions of the object. If the object is fully illuminated, a probe or
subaperture with its own transmission function can be imposed
before or after the object and translated instead of the illumina-
tion. Though ptychography and TTDPR algorithms solve sim-
ilar mathematical problems, TTDPR uses the language of phase
retrieval for wavefront sensing and the iterative nonlinear opti-
mization of an error metric as in Refs. [11–13]. This paper
utilizes the TTDPR approach to solve a wavefront sensing
problem, but similar challenges would confront a ptychography
algorithm that did not use nonlinear optimization.

For the opticalmetrology of imaging systems [7,9,10,14–16],
the generalized exit pupil function [17], rather than an object, is
the unknown complex field of interest. A subaperture or mask is
introduced in a plane ideally conjugate to the pupil. It is trans-
lated to various overlapping regions of the pupil while point
spread functions (PSFs) are collected by an array detector near
a focal plane. An algorithm is applied to find the complex field
consistent with all the measured PSF intensities. These algo-
rithms include iterative transform algorithms [18] such as those
derived from the ptychographic iterative engine (PIE) [1,2,4,19]
and the nonlinear optimization technique of TTDPR [6–8]. If
both the exit pupil function and the target being imaged by the
optical system are unknown, Fourier ptychography [20,21],
overlapped Fourier coding [22], or phase diversity [12] may
be employed. However, for this paper, we assume the target is
an unresolved target that need not be estimated.

For the simplest algorithms, both the transmission function
of the subaperture or probe and the translation of that feature
must be known with high accuracy [6,23]. The exact transla-
tion distance is not always exactly known, though, and often
only an approximate value is available. Here we call this value,
known from the design of the experiment, the prior translation
estimate (PTE). In coherent diffractive imaging applications,
errors in PTE can cause considerable degradation in the esti-
mated fields [3,6,8,19,23] unless corrected. Similarly, errors in
PTE degrade the accuracy of the retrieved exit pupil field in the
optical metrology application. For this reason, some algorithms
have the capability of refining subaperture translation estimates
given the PTE and measured intensity data [5–8,24–26].
In TTDPR, a parameterized model for the exit pupil
field is fit to the measured PSFs by a gradient-based non-
linear optimization algorithm [6–8]. Translation estimation is
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accomplished by including the translation values in the param-
eters that the optimizer varies to improve the correspondence
between modeled and measured PSFs [6–8]. Similarly, PIE
algorithms have been developed that infer translation using gra-
dient-free search techniques [24,25] and the serial-correlation
method [5]. For some ptychography applications, the errors in
PTE can be parameterized using a simplified two-parameter
drift model and recovered using gradient-free optimization
[26]. Gradient-based nonlinear optimization can also update
the translations used in a PIE algorithm [27].

The algorithms mentioned above depend on being supplied
with PTE so that they can initially approximate the unknown
complex field. The PTE is used as an initial estimate for the
translation. Later stages of the algorithms then refine joint es-
timates of the translation and the complex field using the mea-
sured intensity or PSF data. With approximately correct PTE
for the initial estimate, the final result of translation estimation
has been observed to be robust [5,6,8,25,27]. When the PTE
becomes sufficiently inaccurate, though, simulations in [5]
showed a precipitous increase in the error of translation estima-
tion. Above some threshold in PTE error, the algorithm is un-
able to correct errors in the PTE and converges to incorrect
translation estimates. Simulations in [27] examined this phe-
nomenon as a function of noise in the detected intensity data
and of the relative degree of overlap of the subaperture areas in
neighboring translation positions. Higher signal-to-noise ratios
and larger relative overlaps between subapertures delayed the
onset of the precipitous increase in translation estimation error
until higher PTE errors.

The existence of a precipitous increase in translation estima-
tion errors for sufficiently imprecise PTE is consistent with our
experience in optical metrology. However, the exit pupils recon-
structed in the optical metrology application differ from the
biological specimens examined in [5,27]. When probing the
central portion of the pupil, there are few sharp-edged ampli-
tude or phase features to act as fiducials, as is the case with
coherent diffractive imaging with biological or manmade spec-
imens that have sharp-edged features. In [16], we calculated the
Cramer–Rao lower bound (CRLB) for estimating subaperture
translation from the measured PSF data in the optical metrol-
ogy application. Though the CRLB analysis does not indicate
how accurate PTE must be for success, it does indicate situa-
tions in which there is insufficient information for a unique
solution of exit pupil phase and subaperture translation.

Our interest in unknown and potentially uncorrectable trans-
lation errors comes from analyzing wavefront sensing for the
Near-Infrared Camera (NIRCam) instrument on the James
Webb Space Telescope (JWST). Fine-phasing of the JWST is
nominally provided by focus-diverse phase retrieval using the
shortwave channels of NIRCam [28]. This is not possible with
the longwave channels, which lack the necessary weak lenses for
defocus. They do have Lyot stops with special transmission func-
tions intended for use in coronagraphy [29], and rotation of the
pupil wheel yields a mixture of translation and rotation of the
Lyot stop relative to its nominal centered position. TTDPR
can be applied to a collection of PSFs acquired for various small
rotations of the pupil wheel, thus achieving wavefront sensing
using the longwave channel of NIRCam [10,14]. TTDPR

for ground and on-orbit testing of NIRCam involves several
unique challenges. For instance, calibration of the angle indica-
tion of the pupil wheel was potentially changing with each cryo-
genic cycling and vibration test during ground testing. Thus, the
PTE available during ground testing was limited to an approxi-
mate direction of translation and an even more approximate dis-
tance. Also, the ideally unresolved point target being imaged
moved in an unknown fashion from PSF to PSF for some tests.
Since this target motion must be estimated and because the
residual aberrations are mostly of only second radial degree, like
defocus and astigmatism, translation estimation is challenging
consistent with the CRLB theory and simulations in [16].
Consequently, we are concerned that systematic errors in the
PTE arising from imprecise modeling of the Lyot stop motion
could go uncorrected by the translation estimation steps in con-
ventional TTDPR. We desire a TTDPR method impervious to
errors in the PTE or that requires very little PTE information in a
measurement situation unfavorable for estimating subaperture
translation from the measured intensity data.

In this paper, we propose what we believe is a novel TTDPR
algorithm called unknown transverse-translation diversity
phase retrieval (UTTDPR). It avoids biases or systematic errors
that might be induced by explicit translation direction or
distance PTEby not utilizing such PTE. Subaperture translation
values are estimated from the measured intensity data using an
implicit PTE assumption that the PSFs are acquired sequentially
from subaperture translations that are spatially contiguous.
Initially, the algorithm solves for the exit pupil consistent with
one “first” PSF. Later solutions are extended over larger and
larger regions of the pupil by a multistage process that includes
additional PSFs in the solution. The translation and rotation of
the subaperture, the phase aberrations of the optical system, the
amplitude of the exit pupil, and the motion of the point target
being imaged are all estimated during solution.

The algorithm consists of two major parts: (1) an error met-
ric involving the unknown parameters of the TTDPR measure-
ment described in Section 2, and (2) a multistage process for
minimizing the error metric that accomplishes the necessary
bootstrapping process. Section 3 outlines the conventional
TTDPR solution using this metric for comparison with the
proposed process, described in Section 4. Experimental results
from laboratory experiments are presented in Section 5.

2. DISCRETE MODEL AND ERROR METRIC

The UTTDPR algorithm optimizes an error metric quantifying
the difference between PSFs from a parameterized model of the
optical system and the actual measured PSFs. This section
discusses the parameterized model for the PSF intensity and
the error metric. It begins with a model for the phase and
amplitude of the exit pupil of the system.

Let Z j be a discretely sampled two-dimensional array rep-
resenting the jth Noll-ordered Zernike polynomial function
[30]. A parameterization of the phase of the exit pupil for
the kth PSF is

ϕk � a2;kZ 2 � a3;kZ 3 �
XJ
j�4

ajZ j; (1)
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where a2;k and a3;k are coefficients of the tip and tilt linear
phase terms of the kth PSF, and aj is the jth Zernike polyno-
mial coefficient for all of the PSFs for j ≥ 4. This model allows
the linear phase terms to differ between PSFs in a condition we
refer to as the unshared linear phase case, which accommodates
for a translating detector or a target translating within an iso-
planatic patch of the optical system as outlined in [16]. If the
linear phase coefficients are known to be identical for all PSFs,
the model reduces to the simpler expression,

ϕk �
XJ
j�2

ajZ j ; (2)

which we call the shared linear phase case and it is independent
of k. The constant term Z 1 is not included in Eqs. (1) and (2),
as it is undetectable by phase retrieval.

We refer to the amplitude in the exit pupil, when the sub-
aperture is not present, as the fixed amplitude. The fixed ampli-
tude may include a fixed aperture stop of the system, the effects
of vignetting, and other features of the pupil illumination that do
not translate with the subaperture. Furthermore, we presume
that the fixed amplitude must be estimated from PSF data.
Earlier work [31,32] observed difficulty in estimating amplitude
from near-focus PSFs without multiple planes of focus-diverse
PSF data. The methods proposed in [32] improve amplitude
retrieval for near-focus PSF data. However, these methods
assume that the unknown amplitude is binary in nature (fully
transmissive or completely opaque at each point). This
assumption is appropriate for retrieving an unknownhard-edged
stop in the subaperture plane. It is less suited to estimating a
nonbinary, smoothly varying shading of the fixed amplitude.
Amplitudes with smoothly varying features can occur when
the beam is vignetted by a surface that is not in the plane of
the subaperture or due to the effects of a resolved, coherently,
or partially coherently illuminated target.We have observed that
a fixed amplitude model parameterized by coefficients of a
Zernike polynomial can retrieve both smoothly-varying and
hard-edged fixed amplitudes [33]. As in [33], we here model
the fixed amplitude at array pixel �nr; nc � by

AF�nr; nc � �
�
1.0� C �nr ; nc � if C �nr; nc � > −1.0

0.0 otherwise; (3)

where

C �
XL
l�2

d lZ l ; (4)

and d l is the l th coefficient of a Zernike polynomial. The value
of 1.0 in Eq. (3) is arbitrary but that value should be positive, and
its negative should appear in the inequality of the if-condition.
Parameterized models for the phase of an unknown field, like
Eq. (2), are common in phase retrieval [11,13] but similarly par-
ameterized amplitude models are novel. This model encom-
passes three useful characteristics for amplitude estimation.
First, themodel can vary fromhighly-regularized solutions when
L is small, tomore detailed solutions, when L is larger. This func-
tionality will be used by the unknown TTDPR algorithm to
avoid overfitting the model to the data in situations where there
is insufficient data to constrain a fixed amplitude model with
many degrees of freedom. Second, Eq. (3) prohibits negative

amplitudes that would yield undesirable π-phase shifts in the
resulting exit pupil model. Third, since gradient formulas
exist for the parameters in Eqs. (3) and (4) despite the disconti-
nuity imposed by Eq. (3), efficient estimation of d l can be per-
formed jointly with the other unknowns during gradient-based
optimization.

Having defined the phase and amplitude as above, a
sampled array representing the field in the exit pupil absent
the effects of the subaperture is

f k � AF ∘ exp�iϕk�; (5)

where the complex exponential function is performed element-
wise and the ∘ operator represents the element-wise product of
two arrays. The generalized exit pupil function [17] is

gk � Bk ∘ f k; (6)

where the array Bk represents the transmission function of the
subaperture after having been rotated by an angle θk and trans-
lated by a distance �sk; tk�.

Let AS be a sampled version of the subaperture transmission
function in a reference location having zero rotation and trans-
lation. Having AS that is zero outside a certain bounding area
lowers the detector sampling requirements [7]. This limited
support also allows for overlap of the subaperture from one
PSF to the next: a defining feature of ptychography that sta-
bilizes the convergence of the phase retrieval algorithm [2].
Next, we define a model for how Bk can be calculated from
θk, �sk; tk� and AS. Earlier TTDPR methods [7,14], used
the discrete Fourier shift theorem to evaluate translation.
This was because Dirichlet kernel interpolation is effectively
sinc interpolation if the arrays being interpolated are sampled
finely enough to include the band limit of the continuous func-
tions they sample. However, if AS is insufficiently sampled,
Dirichlet kernel interpolation will make Bk an aliased represen-
tation that is beset with Gibbs ringing along and near the edges
of the subaperture. The earlier work [7] avoided this issue by
applying the discrete Fourier shift theorem to the field incident
on the subaperture under the assumption that the field would
be band limited. This assumption usually holds when the sub-
aperture does not overlap the edge of a hard-edged aperture of
the system. For the UTTDPR algorithm, however, we do not
require that either the subaperture or the field impinging upon
the subaperture be band-limited functions. Hence, we calculate
Bk from AS using bilinear interpolation, as detailed in
Appendix A, since it does not cause Gibbs ringing and allows
inclusion of subaperture rotation in the model.

Next, consider the calculation of an array representing the
field in the plane of the detector. The field in the plane of a
detector near-focus is a Fraunhofer propagation [14,17]:

Gk�x; y� �
A
λz

ZZ
∞

−∞
gk�u; v� exp

�
−
i2π
λz

�xu� yv�
�
dudv;

(7)

where A is a constant amplitude, λ is the wavelength of light,
and z is the distance between the exit pupil and detector planes.
A quadratic phase terms in x and y has been left out of Eq. (7)
since only intensity is measured, and gk is defined to include
the quadratic phase in u and v associated with measurements
not exactly at the focus plane. Let gk�u; v� be sampled in

4598 Vol. 55, No. 17 / June 10 2016 / Applied Optics Research Article



two dimensions at intervals Δu to yield the N by N array
gk �nr; nc � with row and column indices nr and nc , respectively,
according to

u � Δu�nc − n0� and v � Δu�nr − n0�; (8)

where the sample at index �n0; n0� corresponds to the optical axis
where �u; v� � �0; 0�. Similarly, let Gk�u; v� be sampled at in-
terval Δx to yield an M by M array Gk�mr; mc � according to

x � Δx�mc − m0� and y � Δx�mr − m0�; (9)

where the index �m0; m0� corresponds to the sample intersecting
the optical axis. Substituting Eqs. (8) and (9) into Eq. (7), replac-
ing the continuous functions with sampled equivalents and
ignoring the leading constant yields

Gk �mr; mc � �
XN−1

nr�0

XN−1

nc�0

gk �nr; nc � expf−i2πα��nr − n0�

× �mr − m0� � �nc − n0��mc − m0��g; (10)

where

α � ΔuΔx

λz
: (11)

Equation (10) is a discrete Fourier transform (DFT)
between two uniformly sampled arrays. For simplicity of the
formulas and consistency with [34], we use α in Eq. (11) rather
than the more commonly used, and inversely-proportional,
term λf #∕p defined in [35]. Such a DFT could be calculated
by an operation involving zero-padding and the fast-Fourier
transform (FFT) for integer values of α−1 larger than N and
M . Alternately, the chirp-Z transform can be used for general
α [34], as can matrix multiplication [36–38]. The matrix multi-
plication DFT (MMDFT) is found as follows. For simplicity of
the gradient calculation, let

ω�n; m� � −2.0πα�n − n0��m − m0�; (12)

for n � 0;…; N − 1 and m � 0;…; M − 1, and also define

Ω�n; m� � exp�iω�n; m��: (13)

Rearranging Eq. (10) as

Gk �mr; mc � �
XN
nr�0

exp�−i2πα�nr − n0��mr − m0��
XN
nc�0

gk �nr ; nc �

× exp�−i2πα�nc − n0��mc − m0��; (14)

makes it clear that the two summations are equivalent to

Gk � ΩT � gk � Ω; (15)

where the � operator here denotes matrix multiplication.
It is often desirable to estimate α from the measured PSF

data, since the related quantities Δx , λ, or z may not be inde-
pendently known to the required precision [34,37,39]. Earlier
work in estimating the related quantities used tedious grid-
search techniques or gradients with respect to α evaluated using
finite differences [39]. Later work found that the chirp-Z trans-
form admitted analytic gradients with respect to α [34], thus
avoiding performance impact of a grid search or a finite-
differences gradient method. We find that the MMDFT sim-
ilarly admits an analytic gradient with respect to α, which is
derived in Appendix B. The chirp-Z transform has better

asymptotic complexity than the MMDFT [38], but we have
observed that the MMDFT is computationally faster for the
TTDPR problem of interest where N and M are too small
to realize the asymptotic efficiency of the chirp-Z transform.

The predicted intensity of the kth PSF is given by
I k � jGkj2; (16)

where the absolute value and squaring operations are performed
element-wise. Our model for the intensity measured by the
detector, including an unknown detector scalar gain βk and bias
γk, is

M k � βkI k � γk1; (17)

where 1 is anM byM array of the value 1. LetDk be samples of
intensity of the kth measured PSF, and let wk be an array of
weightings on the detector coordinates �mr; mc � that are zero for
samples in Dk containing bad pixels. A sum-of-squared-
differences error metric between the model and measured data
for the kth PSF is

Ek �
X
mr ;mc

wk ∘ �M k −Dk�2 �
X
mr ;mc

wk ∘ �βkI k � γk1 −Dk�2:

(18)
As noted in [40], metrics like Eq. (18) can be minimized

with respect to detector gain and bias without treating βk
and γk as unknowns in the nonlinear optimization. Closed-
form solutions for the values of βk and γk that put Ek at an
extremum are derived in Appendix C and listed in Eq. (C3).

Summing over the Ek for individual PSFs yields a mean-
squared error metric for K PSFs

E �
Xkmax

k�kmin

Ek; (19)

where kmin and kmax are the minimum and maximum index of
the PSFs to be included in the error metric. Eq. (19) is implic-
itly a function of the unknown (1) phase parameters aj;k ,
(2) amplitude parameters d l , (3) subaperture translations sk
and tk, (4) subaperture rotations θk, and (5) propagation scale
term α. The estimation process in the conventional and
UTTDPR cases involves minimizations of the error metric
in [6,7] or Eq. (19) with respect to the respective unknowns
of each problem. Such nonlinear optimization may be accom-
plished with a gradient-based optimization such as the precon-
ditioned conjugate-gradient method or the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
[41,42]. However, in addition to the error metric formula,
these algorithms require a method for evaluating the gradient
of the error metric with respect to the unknowns. Though this
gradient can be estimated by the method of finite differences, it
is more efficiently and accurately estimated using an analytic
gradient formula. Gradients with respect to sk, tk, and θk
are evaluated in Appendix A, while the overall structure of
the gradient calculation and specific gradients with respect
to aj;k , d l , and α are provided in Appendix B.

3. CONVENTIONAL TTDPR

Next, we review the optimization stages of conventional
TTDPR [6,7] utilizing the metric of Section 2 so that compari-
son may be made with the UTTDPR method discussed in
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Section 4. For conventional TTDPR, it would be assumed that
initial values for subaperture positions (sk, tk) could be given by
the PTE, and subaperture rotation θk and scaling α would be
assumed known. Similarly, a parameterized amplitude model
such as Eqs. (3) and (4) does not appear in conventional
TTDPR, so it would be initially assumed that AF is itself
approximately known. Absent specific knowledge, it may be
assumed that AF is initially a uniform constant over a known
aperture, as in [7]. Finally, the initial value of aj;k can be selected
from many appropriate starting guesses. In many cases, the ini-
tial assumption that aj;k � 0 (an unaberrated wavefront) will
lead to successful phase retrieval. If prior knowledge of the aber-
rations of the system, such as an approximately known defocus
or astigmatism aberration, are available, then that should be
incorporated into aj;k. Furthermore, define JL and JH to be
two free parameters of the algorithm corresponding to the
largest index of Zernike coefficient to be used during low-order
and higher-order phase estimation, respectively. Exact values
are problem-dependent, but we assume that JL ≤ JH.
Whichever is in use replaces the J appearing in the summations
in Eqs. (1) and (2). For instance, using JL � 11 allows estima-
tion of the second and third radial-degree terms as well as the
fourth radial-degree spherical aberration term during the low-
order phase estimation.

One selection of steps for conventional TTDPR consistent
with earlier work [7] for solving for the unknown parameters is
as follows:

(1) Linear phase estimation. For each PSF, find the opti-
mal translation of the model-predicted I k such that it best
matches the measured Dk. This can be done using centroiding
or the cross-correlation method of [43] to arbitrary precision,
but 1/2 pixel is sufficient. For the unshared linear phase case,
the discrete-Fourier shift theorem can then be used to infer new
values of the linear a2;k and a3;k phase terms that yield such
optimal shifts in the I k. In the shared linear phase case, the
mean of the optimal shifts can be used to update the single
available set of the linear phase terms a2 and a3.

(2) Low-order phase estimation. Let kmin and kmax be set
to the minimum and maximum indices, respectively, of the
available PSF data. Then, given the initial values for the param-
eters and newly-estimated linear phase terms from Step 1, min-
imize the error metric with respect to all linear phase parameters
and low-order phase terms aj for j ∈ �4; JL�.

(3) Phase and subaperture translation estimation. Given
the initial values for the parameters and newly estimated phase
terms from Step 2, minimize the error metric with respect to
the subaperture translations (sk, tk) as well as all phase param-
eters aj for j ∈ �4; JH�. This allows for small errors in the sub-
aperture translation estimate to be refined using the PSF data.

(4) Amplitude, phase, and subaperture translation esti-
mation. If desired, add the per-pixel values of AF to the list of
parameters allowed to be altered during optimization and
optimize to find a pixel-by-pixel estimate for the amplitude
of the exit pupil and jointly-optimal phase and subaperture
translation parameters. This results in a joint estimate for
amplitude AF, aberration coefficients aj;k and subaperture
translations (sk, tk).

We have observed that this series of steps assists in
alleviating stagnation of the optimization process in local

minima of the error metric. In particular, Step 1 alleviates stag-
nation induced by the model PSF not having significant inten-
sity overlapping regions of the measured PSF with significant
intensity. Also, as noted in [16], the second and third radial
degree phase aberrations have a critical role in contributing sub-
aperture translation information to the subaperture translation
estimation process. Consequently, we observe that estimating
these lowest-order exit pupil phase in Step 2 prior to estimating
subaperture translations in Step 3 aids successful retrieval.
Finally, since estimating the pixel-by-pixel amplitude AF and
estimating subaperture translation are both instances of esti-
mating exit pupil amplitude, these estimations can have corre-
lated errors. This is more noticeable when AF has a large
number of degrees of freedom that can overfit the data and lead
to stagnation of the optimization at a local minimum. For ex-
ample, the optimizer may find a solution that erroneously mod-
els vignetting induced by the subaperture using erroneous
values in AF rather than the correct adjustment to the subaper-
ture translation. By estimating subaperture translation in Step 3
and reserving the pixel-by-pixel amplitude for Step 4, we
encourage the optimization process to explain as much of
the observed exit pupil amplitude with subaperture translation
adjustments as possible. Then, in Step 4, pixel-by-pixel ampli-
tude can be estimated with a reduced chance of a subaperture
translation being mismodeled as a variation in AF.

4. UTTDPR

In Section 1, we indicated the risks posed to joint translation
and phase estimation by errors in the PTE going uncorrected in
the final estimate. In this section, we outline UTTDPR, a
method that is independent of prior direction-of-translation in-
formation and requires only a bound on the unknown distance
of subaperture translation from one PSF to the next. Since
explicit PTE in the form of approximate translation directions
and distances is not used, it does not have to be reliably mea-
sured or estimated before application of the algorithm. Also,
UTTDPR will not stagnate in a local minimum due to the in-
fluence of PTE errors on the convergence of the optimization.
Still, the optimization may fail to converge, but such a failure
cannot be induced by errors in the PTE, since explicit PTE is
not utilized.

Estimating subaperture translation requires significant
knowledge of the low-order exit pupil phase [16], but one can-
not estimate phase without approximately knowing the
subaperture translations. This circular dependence between
subaperture translation and phase means that normal algo-
rithms like those described in Section 3 are prone to stagnation
during low-order phase estimation in Step 2. Simple choices for
initial sk and tk usually result in the optimizer settling in a local
minimum of E with completely erroneous values of the un-
known subaperture translations. The problem of simultane-
ously estimating phase and subaperture translation is acute
in the unshared linear phase case, as any residual defocus or
astigmatism in the exit pupil wavefront does not aid subaper-
ture translation estimation as it would in a shared linear phase
case [16]. Additionally, in UTTDPR, it is presumed that the
pupil amplitude is also unknown, thus further complicating
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subaperture translation estimation for the reason mentioned in
Section 3.

UTTDPR addresses these challenges with a series of opti-
mization steps similar to conventional TTDPR, but adjusted to
confront the case that the exit pupil phase and the direction of
subaperture translation from PSF to PSF is unknown. The dis-
tance translated is also unknown but presumed bounded. Let
the PSFs be acquired in a sequential, contiguous, motion of the
subaperture where the change in subaperture translation from
PSF to PSF is a small fraction of the width of the subaperture.
Similarly, we assume that the subaperture rotation varies by
small amounts between PSFs with consecutive indices.
Additionally, the fixed amplitude may be assumed unknown
but approximately constant over the subaperture of at least
one PSF with index k 0 for which the subaperture rotation
θk 0 can be guessed to within a small number of deg.
Typically this would be from a PSF deriving from a subaperture
location near the center of the fixed amplitude. If the index k 0

of a PSF with such a subaperture translation and fixed ampli-
tude situation is unknown, an arbitrarily chosen PSF appearing
near the middle of the sequence may suffice.

As in conventional TTDPR, the initial values for aj;k are
presumed using the best available prior knowledge, or equal
to zero or some random starting guess in the absence of prior
phase knowledge. We use the amplitude model of Eqs. (3) and
(4) with initial values d l � 0 which yields a constant AF. The
initial value for θk 0 is taken to be the guess mentioned above
and the initial value of �sk 0 ; tk 0 � is taken to be (0, 0). It is also
presumed that α is known to within a few percent, and that this
approximate value can be used as an initial guess. We define LL,
LM and LH, with LL ≤ LM ≤ LH, to be three additional free
parameters of the algorithm corresponding to the largest index
of a Zernike coefficient to be used during low-order, medium-
order and higher-order amplitude coefficient estimation, re-
spectively. The exact choice of these free parameters is problem
dependent. Each of these three parameters replace the L in
Eq. (4) at various stages of estimation. Finally, the initial values
of kmin and kmax are assigned to be k 0, so that the error metric
initially only includes the k 0th PSF.

We have, through a process of trial-and-error, found a series
of optimization steps based on the ideas of conventional
TTDPR that often yields joint solutions for the UTTDPR
problem given the starting estimates above. The unknowns
to be found or refined are (1) phase parameters aj;k , (2) ampli-
tude parameters d l , (3) subaperture translations sk and tk,
(4) subaperture rotations θk, and the (5) propagation scale term
α. The steps are as follows:

(1) Initial linear phase estimation. The optimal transla-
tion of the model-predicted I k 0 such that it best-matches
the measured Dk 0 as outlined in Step 1 from conventional
TTDPR in Section 3 is calculated. a2;k 0 and a3;k 0 are updated
to incorporate these translations into the initial parameters.

(2) Low-order phase estimation. The error metric is mini-
mized with respect to the linear phase terms a2;k and a3;k , and
the low-order phase terms aj for j ∈ �4; JL�. Since kmin �
kmax � k 0, only the k 0th PSF contributes to the error metric.
Thus, this step finds a low-order phase solution consistent with
just the k 0th PSF under the assumption that the subaperture is

untranslated and the fixed amplitude is constant. The subaper-
ture transmission function is the only distribution in the
amplitude of the exit pupil model.

(3) Initial amplitude estimation. The amplitude coeffi-
cients corresponding to d l for l ∈ �2; LL�, in addition to the
parameters estimated in Step 2, are allowed to vary during a
minimization. This finds a joint solution for a few of the
amplitude coefficients and the phase coefficients estimated
in Step 2.

(4) Initial rotation estimation. θk 0 is added to the param-
eters estimated in Step 3 and minimization performed to find
a joint solution for rotation of the subaperture during the
k 0th PSF and the previously estimated amplitude and phase
coefficients.

(5) Initial α estimation. α is added to the parameters esti-
mated in Step 4 and minimization of the error metric executed
to find a joint solution for α, θk 0 , and the previously estimated
amplitude and phase coefficients.

(6) Include one lesser PSF. If kmin can be decremented by
one to yield the index of an available data PSF, this is done.
Also, once decremented, values for θkmin

, skmin
and tkmin

are ini-
tially set equal to θ�kmin�1�, s�kmin�1� and t�kmin�1�. This makes
the erroneous but useful first approximation that the kminth
PSF is in the same location as the PSF with index kmin � 1.
The linear phases a2;kmin

and a3;kmin
are estimated by the corre-

lation method outlined in Step 1 from conventional TTDPR in
Section 3, assuming the approximate subaperture translation.

(7) Include one greater PSF. If kmax can be incremented
by one to yield the index of an available data PSF, this is done.
Also, once incremented, values for θkmax

, skmax
and tkmax

are
initially set equal to θ�kmax−1�, s�kmax−1� and t�kmax−1�. The linear
phases a2;kmax

and a3;kmax
are estimated by the correlation

method, as in Step 6.
(8) Subaperture translation estimation. Optimization is

performed to minimize the error metric with respect to
the translation and linear phase terms corresponding to the
kminth PSF if it was newly decremented in Step 6 and the
kmaxth PSF if it was newly incremented in Step 7. Other un-
knowns, including the phase coefficients of 2nd radial degree
and higher, are not allowed to vary during this optimization.

(9) Rotation estimation. Optimization is again performed
with respect to the parameters estimated in Step 8 but also
including subaperture rotation θkmin

if kmin was newly decre-
mented in Step 6 and θkmax

if kmax was newly incremented
in Step 7.
(10) Medium-order amplitude refinement. The amplitude

coefficients corresponding to d l for l ∈ �2; LM�, in addition to
the parameters estimated in Step 9, are allowed to vary during
optimization.
(11) Low-order phase refinement. The low-order phase

terms aj for j ∈ �4; JL� are included in the list of parameters
to optimize in addition to those in Step 10.
(12) Refine everything but higher-order amplitude and

phase. Subaperture translation, rotation and linear phase terms
for PSFs with indices from kmin though kmax, as well as α and the
parameters of Step 11 are allowed to vary during optimization.
(13) Repeat Steps 6 through 12, unless kmin and kmax corre-

spond to the lowest and highest indexed data PSFs in the
dataset.
(14) High-order amplitude estimation. The amplitude

coefficients corresponding to d l for l ∈ �2; LH�, in addition
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to the parameters estimated in Step 12, are allowed to vary
during a minimization.
(15) High-order phase estimation. The error metric is

minimized with respect to high-order phase terms aj for
j ∈ �4; JH� in addition to the parameters refined in Step 14.

For UTTDPR in the shared linear phase case, several steps
are modified. In Steps 1 and 2, it is a2 and a3 that are estimated
rather than a2;k 0 and a3;k 0 . The process of estimating linear
phase by correlating model PSFs with data PSFs is eliminated
entirely from Steps 6 and 7, and no attempt to optimize over
linear phase is made in Steps 8–10. In Steps 11, 12, 14, and 15,
a2 and a3 are included as parameters for optimization.

A. Discussion
As the subaperture translations of the kminth and kmaxth PSFs
optimize in Step. 8, the clear area of the subaperture overlaps
regions of the exit pupil phase and fixed amplitude not accessed
by the subaperture in the PSFs incorporated into the solution
by earlier computations. Since the phase and fixed amplitude
coefficients are held constant in Steps 6–9, these newly accessed
regions of phase and amplitude are extrapolations using the
phase and fixed amplitude found in earlier steps. Once this
translation is approximated using the extrapolated phase and
fixed amplitude, the subaperture rotation can be estimated
in Step 9. Next, the amplitude and phase Zernike coefficients
are refined in Steps 10 and 11, allowing the overall phase and
fixed amplitude estimate to conform to the PSFs included in
the solution. Then, most of the unknowns are refined in Step
12 to form a robust estimate for later iterations of Steps 6
through 12 incorporating PSFs that access additional new
regions of the pupil. The process of estimating the translation
for new PSFs using extrapolations from the model fitted to the
old PSFs repeats until a joint solution for phase, amplitude, and
subaperture translation is found, incorporating all PSFs. This
cumulative process of solving larger and larger subproblems of
the overall problem is unique to UTTDPR, and it enables a
computation that begins without explicit PTE input. Also,
in our experience, the incremental nature of this bootstrapping
process aids convergence of the joint translation and pupil
phase estimates to correct values. This is particularly important
in the unshared linear phase case where the PSFs often contain
less translation information than in the shared linear phase
case [16].

We make no claim that the numerous steps of the
UTTDPR algorithm above uniquely solve the problem.
They were derived from practical experience accumulated
through working with specific sets of simulated data, actual
data collected in the laboratory, and from the NIRCam instru-
ment. Depending on the particular problem, some steps may
be omitted, transposed or aggregated with other steps to sim-
plify the algorithm. The listed steps are, however, the ordering
that we have found to be the most robust for the data coming
from NIRCam and NIRCam-like laboratory experiments and
simulations. Skipping some of the steps occasionally led to stag-
nation without finding a solution.

There is no guarantee that an acceptable solution for sub-
aperture translations can always be obtained, even if the
Cramer-Rao lower bound for translation estimation [16] is
favorable. It may not be possible for Steps 6–8 to converge
to a good joint estimate for the linear phase and subaperture
translations from the estimates for exit pupil phase and ampli-
tude derived from the earlier steps. Noise in the detected PSFs
alters the location of global minimum of the error metric and
may add new local minimums, as in [44]. It is also possible to
have a PSF whose subaperture translation from its neighbor is
so great that the optimizer would have to go up in error metric
value before finding this better minimum of the error metric.
This phenomenon yields a constraint on the minimum
required overlap of the subaperture transmission function
between neighboring PSFs similar to those noted in [5,27].
We have not assessed this distance, as it is likely highly depen-
dent on particular pupil phase and fixed amplitudes.

5. LABORATORY EXPERIMENT

In [10], we reported results of applying algorithms essentially
similar to UTTDPR to simulated data. For this paper, we
report laboratory results using the UTTDPR algorithm. The
aberrated optical system shown schematically in Fig. 1(a)
was assembled to produce data for TTDPR. Light from a he-
lium-neon laser (λ � 632.8 nm) was focused onto a pinhole
spatial filter and then collimated by Lens I. The collimated
beam then passed through a moving subaperture. A Lyot stop
transmittance function [14], shown in Fig. 1(b), similar to the
Lyot stop used in NIRCam, was cut into sheet metal to form a
subaperture having a horizontal width of 4.6 mm. It was affixed

4.6 mm

(a) (b)

Lens I
f = 30 cm

Lens II
f = 30 cm

Lens III
f = 50 cm

Detector

Translating/Rotating
Subaperture

Spatial
filter

He-Ne laser

33 cm 30 cm 8 cm 16 cm

1 cm

20 deg.

Fig. 1. (a) Schematic of TTDPR laboratory experiment. Not shown: neutral density filter and focusing microscope objective between the laser
and the spatial filter; (b) transmission function for the subaperture.
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to a rotation stage allowing it to rotate about an axis parallel to
ẑ. The distance from this true axis of rotation to the center of
the subaperture was approximately 96 mm. The rotation stage
was mounted to an X-Y translation stage. After the subaperture,
the light passed through Lens II and then Lens III, which was
offset in the ŷ direction and rotated about the ŷ axis by approx-
imately 20 deg in order to induce aberrations in the imaging of
the pinhole to a CCD detector having 7.4 μm square pixels. An
example PSF is shown in Fig. 2(a).

In the first of two experiments performed with the appara-
tus, PSFs were acquired with subaperture translations on a
7-by-7 grid separated by approximately 766 μm through
motion of the X-Y translation stage. Each position was
randomly-perturbed by values drawn from a zero-mean
Gaussian distribution having a standard deviation of 70 μm.
These randomly-perturbed translations are plotted by the circle
symbols in Fig. 2(b). The translation distance from one sub-
aperture location to the next was about 17% of the width
of the subaperture, a substantial overlap between neighboring
positions of the subaperture. PSFs were collected sequentially
down one column in y, then over one increment in x, then up
the next column, and over one increment in y. This pattern of
motions was repeated to achieve a series of PSFs arising from
spatially-contiguous subaperture translations as required for
UTTDPR. To simulate the effect of a moving detector or un-
shared linear phase in the pupil, the region of the detector pixels
passed to UTTDPR was randomly offset a few pixels from
one PSF acquisition to the next. This randomly offset PSF data
was processed by the unshared linear-phase variant of the
UTTDPR algorithm described in Section 4. The number of

Zernike phase terms were JL � 9 and JH � 35, while the
number of amplitude parameters were LL � 5, LM � 9, and
LH � 35. Minimization of the error metric was accomplished
using the L-BFGS algorithm [41]. The algorithm had no
knowledge of the specific subaperture translations, but it did
have access to the approximate values of defocus phase, suba-
perture rotation of the initial PSF, and α to use as initial esti-
mates for optimization. The subaperture translations retrieved
are shown by the × symbols in Fig. 2(b). The error between the
TTDPR-estimated subaperture translations and the truth from
the X-Y stage had 36 μm root mean squared error (RMSE).
After normalization by the reference translation amounts,
the normalized root mean squared error (NRMSE) was
0.024. This error was about 0.8% of the width of the subaper-
ture, or 0.2% of the width of the entire retrieved pupil. The
pupil phase retrieved by UTDDPR is shown in Fig. 2(c), with
the linear phase terms and 4.6 waves peak-to-valley (P-V) of
defocus subtracted. Over regions of the pupil encompassed
by any particular subaperture translation, the amount of defo-
cus was approximately 0.5 waves P-V.

Since for these experiments we actually had good knowledge
of the translations, conventional TTDPR that used this PTE
was performed on the same data but without the random shift-
ing of readout of the detector pixels. This permitted the use of
shared linear phase conventional TTDPR, which is known to
increase subaperture translation estimation accuracy in the
presence of defocus and astigmatism [16]. Subaperture trans-
lations and rotations were estimated using conventional
TTDPR given the prior translation estimate (PTE) of the
reliable X-Y stage motion. The translations retrieved using con-
ventional TTDPR were used to fit an unknown rotation
between the CCD camera and the axes of subaperture motion.
The truth translation position shown in Fig. 2(b) and our
RMSE and NRMSEs for UTTDPR are reported relative to this
rotation correction. The difference between the UTTDPR
phase and conventional TTDPR reference phase is shown in
Fig. 2(d) and had an average error of 3.7 × 10−3 waves
RMSE over the accessed regions of the pupil.

For the second experiment, we chose a circular motion sim-
ilar to the motion of the Lyot stop about the axis of the pupil
wheel in NIRCam. The transmissive parts of the Lyot stop pat-
tern shown in Fig. 1(b) swept through the regions of the pupil
shown in Fig. 3(a). To accomplish this sweeping motion with
the apparatus, the rotation stage rotated from −4 to�4 deg in
evenly-spaced increments to yield a motion of the center of the
subaperture represented by the circle symbols in Fig. 3(b).
These positions are approximate, due to the practical difficulty
of estimating the lever-arm vector between the axis of rotation
and the subaperture as projected into the plane perpendicular
to the beam. Our best estimate for the location of the pivot
point is �s; t� � �41.5; −74.4� mm. The average distance trans-
lated by the subaperture from one PSF to the next was about
11% of the width of the subaperture.

A hard-edged circular aperture was imposed into the
collimated space between the subaperture and Lens II to make
the second experiment more representative of TTDPR with
NIRCam, which may include unknown pupil-shear and
vignetting. The effect of this additional aperture was to

(a)
(b)

(c) (d)

Fig. 2. (a) Example PSF of the aberrated system: intensity plotted
to the 0.33 power; (b) scatter plot of subaperture translations for the
first experiment: red × symbols are UTTDPR recovered values and
black circles indicate true translations commanded to the X-Y stage;
(c) retrieved pupil phase for first experiment using UTTDPR with
defocus and linear phase removed; (d) phase difference (error) between
UTTDPR and conventional TTDPR with knowledge of the subaper-
ture translations for the first experiment.
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completely extinguish the beam along the upper-right corner of
the pupil shown in Fig. 3(a). This unknown fixed-amplitude
effect allowed the second experiment to demonstrate the fixed
amplitude retrieval capability of UTTDPR in a challenging
situation.

Like the first experiment, the PSF data from the second was
processed by the unshared linear-phase variant of the
UTTDPR algorithm, but with the number of amplitude
parameters LM � 20 and LH � 119. Since LH was much larger
than LM, Step 14 was amended to include additional optimi-
zations with 35, 54, 77, and 91 amplitude terms before finally
optimizing with LH. Again, the UTTDPR algorithm had no
knowledge of the specific subaperture translations in each PSF
or knowledge that the subaperture motion lay on a circular arc.
It only had access to approximate values of defocus phase, α,
and an intelligent guess for the rotation of the k 0th PSF to use as
starting points. The subaperture translations retrieved by
UTTDPR are shown by the × symbols in Fig. 3(b). Each trans-
lation corresponds to a translated and rotated subaperture
transmission function Bk. One such transmission function
for the 20th PSF, B20, is shown in Fig. 3(c).

Relative to our estimate for the true translations, the
UTTDPR retrieved translations have an RMSE of 45 μm or
NRMSE of 0.017. As a fraction of the width of the accessed
regions of the pupil, this represents a translation estimation er-
ror of 0.3%. A portion of these translations errors are consistent
with the pivot point of the rotation not being where we esti-
mated it to be. A best-fit to the UTTDPR translations suggests
motion about a pivot point of �s; t� � �42.2; −73.9� mm,

which was 0.88 mm away from our estimate. If we take this
pivot point estimated from the UTTDPR translations as cor-
rect, the residual error of the UTTDPR solution is 37 μm
RMSE, which is consistent with the 35 μm RMSE observed
for the first experiment. As a fraction of the width of the overall
accessed region of the pupil, this represents a 0.24% transla-
tion error.

With UTTDPR, we retrieved variations in the fixed ampli-
tude due to the imposed circular hard-edged aperture. Fig. 3(d)
shows the amplitude of the generalized exit pupil function,
jg20j, for the example PSF having k � 20. It can be compared
with Fig. 3(c), which shows the subaperture’s contribution to
the pupil amplitude without the fixed amplitude. Given this
single PSF, only a portion of the retrieved fixed amplitude
can be examined, but the upper-right corner indicates retrieval
of a sharp-edged vignetting. The entire fixed amplitude re-
trieved by UTTDPR is shown in Fig. 3(e). Since the amplitude
is known only in regions of the pupil covered by transmissive
portions of the subaperture, the fixed amplitude is shown over
the regions indicated in Fig. 3(a). Comparing that amplitude
with Fig. 3(a) indicates that UTTDPR has retrieved a sharp-
edged vignetting feature in the upper-right corner of the fixed
amplitude consistent with the unknown aperture we imposed.
It is remarkable that 119 Zernike polynomial coefficients can,
in conjunction with the thresholding of Eq. (3), represent a
hard-edged vignetting surface. This capability was also observed
by the simulations in [33].

Since for this experiment we also had good knowledge of the
translations, classic TDDPR was performed using our best

(a)
(b)

(c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Areas of pupil accessed during subaperture motion in the second experiment; (b) scatter plot of subaperture translations for the second
experiment: red × symbols are UTTDPR-recovered values and black circles indicate true translations estimated from knowledge of rotation angle and
geometry; (c) subaperture transmission function for the k � 20th PSF, B20, recovered by UTTDPR and shown to the 0.5 power; (d) amplitude of
the generalized pupil function for the k � 20th PSF, jg20j, recovered by UTTDPR and shown to the 0.5 power; (e) fixed amplitude to the 0.5 power
recovered by UTTDPR for the second experiment; (f ) fixed amplitude to the 0.5 power recovered by sieve amplitude TTDPR for the second
experiment; (g) retrieved pupil phase for the second experiment using UTTDPR with defocus and linear phase removed; (h) phase difference (error)
between UTTDPR and sieve amplitude TTDPR for the second experiment.
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estimates for the subaperture motion. The amplitude of the
fixed pupil, AF, was allowed to vary in a pixel-by-pixel manner,
as in classic TTDPR, to recover the fixed pupil effects of the
additional hard-edged aperture. However, the resulting esti-
mates for pupil amplitude were corrupted by salt-and-pepper
noise to an unacceptable extent, as in [33]. We have found this
failure mode to be typical of pixel-by-pixel amplitude retrieval
involving a single plane very near focus, and other work has
encountered similar challenges, as mentioned in Section 2.
The experiment had little defocus to approximate the NIRCam
application, where amplitude retrieval is challenging, and to
demonstrate the capabilities of UTTDPR utilizing the
Zernike amplitude model.

To generate a reference more suitable for comparison with
UTTDPR, we amended our conventional TTDPR algorithm
to use the method of sieves [45] to regularize the retrieved pixel-
by-pixel fixed amplitude. We refer to this modified conven-
tional TTDPR algorithm as sieves-amplitude TTDPR. It
begins with performing conventional TTDPR with the starting
guess that AF�nr; nc � � 1.0 and allowing the pixels to vary on
the interval AF�nr ; nc � ≥ 0.0. The resulting estimate for AF was
blurred with a wide Gaussian kernel and then used as the start-
ing point for a second conventional TTDPR optimization.
This cycle of blurring and optimization was repeated with
Gaussian kernels of ever-decreasing widths to find the retrieved
amplitude shown in Fig. 3(f ). This amplitude also showed a
hard-edged circular vignetting surface in the same place as
the UTTDPR solution. However, it also showed many pixels
with amplitudes between 0.1 and 0.3 in the area beyond the
edge that should be near zero. Conventional TTDPR without
the method of sieves also yielded significant values in the region
that should be zero. We regard this as a limitation of pixel-by-
pixel amplitude models, like those used in conventional
TTDPR and sieves-amplitude TTDPR, because the circular
aperture imposed was utterly opaque. The UTTDPR fixed-
amplitude solution shows no such feature; the values of AF

from the Zernike coefficient model in the retrieval were exactly
zero in the vignetted regions beyond the circular edge.
Similarly, the UTTDPR amplitude in Fig. 3(e) was smooth
in the evenly illuminated regions of the pupil, while the
conventional TTDPR solution had spurious fine features near
the Lyot stop’s edges in each of the PSFs. We attribute these
fine features to artifacts of the pixel-by-pixel amplitude
model that are excluded by the Zernike amplitude model used
in UTTDPR. Both the UTTDPR and sieve- amplitude
TTDPR amplitudes showed a darkening of the amplitude at
the bottom of the displayed pupil. This was consistent with
the pupil illumination due to a coherently illuminated resolved
pinhole. It may be possible to construct a UTTDPR-like algo-
rithm with a different amplitude model than the Zernike poly-
nomial model. However, we have found the smooth amplitude
extrapolations yielded by the Zernike model useful for improv-
ing the probability of convergence of UTTDPR, and we do not
know which alternate amplitude models will yield a similar
benefit.

The phase retrieved by UTTDPR is shown in Fig. 1(g) with
7.7 waves P-V of defocus subtracted. It was plotted over
the regions of the pupil that UTTDPR indicates has an

amplitude greater than 0.01. This retrieved phase was consis-
tent with an extension of the aberrations retrieved from the first
experiment shown in Fig. 1(c) extended over a larger area of the
pupil, as expected. The difference between the UTTDPR phase
and the sieve-amplitude TTDPR phase is shown in Fig. 3(h).
The magnitude of this error was 3.0 × 10−3 waves RMSE over
the accessed regions of the pupil.

6. SUMMARY AND CONCLUSION

TTDPR, also known as ptychography, is a technique that can
infer the complex-valued exit pupil of an optical system from
PSFs of that system. The PSFs differ according to the transla-
tion of a subaperture placed in a plane approximately conjugate
to the exit pupil. Algorithms can find a complex exit pupil field
consistent with the measured PSF data, though they are sensi-
tive to errors in prior knowledge of the translation of the sub-
aperture for each PSF, which we term the PTE. Algorithms like
[5–7,24,25] refine estimates of the translation using the mea-
sured PSF data, given approximately correct PTE.

These previous forms of ptychography have assumed some
approximate knowledge of where the subaperture or probe is
relative to the ensemble of intensity measurements. We con-
sider optical metrology when this explicit PTE is unavailable
or untrusted due to the potential for introducing systematic
error. Instead, we presume a sequence of PSFs is acquired from
spatially-contiguous subaperture translations in an unknown
arrangement in the exit pupil, which is a very weak form of
PTE. Our optical metrology technique, UTTDPR, uses the
error metric of Section 2 and a multistage bootstrapping proc-
ess, described in Section 4. The exit pupil phase and amplitude
are initially estimated from phase retrieval performed on a sin-
gle “initial” PSF. These subaperture positions in neighboring
PSFs include regions of the complex exit pupil unknown to
the algorithm given the phase retrieval of the first PSF. In these
unknown regions, models for the complex exit pupil provide
values for phase and amplitude that are extrapolations of the
phase and amplitude retrieved from the single PSF. A novel
amplitude model based on Zernike polynomials aided this
extrapolation and the estimation of pupil amplitude. If the un-
known subaperture translations of neighboring PSFs keep the
subaperture inside the region of validity of the extrapolated exit
pupil, acceptable subaperture translation estimates can usually
be obtained by assuming the extrapolated exit pupil. Later steps
find a joint phase, amplitude, and subaperture translation sol-
ution across all three PSFs and the extrapolation is eliminated
using the newly included PSF data. This process of extrapola-
tion, translation estimation, and refinement is repeated using
additional PSFs not previously included in the solution until
all the PSFs are part of a joint solution. The UTTDPR algo-
rithm also simultaneously estimated: (1) a moving point target
or unknown varying linear phase in the exit pupil, (2) unknown
subaperture rotation, and (3) unknown scale factor inherent in
the propagation from the generalized exit pupil function to the
PSF plane. This estimation employed a new gradient formula
for the scale term in the matrix-multiply DFT, and estimation
of subaperture rotation and translation used the gradients of
bilinear interpolation described in Appendix A. That appendix
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also shows how gradients for geometry parameters of arbitrary
resamplings involving bilinear interpolation can be found.

In Section 5, we demonstrated UTTDPR using two simple
laboratory experiments with a NIRCam-like subaperture and
simulated unknown point target motion. In both experiments,
UTTDPR recovered the unknown subaperture translations de-
spite the target motion and without specific knowledge of the
translation of the subaperture in each PSF. In the first experi-
ment, the subaperture was raster-scanned in two dimensions;
while in the second experiment, the subaperture translated
along an arc while rotating in a way similar to the Lyot stop
of NIRCam. The retrieved subaperture translations had
RMSEs of 0.2% and 0.3% of the width of the overall pupil
for the first and second experiments, respectively. We compared
the UTTDPR phase retrieval results to classic TTDPR,
assuming a fixed target and known subaperture translation.
UTDDPR yielded exit pupil phase errors of 3.7 × 10−3 and
3.0 × 10−3 waves RMSE for the first and second experiments,
respectively, relative to classic TTDPR. Further, the second ex-
periment demonstrated that UTTDPR could reconstruct the
fixed amplitude due to an unknown hard-edged aperture
imposed in the system. Its reconstruction using the special
Zernike amplitude model was superior to that of conventional
TTDPR involving a pixel-by-pixel fixed amplitude model regu-
larized by the method of sieves.

This algorithm assumed that the target being imaged was an
unresolved point, and that requirement may be impractical in
some applications of interest like microscopy. We hope that
future work results in similar algorithms that can be applied
when the target itself is also unknown. However, we expect that
the Zernike amplitude model will be insufficient to describe the
pupil illumination due to an arbitrary extended target. Such an
algorithm would be useful for relaxing alignment precision re-
quirements in Fourier ptychography [20,21], and overlapped
Fourier coding [22].

In conclusion, we have proposed and demonstrated an
extremely flexible TTDPR algorithm for ptychographic optical
metrology of imaging systems. Unlike earlier algorithms, the
algorithm does not need to know the approximate translation
of the subaperture relative to the ensemble of subaperture trans-
lations, nor an approximate direction of translation from one
PSF to the next. In the cases evaluated, the algorithm recovered
the subaperture translations and rotations from the PSF data. It
simultaneously estimated significant nuisance parameters such
as: (1) an unknown fixed pupil amplitude involving hard-edged
features, (2) the arbitrary motion of the point target, and (3) the
scale factor associated with the propagation from the aperture
stop to PSF plane.

Portions of this research were presented in [10,46].

APPENDIX A: BILINEAR INTERPOLATION

This appendix describes the bilinear interpolation of an array
AS to calculate the translated and rotated array, Bk, used in
Eq. (6). This description is structured to allow for an analytic
gradient formula with respect to the angle of rotation and trans-
lation distances applied by the interpolation.

First, consider the mapping of physical coordinates �u 0; v 0�
of AS to physical coordinates �u; v� of Bk due to a rotation

about the origin by angle θk followed by a translation. Let
the translation be by a vector �sk; tk � having units of pixels
of AS. In physical coordinates, this translation is by a vector
�Δusk;Δutk�, where Δu is the pupil sampling spacing defined
in Section 2. The mapping can be represented by the matrix
multiplication [47]:" u

v
1

#
�

" Ck Sk Δusk
−Sk Ck Δutk
0 0 1

#
�
" u 0
v 0

1

#
; (A1)

where Ck � cos θk and Sk � sin θk. An inverse mapping [47]
can be found for Eq. (A1) by matrix inversion:" u 0

v 0

1

#
�

"Ck −Sk −CkΔusk � SkΔutk
Sk Ck −SkΔusk − CkΔutk
0 0 1

#
�
" u
v
1

#
: (A2)

Next, we find the inverse mapping of integer sample coor-
dinates �nr; nc � in Bk to noninteger sample coordinates �n 0

r ; n 0
c �

in the array AS as required for bilinear interpolation [47].
Assume that the sample of Bk corresponding to the physical
origin is at index �n0; n0� and that �u; v� can be found from
�nr; nc � by Eq. (8). Similarly let

u 0 � Δu�n 0
c − n 0

0� and v 0 � Δu�n 0
r − n 0

0�; (A3)

where �n 0
0; n

0
0� is the index of the sample corresponding to the

physical origin in AS. Substituting Eqs. (8) and (A3) into
Eq. (A2) and simplifying yields�

n 0
c n 0

r 1.0
�
T � R−1

k � �
nc nr 1.0

�
T; (A4)

where

R−1
k �

2
4Ck −Sk n 0

0 − Ck�sk � n0� � Sk�tk � n0�
Sk Ck n 0

0 − Sk�sk � n0� − Ck�tk � n0�
0 0 1

3
5:
(A5)

The coordinates n 0
c and n 0

r in Eq. (A4) implicitly depend on
PSF index k.

Let Bk have integer row and column coordinates on the
interval 0 to N − 1. Also, let Bk be stored in linearly addressed
memory in row-major order such that the linear address of a
sample in memory is n � Nnr � nc . Further, let n be a 3
by N 2 array defined by

n�ρ; n� �
( nmodN for ρ � 0

⌊n∕N ⌋ for ρ � 1
1.0 for ρ � 2;

(A6)

where mod represents the modulo operator and ⌊x⌋ denote
rounding x down to the nearest integer. Eq. (A6) defines n
to have the useful property that the first two rows of the
nth column corresponds to the row index nr and column index
nc of the sample of Bk at linearly addressed memory position n.
By Eq. (A4), then, the matrix-multiplication

nk 0 � R−1
k � n; (A7)

has similar useful properties. By Eq. (A4), the nth column of n 0

has n 0
c in the first row and n 0

r in the second row corresponding
to the coordinate of AS to which the nth linearly addressed
sample of Bk is inverse-mapped.
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In general, the coordinates in n 0
k do not fall on the integer

positions associated with samples of AS and thus some form of
interpolation must be used. For TTDPR, we prefer bilinear
interpolation, as described in Section 2. Next, assume that
AS has row and column coordinates with indices on the interval
0 to N 0 − 1, inclusive. For coordinates �nr ; nc � corresponding to
n satisfying

0 ≤ n 0
k �0; n� < N 0 − 1 and 0 ≤ n 0

k �1; n� < N 0 − 1; (A8)

let

Bk �nr; nc � �
X1
c�0

X1
d�0

fδ0;c � �−1�c�1F k↓�nr; nc �g

× fδ0;d � �−1�d�1F k→�nr; nc �g
× AS�⌊n 0

k�1; n�⌋� c; ⌊n 0
k�0; n�⌋� d �; (A9)

where δ is the Kronecker delta and

F k↓�nr ; nc � � n 0
k �1; n� − ⌊n 0

k �1; n�⌋;
F k→�nr ; nc � � n 0

k �0; n� − ⌊n 0
k �0; n�⌋: (A10)

For �nr; nc � that does not satisfy Eq. (A8), set Bk�nr ; nc � to 0.
Since estimation of the unknown translation and rotation of

the subaperture is required, we derive the steps for accumulat-
ing the reverse mode of algorithmic differentiation (RMAD)
gradient [48] of the interpolation. Let X be defined as
∂E∕∂X where E is defined in Eq. (19). The input to the gra-
dient of the bilinear interpolation is the array Bk with values
Bk�nr ; nc � � ∂E∕∂fBk �nr; nc �g. The first step of the gradient is
finding the arrays F k↓ and F k→, since the dependence of Bk on
θk and �sk; tk� comes primarily by way of F k↓ and F k→.
Evaluating the sum over c in Eq. (A9) shows that Bk can be
expressed in terms of an element-wise addition of two terms,
one involving F k↓ element-wise multiplied with other quan-
tities and one not involving F k↓ at all. Consequently, by
Eqs. (47) and (49) of [48],

F k↓�nr ; nc � � Bk�nr ; nc �
X1
c�0

X1
d�0

fδ0;d � �−1�d�1F k→�nr ; nc �g

× �−1�c�1AS�⌊n 0
k �1; n�⌋� c; ⌊n 0

k �0; n�⌋� d �;
(A11)

for the �nr ; nc � satisfying Eq. (A8). For the remaining �nr ; nc �,
F k↓�nr ; nc � � 0, since for those indices Bk has no dependence
on F k↓. By a similar argument,

F k→�nr; nc � � Bk �nr; nc �
X1
c�0

X1
d�0

fδ0;c � �−1�c�1F ↓�nr; nc �g

× �−1�d�1AS�⌊n 0
k �1; n�⌋� c; ⌊n 0

k �0; n�⌋� d �;
(A12)

and F k→�nr ; nc � � 0 for the remaining �nr ; nc �.
Evaluating the gradient of Eq. (A10) is conceptually com-

plicated by the discontinuous nature of the derivative of the
floor function when its argument is an integer. The discontinu-
ous nature of the true derivative does not significantly affect
optimization if we assume the floor functions ⌊n 0

k �0; n�⌋ and
⌊n 0

k �1; n�⌋ are constant for small variations of n 0
k �0; n� and

n 0
k�1; n�, respectively. Presuming ⌊n 0

k�0; n�⌋ and ⌊n 0
k �1; n�⌋ to

be essentially constant yields a gradient rule for Eq. (A10) of

n 0
k�ρ; n� �

8<
:

F k→�nr ; nc � for ρ � 0
F k↓�nr; nc � for ρ � 1

0 for ρ � 2;
(A13)

where nr � ⌊n∕N ⌋ and nc � n mod N as in Eq. (A6).
Similarly, for the purpose of computing derivatives, we will
ignore the dependence of Bk on θk and �sk; tk� arising from
⌊n 0

k �0; n�⌋ and ⌊n 0
k �1; n�⌋ appearing explicitly in Eq. (A9).

Applying Eq. (50) in [48] to Eq. (A7) yields the gradient
step

R−1
k � n 0

k � nT: (A14)

By Eq. (A5), R−1
k has two explicit dependencies on sk. Applying

Eqs. (49) and (59) from [48] to these dependences and accu-
mulating them yields

sk � −CkR−1
k �0; 2� − SkR−1

k �1; 2�: (A15)

By a similar argument,

tk � SkR−1
k �0; 2� − CkR−1

k �1; 2�; (A16)

and the gradients of Eq. (A5) with respect to Ck and Sk are

Ck � R−1�0; 0� � R−1�1; 1� − �sk � n0�R−1�0; 2�
− �tk � n0�R−1�1; 2�;

Sk � R−1�1; 0� − R−1�0; 1� � �tk � n0�R−1�0; 2�
− �sk � n0�R−1�1; 2�: (A17)

We will use special notation to denote the two quantities
that need to be accumulated due to θk appearing in the defi-
nitions of both Ck and Sk. For simplicity, denote the contri-
bution to θk due to Ck’s dependence on θk as θk

�Ck�. The
gradient rules for the sine and cosine do not appear in [48],
but they can be derived from the chain rule as follows:

θk
�Ck� � ∂E

∂θk
� ∂E

∂ cos�θk�
∂ cos�θk�

∂θk

� ∂E
∂Ck

∂ cos�θk�
∂θk

� Ck�− sin θk�; (A18)

and for contribution to θk due to Sk’s dependence on θk:

θk
�Sk� � ∂E

∂θk
� ∂E

∂ sin�θk�
∂ sin�θk�

∂θk

� ∂E
∂Sk

∂ sin�θk�
∂θk

� Sk cos θk: (A19)

Finally, since θk appears in both Ck and Sk, the overall gradient
for rotation is

θk � θk
�Ck� � θk

�Sk�: (A20)

Though this appendix has derived equations for the gradient
of interpolation with respect to just subaperture translation and
rotation, it is easily adapted to estimate more general transfor-
mations of AS including scaling and shearing. Eq. (A5) can be
altered to include the geometric effects of additional parame-
ters. The gradient propagation steps for these new transforma-
tion parameters can then be calculated from the new expression
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in terms of R−1. For even more general translations that do not
fit the model of Eq. (A7), new formulas for n 0 can be found in
terms of the desired geometry parameters. The gradients of
these parameters can be found in terms of n 0 simply by apply-
ing RMAD to the new formula.

We have not attempted to estimate AS in a UTTDPR algo-
rithm, but, like the algorithms of [4,43], it is possible to esti-
mate the subaperture transmission function using the metric in
Section 2. The gradient term with respect to AS can be found
by applying Eqs. (47), (49), and (60) in [48] to Eq. (A9). The
gradient computation is listed in Algorithm 1, since it is not a
one-to-one function.

Algorithm 1: Calculation of AS , the gradient with respect
to subaperture transmission function. We define � � to
be an operator that adds the right operand to the left
operand and stores the result in the left operand.

(1) for all n 0
r and n 0

c such that 0 ≤ n 0
r < N 0 and 0 ≤ n 0

c < N 0 do
(2) AS�n 0

r ; n 0
c � ← 0

(3) for all n such that Eq. (A8) is True do
(4) for c � 0 to 1 do
(5) P ← fδ0;c � �−1�c�1F k↓�nr ; nc �g
(6) for d � 0 to 1 do
(7) Q ← fδ0;d � �−1�d�1F k→�nr ; nc �g
(8) AS�⌊n 0

k �1; n�⌋� c; ⌊n 0
k �0; n�⌋� d �� � PQBk �nr ; nc �

(9) return AS

APPENDIX B: GRADIENT OF THE ERROR
METRIC

In this section, we apply the rules for RMAD to find the ac-
cumulated gradient terms for the model parameters beginning
with α from Eq. (12). First, E � ∂E∕∂E � 1. Applying
Eq. (47) from [48] to Eq. (19) yields Ek � E for k in the
interval between kmin and kmax, inclusive. For other k, the gra-
dient steps need not be evaluated, as those PSFs do not con-
tribute to the error metric. Applying Eqs. (49) and (52) from
[48] to Eq. (18) produces

M k � 2wk ∘ �M k −Dk� ∘ Ek � 2wk ∘ �M k −Dk�: (B1)

Evaluating the gradient steps for Eq. (17) yields

I k � βkM k; (B2)

by Eqs. (51) in [48] and there are no other terms despite the
many appearances of I k in the formula for βk and γk for the
reasons we describe now. The construction of Eqs. (C1) and
(C2) guarantee that ∂Ek∕∂βk � 0 and ∂Ek∕∂γk � 0, so βk �
0 and γk � 0, respectively. Consequently, we need not consider
gradient steps arising due toM k’s dependence on I k through βk
and γk since these are zero by the chain rule. This simple gra-
dient evaluation was made possible by casting the bias-
independent metric as Eq. (18) rather than the result of [40],
for reasons outlined in Appendix C.

By Eq. (53) in [48], the gradient step for Eq. (16) is

Gk � 2Gk ∘ I k: (B3)

Next, we have the steps unique to calculating the gradient for α
using the MMDFT. For simplicity, define

hk � ΩT � gk; (B4)

such that Eq. (15) can be written instead as

Gk � hk �Ω: (B5)

By Eq. (50) in [48], the gradient steps due to the new Eq. (B5)
are

hk � Gk �ΩH; Ω�Gk� � hHk � Gk; (B6)

where H indicates the conjugate-transpose and Ω�Gk� is the con-
tribution to Ω due to the explicit appearance of Ω in Eq. (B5)
using the notation introduced in Appendix A. The same
matrix-gradient evaluation applied to Eq. (B4) yields

ΩT�hk� � hk � gHk ; gk � Ω� � hk; (B7)

where ΩT�hk� is the contribution to the gradient due to ΩT

appearing in Eq. (B4). Since the values of Ω explicitly appear
in ΩT, but rearranged, the gradient contribution due to these
values appearing in hk is

Ω�hk� � �ΩT�hk��T � g�k � hTk : (B8)

Ω appears twice in the model of each PSF and the individual
contributions must be accumulated element-wise for all PSFs to
find the overall gradient with respect to Ω,

Ω �
Xkmax

k�kmin

Ω�Gk� � Ω�hk�: (B9)

By Eq. (57) in [48], the gradient step associated with Eq. (13) is

ω � IfΩ ∘ Ω�g: (B10)

Accumulating the gradient due to appearances of α in
Eq. (12) gives

α � −2π
XN−1

n�0

�n − n0�
XM−1

m�0

�m − m0�ω�n; m�: (B11)

This concludes the gradient steps specifically involved for the
MMDFT since gk, which is needed by all future steps, was
derived in Eq. (B7).

Next, we evaluate gradients for sk, tk and θk. Assuming Bk in
Eq. (6) is real, applying Eqs. (B10) and (67) in [48] to Eq. (6)
yields

Bk � Rff �k ∘ gkg; (B12)

which is needed for calculating the gradients for sk, tk, and θk
using the results of Appendix A.

The steps necessary to find the gradient with respect to d l
are as follows. Beginning with Eq. (6),

f k � Bk ∘ gk: (B13)

Applying Eqs. (B10) and (67) in [48] to Eq. (5) gives

AF
�f k� � Rfexp�−iϕk� ∘ f kg; (B14)

where AF
�f k� is the contribution to AF due to AF appearing in

Eq. (5) for the kth PSF. Accumulating these contributions
element-wise with

AF �
XK
k�1

AF
�f k�; (B15)
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and evaluating the thresholding operation in Eq. (3) yields

C �nr ; nc � �
�
AF�nr ; nc � for C �nr ; nc � > −1

0 otherwise:
(B16)

Then evaluating Eq. (4) finds

d l �
XN−1

nr�0

XN−1

nc�0

�Z l ∘ C��nr ; nc �; (B17)

by Eq. (58) in [48].
Finally, we evaluate the gradients with respect to the phase

coefficients a2;k, a3;k, and ak. By Eqs. (47) and (57) in [48], the
gradient steps corresponding to Eq. (5) are

ϕ�f k� � Iff �
k ∘ f kg; (B18)

where ϕ�f k� is the contribution due to the appearance of ϕ in
f k of the kth PSF. In the shared linear phase case, ϕk has the
same value in each PSF, and thus the corresponding gradient
contributions can be accumulated element-wise to find

ϕ �
XK
k�1

ϕ�f k�; (B19)

and then from evaluating Eq. (2) we see that

aj �
XN−1

nr�0

XN−1

nc�0

�Z j ∘ ϕ��nr; nc �; (B20)

for j � 2;…; J by Eq. (58) in [48]. In the unshared linear
phase case, the linearity of Eq. (1) means that aj can still be
calculated by Eq. (B20) but just for j � 4;…; J. The gradients
for the linear phase terms a2;k and a3;k must be calculated from
the individual contributions ϕk according to

aj;k �
XN−1

nr�0

XN−1

nc�0

�Z j ∘ ϕk��nr; nc �: (B21)

APPENDIX C: COEFFICIENTS OF THE
BIAS-INDEPENDENT METRIC

The derivation of the bias-independent metric in [40] does not
include an explicit formula for both the coefficients βk and γk.
We derive these coefficients in different terms than one would
find by substituting the equations of [40] into one another.

For the value of βk that puts Ek in Eq. (18) at the extremum,

0 � ∂Ek

∂βk
�

X
mr ;mc

wk ∘ �βkI k � γk1 −Dk� ∘ 2I k

� 2βkhI k; I ki � 2γkhI ki − 2hDk; I ki; (C1)

where hX ;Y i � P
mr ;mc

wk ∘ X ∘ Y and hX i � P
mr ;mc

wk ∘
X . The value that puts γk at extremum is, by a similar calcu-
lation,

0 � ∂Ek

∂βk
� 2βkhI ki � 2γkŵk − 2hDki; (C2)

where ŵk �
P

mr ;mc
wk. Linear Eqs. (C1) and (C2) have the

solution

βk �
ŵkhDk; I ki − hI kihDki
ŵkhI k; I ki − hI ki2

;

γk �
hI k; I kihDki − hI kihDk; I ki

ŵkhI k; I ki − hI ki2
: (C3)

Each evaluation of Ek for unique parameter values requires
calculating hI ki, hDk; I ki, and hI k; I ki. The values of hDki and
ŵk only need to be evaluated once for particular Dk and wk.

Funding. Goddard Space Flight Center (GSFC)
(NNX15AE94A).
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