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Abstract. The approach to the design of an optical computer or processor
system has typically been analog in nature in the past. Recently design concepts
for a numerical optical processor have evolved in which we see digital tech-
niques implemented with optical devices. This paper describes design concepts
for a numerical optical processor which is based on the residue number system.
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1. BACKGROUND
Data processor systems based on analog optical devices have been
used for several special purpose applications1-3 which include corre-
lation and Fourier transform processing. More recently the optical
implementation of numerical (digital) methods in processor system
design has been under study by several investigators.4-7 Motivation
to pursue numerical optical concepts arises from at least two points
of view. Given the typical need for performance advancements in
processor designs, the electronic digital processor designer often
seeks greater speed and packing density while the optical processor
designer strives for greater accuracy and programmability. Numeri-
cal methods implemented with optical or, more accurately, hybrid
optical concepts, though in an early state of study, appear to provide
a potential for advancement of these system performance factors.

Numerical optical design concepts are, of course, based on han-
dling data in a quantized and encoded form. A wide range of comput-
ing or processing operations is of interest, generally starting with
basic arithmetic ( +, -, X, ±) and building into more complex
operations. Included in any study of these topics are the choices of
number system and system architecture. Our interest here will be the
design of optical processors which are based upon the residue
number system. In this paper, we review briefly the residue number
system and then go on to examples of numerical optical processor
design concepts.

Invited Paper 5064 received May 27, 1980; revised manuscript received Sept. 29, 1980;
accepted for publication Oct. 2, 1980; received by Managing Editor Oct. 10, 1980. This
paper is a revision of Paper 185 -01 which was presented at the SPIE seminar on Optical
Processing Systems, May 22 -23, 1979, Huntsville, AL. The paper presented there
appears (unrefereed) in SPIE Proceedings Vol. 185.
© 1981 Society of Photo -Optical Instrumentation Engineers.

2. RESIDUE NUMBER SYSTEM
The residue number systems-11 deals with integer numbers only. Its
virtue in processor design lies in its cyclic property and the fact that
carry operations are not needed when performing arithmetic, thereby
allowing a high degree of parallelism in the system architecture. The
residue representation for a number X is given by a set of integers as

X = (r1, r2, . . ., rn) (1)

Each digit ri is the residue or least nonnegative remainder obtained
when X is divided by a prescribed set of base numbers or moduli, m1,
m2, ..., mn, which are relatively prime integers. Illustrated in Table I

is the correspondence between a decimal number X and its residue
for moduli 2, 3, and 5. The available range of representation, M, is

TABLE I. Residue Number Representations

X rt(m=2) r2(m = 3) r3Om=5)

o 0 0 o

1

2 0 2 2

3 1 o 3

4 0 4

5 1 2 0

limited to the product of the moduli being used, i.e.,

M = mi .

i=l
(2)

For moduli 5, 7, and 9, we have a range M = 315 which is equivalent
to that of an eight bit binary system. Moduli 31, 32, and 33 on the
other hand give M = 32,736 for a range equivalent to fifteen bits.
Each residue digit is cyclic as seen in Table I. The residue representa-
tion is also cyclic over its range M which means that a number X that
is larger than M will be represented modulo M.

Addition is accomplished by adding, modulo mi, residue digits of
common modulus independently (no carry). For example, numbers
X and Y in residue form will be IXIm and IYIm; the sum of these is
1Xlm + IY1m; and this sum reduced to residue is 11XIm + IYIm1m
More specifically with X = 7 and Y = 3, we have for modulus 5 the
residue numbers 1 715 = 2 and 13 1 5 = 3 giving l 715 +1315 = 5 and the
result that 11715 + 13k15 =12 + 315 = 0. This is the residue digit
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1. BACKGROUND
Data processor systems based on analog optical devices have been 
used for several special purpose applications 1 ' 3 which include corre­ 
lation and Fourier transform processing. More recently the optical 
implementation of numerical (digital) methods in processor system 
design has been under study by several investigators. 4" 7 Motivation 
to pursue numerical optical concepts arises from at least two points 
of view. Given the typical need for performance advancements in 
processor designs, the electronic digital processor designer often 
seeks greater speed and packing density while the optical processor 
designer strives for greater accuracy and programmability. Numeri­ 
cal methods implemented with optical or, more accurately, hybrid 
optical concepts, though in an early state of study, appear to provide 
a potential for advancement of these system performance factors.

Numerical optical design concepts are, of course, based on han­ 
dling data in a quantized and encoded form. A wide range of comput­ 
ing or processing operations is of interest, generally starting with 
basic arithmetic (+,  , X, -i-) and building into more complex 
operations. Included in any study of these topics are the choices of 
number system and system architecture. Our interest here will be the 
design of optical processors which are based upon the residue 
number system. In this paper, we review briefly the residue number 
system and then go on to examples of numerical optical processor 
design concepts.

Invited Paper 5064 received May 27, 1980; revised manuscript received Sept. 29, 1980; 
accepted for publication Oct. 2, 1980; received by Managing Editor Oct. 10, 1980. This 
paper is a revision of Paper 185-01 which was presented at the SPIE seminar on Optical 
Processing Systems, May 22-23, 1979, Huntsville, AL. The paper presented there 
appears (unrefereed) in SPIE Proceedings Vol. 185. 
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2. RESIDUE NUMBER SYSTEM
The residue number system8" 11 deals with integer numbers only. Its 
virtue in processor design lies in its cyclic property and the fact that 
carry operations are not needed when performing arithmetic, thereby 
allowing a high degree of parallelism in the system architecture. The 
residue representation for a number X is given by a set of integers as

= (r 1 ,r2,...,rn) (1)

Each digit q is the residue or least nonnegative remainder obtained 
when X is divided by a prescribed set of base numbers or moduli, nij, 
m2,..., mn , which are relatively prime integers. Illustrated in Table I 
is the correspondence between a decimal number X and its residue 
for moduli 2, 3, and 5. The available range of representation, M, is

TABLE I. Residue Number Representations

r9 (m = r3 (m = 5)

0

1
2

3

4

5

0

1

0

1

0

1

0

1

2

0

1

2

0

1

2

3

4

0

limited to the product of the moduli being used, i.e.,

M = (2)

For moduli 5, 7, and 9, we have a range M   315 which is equivalent 
to that of an eight bit binary system. Moduli 31, 32, and 33 on the 
other hand give M = 32,736 for a range equivalent to fifteen bits. 
Each residue digit is cyclic as seen in Table I. The residue representa­ 
tion is also cyclic over its range M which means that a number X that 
is larger than M will be represented modulo M.

Addition is accomplished by adding, modulo m-r residue digits of 
common modulus independently (no carry). For example, numbers 
X and Y in residue form will be |X| m and |Y| m ; the sum of these is 
Wm + Mm' and this sum reduced to residue is ||X| m + |Y|J m . 
More specifically with X = 7 and Y = 3, we have for modulus 5 the 
residue numbers|7| 5 = 2 and |3| 5 = 3 giving|7| 5 +|3| 5 = 5 and the 
result that ||7| 5 + |3| 5 | 5 = |2 + 3| 5 = 0. This is the residue digit
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modulus 5 for the sum of 7 and 3. Another example is given below for
moduli 2, 3, and 5 with X = 21 and Y = 4.

X = (1, 0, 1)
+ Y = (0, 1, 4)

X+Y=(l, 1, 0)

(3)

Subtraction is also performed by operating on each modulus
independently. A subtraction operation may be converted into an
addition operation by transforming the subtractor into its additive
inverse. The additive inverse is denoted I -X l and is defined by the
following relationship:

IXIm Im = O. (4)

For modulus seven, the additive inverse of the residue digit I X 1 7 _
5 will be 1 -XI7 = 2. An example of subtraction using the additive
inverse for the operaton X -Y with X = 8 and Y = 3 is given below for
moduli 2, 3, and 5:

8 = (0, 2, 3)
+ ( -3) = (1, 0, 3)

8 +(- 3)= (1,2,0)

(5)

Multiplication can be carried out in any one of several ways. One
method consists of multiplication of digits having a common modu-
lus followed by taking the residue of each product. A second
approach is to simply perform successive addition of the multipli-
cand. The homomorphic method provides a third approach, usable
only for prime moduli. The multiplication modulo m is accom-
plished by an addition modulo m - 1, provided that a transforma-
tion is appropriately applied before and following the addition step.
The transformation is straightforward. A residue number 1 X l m upon
being transformed will have a value K where K is defined by the
relation IXIm = IbKlm with b a prescribed integer. The selection of
the base or generator integer b is not arbitrary. It is limited to a subset
of integers which works for all residues of the modulus of interest, as
described under the topic of index calculus by Szabo and Tanaka.8
Generator integers satisfying this requirement are called primitive
roots. The inverse transformation entails finding I bK 1m when given
K. Examples of the transformed pairs for moduli five (b = 2) and
seven (b = 3) are shown in Table II. The transform for the number
IXIm = 0 is not defined. However this exception is not troublesome
because multiplication with zero will always result in zero. Note that
the transformation table for a modulus m will always have only m -
1 entries and the addition step is performed modulo m - 1.

As an example of multiplication using the log -like transformation
and modulo m - 1 addition, consider the operation X X Y = Z with
X = 4 and Y = 3 using the modulus 5. The forward transform is
applied to X and Y, the result is added modulo 4, and then this sum is
inverse transformed as shown below:

14151=>K=2 and 1315 bK=3
12 + 314 = 1

1i*Z=I21I5=2.
(6)

The result 2 is the residue digit of modulus 5 for the expected answer
12, i.e., 2 =11215.

General division is not readily accommodated in the residue
system. However, division by an integer with remainder zero can be
performed with the approach illustrated above for multiplication
except that the transformed divisor is subtracted from the trans-
formed dividend. Though division with remainder zero is of limited
applicability, it is useful for the important operation of scaling.
Scaling is used to bring a large number into the available range
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TABLE II. Log -like Transformation Examples

1)(15 ---121(15 K Ix17=13K17 K

1 0 0

2 1 2 2

3 3 3 1

4 2 4 4

5 5

6 3

M = Hmi.

The range required of the number system is established by the
type of arithmetic operation to be performed. For addition, if the
largest numbers to be added are N, then the range M should be at
least as large as 2N. For multiplication with largest numbers N, the
range needed is N2. Division with largest dividend N requires a range
no larger than N. In subtraction, what must be recognized is that a
negative number does not have a sign symbol designation. Negative
numbers can be handled by assigning the interval 0 to M / 2 - 1 to
represent positive numbers and M/2 + 1 to M - 1 to represent the
negative numbers -M /2 + 1 to -1. Therefore with largest operand
N, we require a range M = 2N.

2.1. Encoding

Data made available to a residue arithmetic optical processor may be
in analog or digital form. Provisions for encoding the input data into
residue representation will depend upon the optical devices
employed in the processor design. With optical devices which are
cyclic, the analog input data can be encoded to residue representa-
tion in a direct manner, whereas noncyclic devices will require a more
extensive encoding step. When encoding is needed, one approach is
to convert the analog input to an intermediate binary form and then
proceed with residue encoding of the binary data. For example,
conversion of the binary number 110 for modulus 3 proceeds as
follows:

1103 =111X2213+11X2113+10X2°1313 = 1 . (7)

2.2. Decoding

Conversion of a residue number to a weighted number system
representation, such as the decimal numbers, is a more complex
operation than encoding. Residue to mixed radix conversion is often
used and has the advantage that familiar residue arithmetic opera-
tions are employed. The algorithm for this decoding is described with
the flow diagram of Fig. 1 for a residue number of four digits (r1, r2,
r3, r4) corresponding to moduli 2, 3, 5, and 7. The operations
involved are a sequence of subtractions and multiplications which
result in coefficients of the equivalent mixed radix number (a1,
a2 ... aN). For this example, the decoded result would be X = al +
a2(2) + a3(2 X 3) + a4(2 X 3X 5). Multiplication in this procedure is
performed using the multiplicative inverse denoted

I l/KImi

which is defined by the relation

1KX11/KImi m i = I

Conversion from residue to mixed radix form is useful not only
for decoding but also for the important operations of sign detection,
magnitude comparison and overflow detection. The conversion from
mixed radix back to the residue system is straightforward. Consider
starting with the mixed radix representation X = (a1, a2, a3, a4) for
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modulus 5 for the sum of 7 and 3. Another example is given below for 
moduli 2, 3, and 5 with X = 21 and Y = 4.

TABLE II. Log-like Transformation Examples

X = (1, 0, 1)

+ Y = (0, 1, 4)

X + Y = (1, 1, 0)

(3)

Subtraction is also performed by operating on each modulus 
independently. A subtraction operation may be converted into an 
addition operation by transforming the subtracter into its additive 
inverse. The additive inverse is denoted | X| m and is defined by the 
following relationship:

|x| (4)

For modulus seven, the additive inverse of the residue digit | X1 7 = 
5 will be |  X| 7 = 2. An example of subtraction using the additive 
inverse for the operaton X Y with X = 8 and Y = 3 is given below for 
moduli 2, 3, and 5:

8 = (0, 2, 3)

+ (-3) = (1, 0, 3)

+ (-3) - (1, 2, 0)

(5)

Multiplication can be carried out in any one of several ways. One 
method consists of multiplication of digits having a common modu­ 
lus followed by taking the residue of each product. A second 
approach is to simply perform successive addition of the multipli­ 
cand. The homomorphic method provides a third approach, usable 
only for prime moduli. The multiplication modulo m is accom­ 
plished by an addition modulo m   1, provided that a transforma­ 
tion is appropriately applied before and following the addition step. 
The transformation is straightforward. A residue number | X | m upon 
being transformed will have a value K where K is defined by the 
relation |X| m = Ib1^^ with b a prescribed integer. The selection of 
the base or generator integer b is not arbitrary. It is limited to a subset 
of integers which works for all residues of the modulus of interest, as 
described under the topic of index calculus by Szabo and Tanaka. 8 
Generator integers satisfying this requirement are called primitive 
roots. The inverse transformation entails finding |bK | m when given 
K. Examples of the transformed pairs for moduli five (b   2) and 
seven (b = 3) are shown in Table II. The transform for the number 
|X| m   0 is not defined. However this exception is not troublesome 
because multiplication with zero will always result in zero. Note that 
the transformation table for a modulus m will always have only m   
1 entries and the addition step is performed modulo m   1.

As an example of multiplication using the log-like transformation 
and modulo m   1 addition, consider the operation X X Y = Z with 
X = 4 and Y = 3 using the modulus 5. The forward transform is 
applied to X and Y, the result is added modulo 4, and then this sum is 
inverse transformed as shown below:

|4| 5 ^K = : and |3

3| 4 =l (6)

1
2

3

4

0

1

3

2

1

2

3

4

5

6

0

2

1

4

5

3

The range required of the number system is established by the 
type of arithmetic operation to be performed. For addition, if the 
largest numbers to be added are N, then the range M should be at 
least as large as 2N. For multiplication with largest numbers N, the 
range needed is N2 . Division with largest dividend N requires a range 
no larger than N. In subtraction, what must be recognized is that a 
negative number does not have a sign symbol designation. Negative 
numbers can be handled by assigning the interval 0 to M/2   1 to 
represent positive numbers and M/2 + 1 to M   1 to represent the 
negative numbers  M/2 4- 1 to   1. Therefore with largest operand 
N, we require a range M = 2N.

2.1. Encoding
Data made available to a residue arithmetic optical processor may be 
in analog or digital form. Provisions for encoding the input data into 
residue representation will depend upon the optical devices 
employed in the processor design. With optical devices which are 
cyclic, the analog input data can be encoded to residue representa­ 
tion in a direct manner, whereas noncyclic devices will require a more 
extensive encoding step. When encoding is needed, one approach is 
to convert the analog input to an intermediate binary form and then 
proceed with residue encoding of the binary data. For example, 
conversion of the binary number 110 for modulus 3 proceeds as 
follows:

1103 - ||1X22 | 3 +|1X2 1 | 3 +|OX2°| 3 | 3 - (7)

2.2. Decoding
Conversion of a residue number to a weighted number system 
representation, such as the decimal numbers, is a more complex 
operation than encoding. Residue to mixed radix conversion is often 
used and has the advantage that familiar residue arithmetic opera­ 
tions are employed. The algorithm for this decoding is described with 
the flow diagram of Fig. 1 for a residue number of four digits (rj, r2 , 
r3 , r4) corresponding to moduli 2, 3, 5, and 7. The operations 
involved are a sequence of subtractions and multiplications which 
result in coefficients of the equivalent mixed radix number (a h 
a2 . . . aN). For this example, the decoded result would be X = a l + 
a2 (2) + a3 (2 X 3) + a4 (2 X 3X 5). Multiplication in this procedure is 
performed using the multiplicative inverse denoted

The result 2 is the residue digit of modulus 5 for the expected answer 
12, i.e., 2= 12| 5 .

General division is not readily accommodated in the residue 
system. However, division by an integer with remainder zero can be 
performed with the approach illustrated above for multiplication 
except that the transformed divisor is subtracted from the trans­ 
formed dividend. Though division with remainder zero is of limited 
applicability, it is useful for the important operation of scaling. 
Scaling is used to bring a large number into the available range

which is defined by the relation

IKX i/K| m .| m . = i .

Conversion from residue to mixed radix form is useful not only 
for decoding but also for the important operations of sign detection, 
magnitude comparison and overflow detection. The conversion from 
mixed radix back to the residue system is straightforward. Consider 
starting with the mixed radix representation X = (a p a2 , a3 , a4) for
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MOD MOD
2 3

r1(a1) r2

-a1

l x1 2
13

MOD
5

r3

-a1

x I 2 15

MOD
7

r4

I

a2 H

x11H5

-a2

al a2 a3 a4

X = al.a2(2).a3(2'3)'a4(2'3' 5)

Fig. 1. Residue to mixed radix conversion.

moduli 2, 3, 5, and 7. The residue digit r for modulus mi is obtained
with the following expression:

r = lad 11m
i i 1

+azl X2m+a31 X2X3m.

+a411 X2X3X51m
i
lm

i

(8)

2.3. Scaling
Overflow may be a more demanding consideration in residue arith-
metic than in conventional arithmetic which utilizes a weighted
number system. Detection of overflow is not as automatic as with
weighted number systems and it is desirable to avoid occurrence of
overflow.12 -14 This would require a periodic down -scaling of the
residue numbers. To do this, division operations would be necessary.
As pointed out earlier, general division cannot be carried out easily
and scaling by an arbitrary factor would not be practical. One can,
however, scale a residue number by a factor equal to the value of one
of the moduli or a product of two or more moduli. For example, for a
system with moduli 2, 3, 5, and 7, if we are to scale down a number X
= 191 = (1, 2, 1, 2) by a factor of 7, we proceed as follows: since the
divisor 7 is also a modulus, the corresponding residue 1 X 17 = 2 would
be equal to the remainder when the number X is divided by 7.
Therefore, X - IXI7 is always divisible by 7 and the homomorphic
approach can be applied for the division operation. However, for
modulus 7, the divisor is equal to 0 and division by 0 is not defined.
The general approach is to proceed with the division while ignoring
modulus 7. The residue of the quotient for modulus 7 is then
obtained using the extension of base procedure8 which is essentially a
residue to mixed radix conversion.

With some of the basic properties of residue number systems in
hand, we go on in the following sections to describe examples of
optical implementation concepts.

3. BASIS FOR NUMERICAL METHODS
Fundamental to the optical implementation of a numerical processor is
the use of devices which provide numerical control of a light beam or
wave. Phase, polarization, position, and intensity of a light beam are
the physical properties which may be considered for implementation.

Consider the control of light wave phase as a light beam passes
through an electro -optic modulator depicted functionally in Fig. 2.

e
wt Input

Beam

Electro -Optic

Phase
Modulator

Î
Control
Voltage

Phase
Shifted
Output

F = n4
A = 2n/m

i )

Fig. 2. Cyclic phase operation.

Since the phase of the light wave is inherently cyclic modulo 27r, then
by providing control of the phase shift in increments of A, with A =
27r/ m and m the desired residue modulus, the phase of the emergent
light wave will serve as a residue number representation. For exam-
ple, for modulus 5, we make A = 2 ir/ 5. As the phase is changed
incrementally, we progress through A, 2 A, 3 A, and 4 A and then start
to repeat modulo 2 r since we have equivalence between 0 and 5A,
2A and 6A, etc. With an input (control voltage) that is continuous
rather than quantized, the optical phase shift modulator device may
be designed to provide a quantized response, analogous to
approaches under development with polarization modulation
schemes.5 15 Otherwise, quantization must be provided at the point of
detection or in the applied control voltage itself.

In addition to electro -optic devices, others are available based on
acousto- optics, thermo- optics, and material deformation (optical
path length modulation) for the control of the phase of a light wave.

Rather than altering the phase of light wave, the polarization
angle which is also inherently cyclic can be used for residue number
representation.4. 15 Choice of approaches for realizing quantized con-
trol is similar to that discussed above for phase control.

Position control of a light beam, or mapping, for residue number
representation is depicted in Fig. 3. In this example, optical switches
steer (or deflect) the input beam into selectable exit paths. Each of the
six optical switches has two output ports which are selectable by a
control voltage. The switches either pass the entering light beam
undeflected or steer the beam to an alternate path. Any one of the
input positions can be switched to any of the three output positions
using simple switching logic in which the switches are activated a row
at a time. A fixed set of light beam paths can also be useful where the
programmability provided by optical switches is not needed. The
light beam paths may be open or confined (e.g., optical wave guides,
fibers, stacked diffraction gratings, etc.). Switching devices such as
optical wave -guide couplers, acousto -optic diffraction cells and fiber
optics couplers may be used for position or path control. The beam
paths are discrete and the switches are generally controlled with
binary control signals.

Instead of individual two state switches for beam position con-
trol, devices having multiple output positions may also be used.
Some acousto -optic beam deflector designs, for example, can pro-
vide at least 10-3 discernible output positions which might serve in
place of a set of two -position optical switches.

Use of the intensity level of a light beam for residue number
representation may be realized by the direct control of a light source
or by external control of the emitted beam. External control can be
achieved by analyzing a light wave whose phase or polarization angle
has been modulated as noted above. Direct control of the light source
is also possible (laser, light emitting diode (LED), etc.). However, in
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Fig. 1. Residue to mixed radix conversion.

moduli 2, 3, 5, and 7. The residue digit r for modulus irij is obtained 
with the following expression:

a4 |lX2X3X5| (8)

2.3. Scaling
Overflow may be a more demanding consideration in residue arith­ 
metic than in conventional arithmetic which utilizes a weighted 
number system. Detection of overflow is not as automatic as with 
weighted number systems and it is desirable to avoid occurrence of 
overflow. 12- 14 This would require a periodic down-scaling of the 
residue numbers. To do this, division operations would be necessary. 
As pointed out earlier, general division cannot be carried out easily 
and scaling by an arbitrary factor would not be practical. One can, 
however, scale a residue number by a factor equal to the value of one 
of the moduli or a product of two or more moduli. For example, for a 
system with moduli 2, 3, 5, and 7, if we are to scale down a number X 
= 191 =(1, 2, 1, 2) by a factor of 7, we proceed as follows: since the 
divisor 7 is also a modulus, the corresponding residue | X1 7 = 2 would 
be equal to the remainder when the number X is divided by 7. 
Therefore, X   |X| 7 is always divisible by 7 and the homomorphic 
approach can be applied for the division operation. However, for 
modulus 7, the divisor is equal to 0 and division by 0 is not defined. 
The general approach is to proceed with the division while ignoring 
modulus 7. The residue of the quotient for modulus 7 is then 
obtained using the extension of base procedure8 which is essentially a 
residue to mixed radix conversion.

With some of the basic properties of residue number systems in 
hand, we go on in the following sections to describe examples of 
optical implementation concepts.

3. BASIS FOR NUMERICAL METHODS
Fundamental to the optical implementation of a numerical processor is 
the use of devices which provide numerical control of a light beam or 
wave. Phase, polarization, position, and intensity of a light beam are 
the physical properties which may be considered for implementation. 

Consider the control of light wave phase as a light beam passes 
through an electro-optic modulator depicted functionally in Fig. 2.

Input \ 
Beam '

Electro-OpL ic
Phase 

Modulator

Control 
Voltage

Phase
Shifted
Output

nA 
2TT/m

Fig. 2. Cyclic phase operation.

Since the phase of the light wave is inherently cyclic modulo 2 TT, then 
by providing control of the phase shift in increments of A, with A = 
27r/m and m the desired residue modulus, the phase of the emergent 
light wave will serve as a residue number representation. For exam­ 
ple, for modulus 5, we make A = 27T/5. As the phase is changed 
incrementally, we progress through A, 2 A, 3 A, and 4 A and then start 
to repeat modulo 2n since we have equivalence between 0 and 5 A, 
2 A and 6 A, etc. With an input (control voltage) that is continuous 
rather than quantized, the optical phase shift modulator device may 
be designed to provide a quantized response, analogous to 
approaches under development with polarization modulation 
schemes. 5 - 15 Otherwise, quantization must be provided at the point of 
detection or in the applied control voltage itself.

In addition to electro-optic devices, others are available based on 
acousto-optics, thermo-optics, and material deformation (optical 
path length modulation) for the control of the phase of a light wave.

Rather than altering the phase of light wave, the polarization 
angle which is also inherently cyclic can be used for residue number 
representation. 4' 15 Choice of approaches for realizing quantized con­ 
trol is similar to that discussed above for phase control.

Position control of a light beam, or mapping, for residue number 
representation is depicted in Fig. 3. In this example, optical switches 
steer (or deflect) the input beam into selectable exit paths. Each of the 
six optical switches has two output ports which are selectable by a 
control voltage. The switches either pass the entering light beam 
undeflected or steer the beam to an alternate path. Any one of the 
input positions can be switched to any of the three output positions 
using simple switching logic in which the switches are activated a row 
at a time. A fixed set of light beam paths can also be useful where the 
programmability provided by optical switches is not needed. The 
light beam paths may be open or confined (e.g., optical wave guides, 
fibers, stacked diffraction gratings, etc.). Switching devices such as 
optical wave-guide couplers, acousto-optic diffraction cells and fiber 
optics couplers may be used for position or path control. The beam 
paths are discrete and the switches are generally controlled with 
binary control signals.

Instead of individual two state switches for beam position con­ 
trol, devices having multiple output positions may also be used. 
Some acousto-optic beam deflector designs, for example, can pro­ 
vide at least 103 discernible output positions which might serve in 
place of a set of two-position optical switches.

Use of the intensity level of a light beam for residue number 
representation may be realized by the direct control of a light source 
or by external control of the emitted beam. External control can be 
achieved by analyzing a light wave whose phase or polarization angle 
has been modulated as noted above. Direct control of the light source 
is also possible (laser, light emitting diode (LED), etc.). However, in
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Fig. 3. Light beam position mapping for modulus 3 programmable
operation.

this case, the cyclic property is not inherent and must be provided by
the control signal itself.

Combined use of more than one property of a light beam is also
possible. As an example, phase and position control are shown in
Fig. 4. This approach provides for residue number representation as
an incremental phase shift as mentioned earlier. However, for this
case, phase shift elements of a fixed and passive type are used with
their selection made by choice of beam path. Instead of the phase
shift elements of Fig. 4, the use of optical attenuation elements would
provide beam intensity control while the use of polarization rotator
elements would give the residue representation as polarization angles.

Recall that the range of numerical representation in residue form
has two salient range properties, the range of individual moduli ml,
m2, ... , mn and the total range M. In the case of an optical phase shift
device, for example, the phase modulator must have a modulation
capability over the full range M if the modulator control voltage is to
be a continuous variable. If, on the other hand, the modulator
control voltage is encoded to correspond to the range of an individual
modulus, then the phase shift modulator device need only respond
over the more limited range of that modulus.

Having introduced the notion of quantized and cyclic control of
light beam properties for residue number representation, we present
in the next section examples of numerical optical processor design
concepts.

4. PROCESSOR DESIGN CONCEPTS
The design of a numerical optical processor can vary considerably
with choice of optical hardware, computer architecture, and inter-
face and control assumptions. We consider in this section two
approaches for basic computing tasks which can be extended to more
complex calculations. The approaches differ in the choice of the
physical property of a light beam that is being used for residue
number representation. One approach employs phase control of a
light wave with its inherent cyclic property and the other utilizes light
beam position control or mapping.
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Fig. 4. Mapping and phase control combined for modulus 3 operation.

4.1. Cyclic phase implementation
As an example of cyclic device, we take the case of spatial phase
modulation which can be implemented with such devices as acousto-
optic spatial phase modulators.16 We start with the basic set of
components shown in Fig. 5 which consists of two modulators and
the means for introducing collimated light waves into each of them.
The collimated beams 1 and 2 originate from a laser diode light
source directed through a collimating lens and a beam splitter grating
G. This arrangement serves as an interferometer which provides an
interference or fringe pattern at its output.1 7 It will operate with light
sources of modest coherence. The spatial frequency (carrier) in the
modulators is twice the grating frequency in G. If the modulators

Fig. 5. Cyclic phase operation with a grating interferometer using
acousto -optic gratings.
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Fig. 4. Mapping and phase control combined for modulus 3 operation.

this case, the cyclic property is not inherent and must be provided by 
the control signal itself.

Combined use of more than one property of a light beam is also 
possible. As an example, phase and position control are shown in 
Fig. 4. This approach provides for residue number representation as 
an incremental phase shift as mentioned earlier. However, for this 
case, phase shift elements of a fixed and passive type are used with 
their selection made by choice of beam path. Instead of the phase 
shift elements of Fig. 4, the use of optical attenuation elements would 
provide beam intensity control while the use of polarization rotator 
elements would give the residue representation as polarization angles.

Recall that the range of numerical representation in residue form 
has two salient range properties, the range of individual moduli m } , 
m2,..., mn and the total range M. In the case of an optical phase shift 
device, for example, the phase modulator must have a modulation 
capability over the full range M if the modulator control voltage is to 
be a continuous variable. If, on the other hand, the modulator 
control voltage is encoded to correspond to the range of an individual 
modulus, then the phase shift modulator device need only respond 
over the more limited range of that modulus.

Having introduced the notion of quantized and cyclic control of 
light beam properties for residue number representation, we present 
in the next section examples of numerical optical processor design 
concepts.

4. PROCESSOR DESIGN CONCEPTS
The design of a numerical optical processor can vary considerably 
with choice of optical hardware, computer architecture, and inter­ 
face and control assumptions. We consider in this section two 
approaches for basic computing tasks which can be extended to more 
complex calculations. The approaches differ in the choice of the 
physical property of a light beam that is being used for residue 
number representation. One approach employs phase control of a 
light wave with its inherent cyclic property and the other utilizes light 
beam position control or mapping.

4.1. Cyclic phase implementation
As an example of cyclic device, we take the case of spatial phase 
modulation which can be implemented with such devices as acousto- 
optic spatial phase modulators. 16 We start with the basic set of 
components shown in Fig. 5 which consists of two modulators and 
the means for introducing collimated light waves into each of them. 
The collimated beams 1 and 2 originate from a laser diode light 
source directed through a collimating lens and a beam splitter grating 
G. This arrangement serves as an interferometer which provides an 
interference or fringe pattern at its output. 17 It will operate with light 
sources of modest coherence. The spatial frequency (carrier) in the 
modulators is twice the grating frequency in G. If the modulators
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Fig. 5. Cyclic phase operation with a grating interferometer using 
acousto-optic gratings.
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have a sinusoidal spatial modulation of optical index along their
length (X- dimension) of the form cos (wx + a) and cos (wx + ß), then
the diffracted first order light waves 3 and 4 can be written as

(wx +a) and +1(wx +)3)
(9)

Assuming for convenience that these waves have unity amplitude,
then the interference or fringe pattern at the detector plane will be of
the form

1+ cos [wx+(a+ß) (10)

Thus the phase of the fringe pattern output is the sum of the input or
modulator phases a and ß. Phases a and ß would be entered into the
acousto -optic modulators as equivalent residue numbers for a par-
ticular modulus mi. Since the accumulated output phase is cyclic, the
output sum will have the desired residue property of being cyclic
modulo mi.

Rather than using a detector at the output, two other possibilities
exist. An optical transducer or memory may be used at the output
plane which records the sinusoidal fringe pattern and then acts as a
diffraction grating containing the output phase (a + ß). When illum-
inated, it would serve to readout the summation data (a + ß) as the
phase of the diffracted output beams for use in another cascaded
computing element possibly of the same type. A second possibility
for handling the output avoids the use of a detector or a transducer
by simply allowing the output waves 3 and 4 to continue and become
inputs to another set of acousto -optic modulator elements as shown
in Fig. 6. This figure shows a succession of such cascaded modula-
tors. The phase of fringe pattern output for the set would be the
accumulated sum 1(ai + ßi), i.e., the output fringe pattern is of the
form

N
cos [cuX + (ai + A)] .

With this device, we can realize a computing module capable of
addition, subtraction, and multiplication (through successive addi-
tion). For addition or subtraction of two residue numbers, we need
only two modulators. With multiplication, the number of modulator
elements in this type of computing module must equal the largest
multiplier which, for modulus mi, will be mi - 1. Multiplying two
numbers X X Y is done by entering a phase a = ß = X in all
modulator elements and having the total number of modulators
equal to Y.

Considerable reduction in complexity of the multiply operation
could be realized by use of the homomorphic approach for multipli-
cation. Recall that with this method a log -like transformation of the
multiplier and multiplicand is required followed by modulo mi - 1
addition and then an inverse transformation to determine the
answer. However, convenient methods for homomorphic multiplica-
tion using the cyclic phase approach have not yet been devised. Such
a transformation is readily accomplished with a mapping implemen-
tation approach using, for example, light beam position control.

The time required to perform the single summation a + ß is quite
short, being simply the propagation time from the acousto -optic
(AO) cell to the output fringe detection plane, which would be a few
picoseconds for small integrated optic configurations. Clearly, how-
ever, overall cycle time of such a unit is the characteristic of impor-
tance and it is comprised of the set -time of an AO device, the light
propagation time noted before, and the output fringe phase detection
time. At the present state of the art, the AO cell set -time capability is
about 0.1 to 10 µsec which is quite modest for computing operation
of interest here. Another design concern with this approach at pres-
ent is the combined speed and accuracy achievable in performing
electronic detection of the phase of the output fringe pattern.

Fig. 6. Cyclic phase operation with cascaded acousto -optic elements for
2N inputs.

4.2. Mapping with beam position control
Position control or mapping of a light -beam path provides an attrac-
tive means for residue number representation and computing oper-
ations. At the present state of hardware development, mapping
appears to offer a more versatile approach to numerical optical
processor design than is available with cyclic phase or polarization
devices. This is due mainly to the lack of fully developed methods for
quantization and the comparative complexity of performing such
operations as multiplication with cyclic devices which employ phase
or polarization control. In this section, we describe a programmable
computing module6 for basic arithmetic which uses light beam posi-
tion mapping. The design concept offers considerable versatility in
use and a good potential for interconnecting a large set of such
modules for more complex computing operations.

To demonstrate the design concept, we will use directional
coupler wave guide switches for the implementation of beam path
control. The directional coupler is one of the better -developed inte-
grated optical devices and it allows flexibility in optical circuit
design. 8-20 We shall briefly describe the optical coupler wave guide
switch and then proceed to formulate its use in a basic addition
operation which will be extended into a multipurpose arithmetic
module. It should be noted that there are other components that
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have a sinusoidal spatial modulation of optical index along their 
length (X-dimension) of the form cos (o>x + a) and cos (cox + ft), then 
the diffracted first order light waves 3 and 4 can be written as

(9)

Assuming for convenience that these waves have unity amplitude, 
then the interference or fringe pattern at the detector plane will be of 
the form

+ cos [cox + (a + ft) ] . (10)

Thus the phase of the fringe pattern output is the sum of the input or 
modulator phases a and /3. Phases a and ft would be entered into the 
acousto-optic modulators as equivalent residue numbers for a par­ 
ticular modulus m-r Since the accumulated output phase is cyclic, the 
output sum will have the desired residue property of being cyclic 
modulo rrij.

Rather than using a detector at the output, two other possibilities 
exist. An optical transducer or memory may be used at the output 
plane which records the sinusoidal fringe pattern and then acts as a 
diffraction grating containing the output phase (a + ft). When illum­ 
inated, it would serve to readout the summation data (a + ft) as the 
phase of the diffracted output beams for use in another cascaded 
computing element possibly of the same type. A second possibility 
for handling the output avoids the use of a detector or a transducer 
by simply allowing the output waves 3 and 4 to continue and become 
inputs to another set of acousto-optic modulator elements as shown 
in Fig. 6. This figure shows a succession of such cascaded modula­ 
tors. The phase of fringe pattern output for the set would be the 
accumulated sum 2(«i 4- ft^), i.e., the output fringe pattern is of the 
form

cos Lx + £ («i + ft{ ) (11)

With this device, we can realize a computing module capable of 
addition, subtraction, and multiplication (through successive addi­ 
tion). For addition or subtraction of two residue numbers, we need 
only two modulators. With multiplication, the number of modulator 
elements in this type of computing module must equal the largest 
multiplier which, for modulus nij, will be m^   1. Multiplying two 
numbers X X Y is done by entering a phase a — ft = X in all 
modulator elements and having the total number of modulators 
equal to Y.

Considerable reduction in complexity of the multiply operation 
could be realized by use of the homomorphic approach for multipli­ 
cation. Recall that with this method a log-like transformation of the 
multiplier and multiplicand is required followed by modulo m^   1 
addition and then an inverse transformation to determine the 
answer. However, convenient methods for homomorphic multiplica­ 
tion using the cyclic phase approach have not yet been devised. Such 
a transformation is readily accomplished with a mapping implemen­ 
tation approach using, for example, light beam position control.

The time required to perform the single summation a -h ft is quite 
short, being simply the propagation time from the acousto-optic 
(AO) cell to the output fringe detection plane, which would be a few 
picoseconds for small integrated optic configurations. Clearly, how­ 
ever, overall cycle time of such a unit is the characteristic of impor­ 
tance and it is comprised of the set-time of an AO device, the light 
propagation time noted before, and the output fringe phase detection 
time. At the present state of the art, the AO cell set-time capability is 
about 0.1 to 10 /isec which is quite modest for computing operation 
of interest here. Another design concern with this approach at pres­ 
ent is the combined speed and accuracy achievable in performing 
electronic detection of the phase of the output fringe pattern.

Output
Data
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Fig. 6. Cyclic phase operation with cascaded acousto-optic elements for 
2N inputs.

4.2. Mapping with beam position control
Position control or mapping of a light-beam path provides an attrac­ 
tive means for residue number representation and computing oper­ 
ations. At the present state of hardware development, mapping 
appears to offer a more versatile approach to numerical optical 
processor design than is available with cyclic phase or polarization 
devices. This is due mainly to the lack of fully developed methods for 
quantization and the comparative complexity of performing such 
operations as multiplication with cyclic devices which employ phase 
or polarization control. In this section, we describe a programmable 
computing module6 for basic arithmetic which uses light beam posi­ 
tion mapping. The design concept offers considerable versatility in 
use and a good potential for interconnecting a large set of such 
modules for more complex computing operations.

To demonstrate the design concept, we will use directional 
coupler wave guide switches for the implementation of beam path 
control. The directional coupler is one of the better-developed inte­ 
grated optical devices and it allows flexibility in optical circuit 
design. 18'20 We shall briefly describe the optical coupler wave guide 
switch and then proceed to formulate its use in a basic addition 
operation which will be extended into a multipurpose arithmetic 
module. It should be noted that there are other components that
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Fig. 7. (a) Directional coupler wave guide switch (not to scale) (b) sche-
matic representation.

would be good candidates for the implementation of a mapping
configuration. The wave guide coupler is but one example.

A directional coupler is schematically shown in Fig. 7. Two wave
guides are placed physically close to each other such that, in the
absence of an applied electric field, the wave guides are synchronous.
That is, a light wave propagating in one wave guide will be coupled to
the adjacent one producing a switch in light path. '8-20 When an
appropriate voltage VT is applied to the electrode, the synchronism
between the wave guides is broken and the light propagation will
remain in the wave guide originally excited as illustrated in Fig. 7(a)
For simplicity, the coupler wave guide switch from here on will be
represented as shown in Fig. 7(b).

Using the wave guide switches, one possible implementation of a
modulo 5 adder is shown in Fig. 8. With this design, the electrode
voltages of all of the coupler wave guide switches are initially set at
VT. The light wave injected into the input of the adder will therefore
propagate inside the same wave guide through the adder. To pro-
gram the device for the +2 operation, for example, the electrode
voltage of the corresponding row of couplers is changed to O. Thus,
when the light propagation reaches that particular set of coupler
wave guide switches, the light wave will be coupled into the adjacent
wave guide, changing the optical path. The electrode voltages are
maintained at constant levels of VT or 0 by connecting the electrodes
to a set of S -R flip flops. The adder can be programmed by sending
an electric pulse to the "S" input of the appropriate flip flop, trigger-
ing it to change state. Alternatively, we could let the initial electrode
voltage of all the couplers be 0 and program the adder by changing
the electrode voltage of a particular row of coupler switches to VT.
However, we generally find that it is easier to trace the light path with
the former design, and, to make the devices easier to study, we shall
make use of the former design in this paper. We shall also use the
term "on" to describe the state where coupling occurs at the coupler
switch and term "off" for the state where the light propagation will
remain in the same wave guide.
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Fig. 8. Implementation of modulo 5 adder (not to scale).

Subtraction can be performed with the use of the additive inverse
as described previously. There is a fixed one -to -one correspondence
between a residue number and its additive inverse. The additive
inverse transformation can therefore be implemented by a fixed map.
And by adding this transformation map to an adder, one can convert
it into a subtractor as shown in Fig. 9 for modulus 5.

Multiplication can be implemented directly by using fixed maps
(mi of them) for the operations of X0, X 1, X2,..., X(mi - 1).
Alternatively, one can make use of a homomorphic approach where
a modulo mi multiplication is converted into a modulo mi - 1
additive operation. A logo K -like forward transform is first per-

Fig. 9. Converting an adder for subtraction operation.
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Fig. 7. (a) Directional coupler wave guide switch (not to scale) (b) sche­ 
matic representation.

would be good candidates for the implementation of a mapping 
configuration. The wave guide coupler is but one example.

A directional coupler is schematically shown in Fig. 7. Two wave 
guides are placed physically close to each other such that, in the 
absence of an applied electric field, the wave guides are synchronous. 
That is, a light wave propagating in one wave guide will be coupled to 
the adjacent one producing a switch in light path. 18'20 When an 
appropriate voltage VT is applied to the electrode, the synchronism 
between the wave guides is broken and the light propagation will 
remain in the wave guide originally excited as illustrated in Fig. 7(a) 
For simplicity, the coupler wave guide switch from here on will be 
represented as shown in Fig. 7(b).

Using the wave guide switches, one possible implementation of a 
modulo 5 adder is shown in Fig. 8. With this design, the electrode 
voltages of all of the coupler wave guide switches are initially set at 
VT . The light wave injected into the input of the adder will therefore 
propagate inside the same wave guide through the adder. To pro­ 
gram the device for the +2 operation, for example, the electrode 
voltage of the corresponding row of couplers is changed to 0. Thus, 
when the light propagation reaches that particular set of coupler 
wave guide switches, the light wave will be coupled into the adjacent 
wave guide, changing the optical path. The electrode voltages are 
maintained at constant levels of VT or 0 by connecting the electrodes 
to a set of S-R flip flops. The adder can be programmed by sending 
an electric pulse to the "S" input of the appropriate flip flop, trigger­ 
ing it to change state. Alternatively, we could let the initial electrode 
voltage of all the couplers be 0 and program the adder by changing 
the electrode voltage of a particular row of coupler switches to VT . 
However, we generally find that it is easier to trace the light path with 
the former design, and, to make the devices easier to study, we shall 
make use of the former design in this paper. We shall also use the 
term "on" to describe the state where coupling occurs at the coupler 
switch and term "off for the state where the light propagation will 
remain in the same wave guide.
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Fig. 8. Implementation of modulo 5 adder (not to scale).

Subtraction can be performed with the use of the additive inverse 
as described previously. There is a fixed one-to-one correspondence 
between a residue number and its additive inverse. The additive 
inverse transformation can therefore be implemented by a fixed map. 
And by adding this transformation map to an adder, one can convert 
it into a subtracter as shown in Fig. 9 for modulus 5.

Multiplication can be implemented directly by using fixed maps 
(m; of them) for the operations of XO, XI, X2,..., X^   1). 
Alternatively, one can make use of a homomorphic approach where 
a modulo mj multiplication is converted into a modulo m^   1 
additive operation. A logb K-like forward transform is first per-
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Fig. 9. Converting an adder for subtraction operation.
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Fig. 10. (a) Transform table for modulus 5 and (b) modulo 5 multiplica-
tion using the homographic approach.

formed on the operands. A modulo mi - 1 addition is then per-
formed and the sum is inverse transformed by a bK -like transform to
obtain the product of the two original numbers. The transform table
for modulus 5 and the process is illustrated schematically in Fig. 10.
Although the logs K -like transformation for the value 0 is not
defined, it is known that if either the multiplier or the multiplicand is
0, the product is 0. A modulo 5 multiplier is shown in Fig. 11 using
this homomorphic approach. We note that for a modulo 5 multipli-
cation, a modulo 4 addition is performed. Thus, in order to convert a
modulo 5 adder into a modulo 5 multiplier, the modulo 5 adder
should be designed in such a way that it can be easily converted into a
modulo 4 adder. This can be achieved with the design shown in Fig.
12. While the concept can be applied to an adder of any modulus, we
should note that this homomorphic approach can be used only if the
modulus is prime.

One feature of this design is that the input, output, and program-
ming controls are all represented spatially in the same way. This
allows the interconnection of these devices for sequential operations.
The outputs of one module can be connected directly to the inputs of
the next module or it can be used to program the map of the next
adder as illustrated in Fig. 13. An electrical pulse is sent to the first
multiplier to program it to perform

Fig. 11. Implementation of a modulo 5 multiplier.

Mod 5 Convertible to Mod 4 Adder
C = 0 Mod 5 Adder
C = 1 Mod 4 Adder

3

+0-

2 3 4

Fig. 12. Modulo 5 adder convertible to modulo 4 adder.

xlXImi.

A light pulse is then injected into the adder at the spatial position
corresponding to

I1'Imi .

The exit position of the light beam would correspond to

XXYIm .
i

A fast avalanche photodiode is connected to each of the output wave
guides. The exiting light pulse will be detected by the photodiode,
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formed on the operands. A modulo mi   1 addition is then per­ 
formed and the sum is inverse transformed by a bK -like transform to 
obtain the product of the two original numbers. The transform table 
for modulus 5 and the process is illustrated schematically in Fig. 10. 
Although the logb K-like transformation for the value 0 is not 
defined, it is known that if either the multiplier or the multiplicand is 
0, the product is 0. A modulo 5 multiplier is shown in Fig. 11 using 
this homomorphic approach. We note that for a modulo 5 multipli­ 
cation, a modulo 4 addition is performed. Thus, in order to convert a 
modulo 5 adder into a modulo 5 multiplier, the modulo 5 adder 
should be designed in such a way that it can be easily converted into a 
modulo 4 adder. This can be achieved with the design shown in Fig. 
12. While the concept can be applied to an adder of any modulus, we 
should note that this homomorphic approach can be used only if the 
modulus is prime.

One feature of this design is that the input, output, and program­ 
ming controls are all represented spatially in the same way. This 
allows the interconnection of these devices for sequential operations. 
The outputs of one module can be connected directly to the inputs of 
the next module or it can be used to program the map of the next 
adder as illustrated in Fig. 13. An electrical pulse is sent to the first 
multiplier to program it to perform
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Fig. 1 2. Modulo 5 adder convertible to modulo 4 adder.

A light pulse is then injected into the adder at the spatial position 
corresponding to

The exit position of the light beam would correspond to 

|XXY| m..

A fast avalanche photodiode is connected to each of the output wave 
guides. The exiting light pulse will be detected by the photodiode,
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Fig. 13. Interconnection of modulo 5 computation modules.

generating an electric pulse. The electric pulse in turn triggers the
corresponding flip flop of the next adder, setting it for the

+IXXYIm
i

operation. Another light pulse is then injected into the input of the
second adder at the position corresponding to

IZImi

The position where the light pulse exits will represent

IXXY +ZIm
i

.

4.3. Multipurpose arithmetic module
With the subunits described above, we can proceed to describe a
multipurpose programmable computation module. The module will
contain four distinct parts as shown in Fig. 14. Each of these subunits
can be turned on and off individually, allowing the different combi-
nations of the subunits to perform various computation operations.
However, it is more complicated than simply stacking all the sub-
units together. Special attention must be paid to the case of +0 and
XOby noting that X +O= X, X 0 = 0, 0 Y = 0, and X . 1 = X.
Furthermore, the modulus mi adder must be modified to perform
modulo mi - 1 addition and the

-KImi
additive inverse transform must be converted into a
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Fig. 14. Conceptual design of programmable multipurpose computation
module.

-K mi-1
transform when the module is programmed to perform multiplica-
tion and division. A possible design of the programmable multipur-
pose computation module is shown in Fig. 15.
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Fig. 15. Implementation of programmable multipurpose computation
module.
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generating an electric pulse. The electric pulse in turn triggers the 
corresponding flip flop of the next adder, setting it for the
+|XXY| m.
operation. Another light pulse is then injected into the input of the 
second adder at the position corresponding to

The position where the light pulse exits will represent
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4.3. Multipurpose arithmetic module
With the subunits described above, we can proceed to describe a 
multipurpose programmable computation module. The module will 
contain four distinct parts as shown in Fig. 14. Each of these subunits 
can be turned on and off individually, allowing the different combi­ 
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However, it is more complicated than simply stacking all the sub- 
units together. Special attention must be paid to the case of +0 and 
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transform when the module is programmed to perform multiplica­ 
tion and division. A possible design of the programmable multipur­ 
pose computation module is shown in Fig. 15.
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Fig. 15. Implementation of programmable multipurpose computation 
module.
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The multipurpose computation module can be programmed to
perform +, -, X, and _ arithmetic operations with simple binary
controls. For example, to perform modulo 5 addition, the subunits
for log2 K -like transform, additive inverse transform, and 2K -like
transform are all turned "off." That is, a light pulse injected into any
of the mi input ports will propagate undeviated along the same wave
guide through these subunits. With these units "off," the module
would be essentially the simple adder shown earlier in Fig. 8. To
perform subtraction, the additive inverse transform

unit is turned "on," changing the light path according to the trans-
form map shown in Fig. 9. We note that while operating in the
addition and subtraction modes with the log2 K -like transform unit
off, an input to the " *0" control has no effect on the light path. The
position of the exit beam would, therefore, be the same as that of the
input beam, performing, in effect, the +0 operation. The program-
ming of the computation module for addition and subtraction opera-
tions is illustrated in Figs. 16(a) and 16(b).

In programming the computation module for multiplication,
there are two possible approaches. The module can be connected as a
multiplier by rerouting the electrode leads to perform the log2 K -like
transform on the multiplier value (X).The 2K-like transform unit is
turned on to inverse transform the sum as illustrated in Fig. 16(c).
With the second approach, both the multiplier (X) and the multipli-
cand (Y) values are transformed by computation modules, as illus-
trated in Fig. 16(d). This approach has two advantages. First, the
connection of the electrode leads does not have to be changed,
allowing the module to be switched back to addition mode when
desired. Second, it provides more flexibility in performing division.
Observe that the extra coupler switch at the left lower corner in Fig.
15 is necessary for the module to be programmed in this mode. The
coupler is turned on together with the log2 K -like transform unit at
the top. When the value of the multiplier X is 0, the " *0" control of
the second module is turned on, and the X 0 operation is performed.
If the multiplier is 1, its log2 K -like transform is 0; the purpose of the
extra coupler switch is to keep the transformed 0 output of the
multiplier from setting the *0 control of the second module. Instead,
the coupler switches the light path away from the 0 output port such
that the second module would be left undisturbed. The light pulse
will exit at the same position as it enters the module, performing the
X 1 operation.

The programming of the computation module for the division
operation is illustrated in Fig. 16(e). An

I -K l -1
additive inverse transform is required for the divisor after the log2
K -like transform. A

I -K1mi
transform can be changed into a

I- KImi -1

transform by shifting down the values of the

transform by I. Referring back to the module design shown in Fig. 15,
the down shifting is performed by the set of three switches at the fourth
row. They are turned on together with the log2 K- transform unit.

There is a very useful feature in the use of computation modules
for residue arithmetic that is shared by other implementations using
the mapping approach. The operand and the operator are combined
in a single representation. For example, to perform addition between
an input value and a stored value with a conventional computer, the
stored value has to be recalled from storage and entered with the
input value into a fixed operator (adder). Implementing residue
arithmetic with the computation modules described here allows the
stored values to be entered into the module as operators (i.e., +K).
The state of the module represents both the operand (K) and the

operation ( +). The module is therefore functioning simultaneously
as the adder and the data storage device. This feature eliminates the
need of a separate memory for values such as the coefficients of a
reference function in correlation detection operations. Without the
access time delay in reading out the stored values, the inputs can be
processed at a very high rate, especially for computations that have
to be performed repeatedly.

Implementation methods for computing modules of a numerical
optical processor which are useful for basic arithmetic operations
have been described thus far. In the following section, we discuss the
application of the computing module to more extensive computing
operations.

5. EXTENDED COMPUTING APPLICATIONS
Extension of the basic numerical optical methods described in pre-
vious sections to a broadened range of computing problems will be
introduced in this section. We will use mapping of the light beam
position as a basis for our discussion; however, it should be kept in
mind that a variety of other hardware design concepts might also be
considered.

5.1. Polynomial evaluation
To demonstrate how the mapping computation module (described
previously) can be interconnected to perform various mathematical
calculations, we consider first the evaluation of polynomials. As
discussed by Huang et al.,4 a polynomial may be evaluated using a
single fixed map. However, considerable flexibility is achieved if a
programmable design is used which can be realized with a collection
of basic arithmetic modules and fixed maps. We start with a set of
fixed maps for Xn, Xe', .. X2 functions which are combined with
the computation modules as shown in Fig. 17. To program the
modules for the computation of X3 + 4X2 + 3X + 2, for example, the
coefficients 1, 4, and 3 are entered into the multipliers. Light pulses
are injected into the inputs of the multipliers at the ports correspond-
ing to the value of input X. The adders would be set by the output of
the multipliers for +(X3), +(4X2), and +(3X) operations. Another
light pulse is then entered into the first adder at input port 2, and the
position where the light pulse exits would correspond to the value of
X3 +4X2 +3X +2.

The computation time would be equal to the time needed to set
the adder module plus the propagation time through four modules.
The propagation time through a single module of 1/ 2 inch size would
be about 50 psec. The set time of the module is the sum of the
detection delay of the photodiode, the switching delay of the flip flop,
and the switching time of the wave guide coupler. It is possible to
achieve a set time under 1.5 nsec for the computation module.1-18
And if we assume that an additional 1.5 nsec is required for the light
pulse to pass through the module and to reset the flip flops, the
throughput rate would be about 1/ 3.2 nsec = 312.5 MHz. Due to the
parallelism of the arrangement, the computation time is approxi-
mately the same for polynomials of any order.

5.2. Matrix multiplication and transforms
One of the important potential applications Of the numerical optical
computer is the multiplication of matrices. It can be extended to a
number of transform operations such as discrete Fourier transform
(DFT), Hadamard transform, etc. We shall examine the general
case of matrix multiplication,

AMXN BNXP - CMXP

The coefficients of the master matrix

BNXP

are stored in the modules as multipliers as shown in Fig. 18. The
values of the matrix
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the multipliers for +(X3 ), +(4X2), and +(3X) operations. Another 
light pulse is then entered into the first adder at input port 2, and the 
position where the light pulse exits would correspond to the value of 
X3 + 4X2 + 3X + 2.

The computation time would be equal to the time needed to set 
the adder module plus the propagation time through four modules. 
The propagation time through a single module of 1 / 2 inch size would 
be about 50 psec. The set time of the module is the sum of the 
detection delay of the photodiode, the switching delay of the flip flop, 
and the switching time of the wave guide coupler. It is possible to 
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And if we assume that an additional 1.5 nsec is required for the light 
pulse to pass through the module and to reset the flip flops, the 
throughput rate would be about I/3.2 nsec = 312.5 MHz. Due to the 
parallelism of the arrangement, the computation time is approxi­ 
mately the same for polynomials of any order.
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number of transform operations such as discrete Fourier transform 
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Fig. 16. Programming of computation module.
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AMXN

pass through the multipliers row by row setting the corresponding
row of adders. Light pulses are entered into the first adder of each
row, providing in parallel the values of the first row of C1i at the
output. The flip flops are then reset, ready for the entries of the next
row of

AMXN

The total computation time is equal to M + 1 set -reset times of the
module, and the number of computation modules required is 2NP.
For example, to multiply two 10 X 10 matrices, the computation time

would be about 30 + 0.05N nsec if we assume a module set -reset time
of 3 nsec and the use of 200 computation modules for each modulus.

6. CONCLUDING REMARKS
We have described design concepts of a preliminary nature for a
numerical optical processor based on the residue number system
together with a. review of the basic aspects of residue arithmetic. A
variety of hardware implementations and computer architectures are
possible in this field. We have provided ideas in this paper which
emphasize use of light beam position mapping in the form of a
versatile arithmetic module which can be applied to system designs
and more complex mathematical operations. The concepts described
provide a potential for improved processor design particularly in

Fig. 18. Matrix multiplication.
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Fig. 17. Programmable arrangement for the evaluation of polynomials.

computing speed and possibly size and power consumption. For
practical realization of the mapping approach, it would appear that
further development is needed for hardware components of the
integrated optics type directed specifically to this application. Of
particular importance would be small optical switching devices hav-
ing fast response, optical wave guides with low loss fabricated for a
variety of path geometries, optical -to- electronic -to- optical conver-
sion elements of small size, and, the compact integration of all of
these items into a small modular package.

Computing algorithms and architecture warrant continued
development efforts for such objectives as the optimization of design

for faster operating speed and the minimization of component count.
Other design approaches, particularly those employing phase or

polarization control of a light beam, have a potential for exceptional
performance provided that certain aspects of the design concept are
appropriately developed. This includes means for quantization over
a large dynamic range, implementation for simplified approaches to
multiplication such as the homomorphic method, means for rapid
accurate output detection, and methods for efficient coupling
between individual cyclic units.
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computing speed and possibly size and power consumption. For 
practical realization of the mapping approach, it would appear that 
further development is needed for hardware components of the 
integrated optics type directed specifically to this application. Of 
particular importance would be small optical switching devices hav­ 
ing fast response, optical wave guides with low loss fabricated for a 
variety of path geometries, optical-to-electronic-to-optical conver­ 
sion elements of small size, and, the compact integration of all of 
these items into a small modular package.

Computing algorithms and architecture warrant continued 
development efforts for such objectives as the optimization of design

for faster operating speed and the minimization of component count. 
Other design approaches, particularly those employing phase or 

polarization control of a light beam, have a potential for exceptional 
performance provided that certain aspects of the design concept are 
appropriately developed. This includes means for quantization over 
a large dynamic range, implementation for simplified approaches to 
multiplication such as the homomorphic method, means for rapid 
accurate output detection, and methods for efficient coupling 
between individual cyclic units.
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