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Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an
algorithm for estimating segment tips and tilts frommultiple point spread functions in different defocused planes.
We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based
phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely
solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts.
Monte Carlo simulations produced a rate of success better than 98% for the combined approach. © 2014 Optical
Society of America
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1. INTRODUCTION
Wavefront sensing by focus-diverse phase retrieval employs
defocused images of point-like stars as measured point spread
functions (PSFs) for determining the aberrations of a tele-
scope. This technique was used to recover the aberrations
of the Hubble Space Telescope [1,2] and has many potential
applications, including the alignment of segmented-aperture
telescopes such as the James Webb Space Telescope (JWST)
[3] or the Thirty Meter Telescope. However, the application of
focus-diverse phase retrieval, particularly for segmented-
aperture systems, has been limited by the so-called “capture
range” problem. If the starting guess is not close enough to the
true phase, the algorithm may stagnate in a local minimum
without reaching the true solution. In the initial alignment
of a segmented system, the segment tips and tilts may be quite
large, putting the system outside of the capture range of phase
retrieval; this requires other methods to be employed until
the segments are well enough aligned to allow phase retrieval
to succeed [3–7].

Recent work by Thurman [8] has demonstrated an approxi-
mate phase retrieval method based on geometrical optics.
This method can be used to obtain a rough estimate of the
segment tips and tilts without itself requiring a good starting
guess. This estimate can then serve as a starting guess for a
more traditional phase retrieval algorithm, which will then be
within its capture range. For a particular set of wavefront er-
ror statistics, Thurman’s method was successful in only 60% of
his trials. We will show some refinements of Thurman’s
method that can alleviate the capture range problem for
segment tips and tilts in focus-diverse phase retrieval in all
but a few cases.

Throughout this paper we will use a particular phase
retrieval problem as an example to illustrate our techniques.

Figure 1 shows the true wavefront error in this problem and
its decomposition into individual components. The wavefront
includes 0.064 wave RMS of intrasegment errors (11 Zernike-
like terms) and 0.079 wave RMS of global aberration terms (11
Zernike-like terms). Intersegment errors consist of an addi-
tional 0.67 wave RMS tilt and 0.20 wave RMS piston. This falls
roughly in the middle of the parameter range for the Monte
Carlo study we will discuss in Section 5. The total wavefront
error, excluding global tip/tilt and piston, is 0.75 wave RMS. If
we additionally exclude wavefront components that can be
represented as segment tip/tilt (including some of the global
aberrations), the wavefront error is 0.24 wave RMS.

2. BASIC ESTIMATE PROCEDURE
The conceptual basis of Thurman’s method is connecting the
intensity measured in a particular PSF with the local ray den-
sity in that plane (as in a geometrical optics spot diagram) and
with a probability density. To strengthen this connection, it is
necessary to overcome the effects of diffraction by applying a
blurring kernel to the detected PSFs:

p�x; y� ∝ BIl�x; y�; (1)

where p�x; y� denotes the probability of a ray passing through
the given point, B is a blurring operator, Il is the measured
PSF in the lth plane, and x; y are PSF-plane coordinates.
For B we used a convolution with a Gaussian blurring kernel
with a full width at half-maximum (FHWM) of 2λf ∕#, where λ
is the wavelength and f ∕# is the f -number of the system.
Figure 2 shows the effect of this blurring on three of the five
PSFs in our example problem. We can express any particular
jth ray in the system in terms of the deviation from the ideal
coordinates of that ray as follows. If xpupj is the x coordinate of
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that ray in the pupil, and the distance to the lth PSF plane is
f − Δzl, where f is the system focal length and Δzl is the
defocus distance, then the x coordinate of the ideal ray is

xrefl;j � Δzl
xpupj

f
(2)

and similarly for y. The actual ray coordinate in the lth plane
is

xl;j � x0l;j � xrefl;j ; (3)

where x0l;j is the transverse displacement from the ideal ray,
given paraxially by x0l;j � θx;j�f − Δzl� ≈ θx;jf , for small jΔzlj,
where θx;j is the angular ray deviation from the ideal. Take the
probability that the jth ray left the pupil with a given �θx;j; θy;j�
and arrived at the lth PSF plane to be

pl;j�θx;j; θy;j� ∝ BIl�θx;jf � xrefl;j ; θy;jf � yrefl;j �: (4)

Considering the local ray density in one image plane as a prob-
ability suggests that we can also consider a joint probability
density over all of the PSF planes as

pj�θx; θy� ∝
Y
l

pl;j�θx; θy�: (5)

We can make an estimate of the most probable ray deviations
as

�θ̂x;j ; θ̂y;j� � arg max
�θx;θy�

�pj�θx; θy��: (6)

From these angular deviations, we can directly obtain the lo-
cal wavefront slopes (the wavefront slope angles are equal to
the ray deviation angles) and through them the segment tips
and tilts. We can think of the system in this case as being sim-
ilar to a Hartmann sensor [9] (where the segments act as sub-
apertures), in which the spots overlap one another and are
confused; we use the multiple planes of data to disambiguate
the Hartmann spots. Our simple way to visualize the process
of determining the tip–tilt for a particular segment (a single
ray) using this method is to imagine an observer sitting in
the pupil plane at the location of the ray. The observer looks
back through the PSF planes and chooses a ray direction so
that it will pass through bright regions in all the PSF planes
while avoiding dark regions.

3. ITERATIVE ESTIMATE PROCEDURE
Thurman’s geometrical optics estimation technique described
above may fail because the joint probability density for a given

Fig. 1. Components of a representative wavefront error. (a) Total
wavefront, (b) wavefront with the segment tip–tilt removed, (c) intra-
segment aberrations, (d) segment tip–tilt component of the wavefront,
(e) segment piston component, and (f) global component. Color bars
are in units of waves for all figures.

Fig. 2. Example PSFs with and without blurring. (a), (c), (e) PSFs
without blurring, and (b), (d), (f) PSFs after blurring. PSFs are shown
as intensity to the one quarter power. The top row is −8 waves out of
focus, the middle row is nominally in focus, and the bottom row is�8
waves out of focus.
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segment may have more than one peak, suggesting multiple
possible solutions for the tip–tilt of that segment. Further-
more, the peak with the largest value does not always corre-
spond to the correct solution, because light originating from
other segments confounds the analysis. Figure 3(a) shows a
joint probability density of Eq. (5), with a clear single peak,
whereas Fig. 3(b) shows one with multiple peaks. The wave-
front in our example problem has several segments with joint
densities having multiple peaks, three of which result in sig-
nificant errors in the tip–tilt estimates. Figures 4(a)–4(c) show
the tip–tilt estimates in this case. Figures 4(d) and 4(e) show
the results of phase retrieval using the results in Fig. 4(b) as an
initial estimate. Note that the three segments with the largest
errors in the initial estimate have large residual errors after
phase retrieval that was caught in a local minimum. To alle-
viate this problem, we developed a refinement to Thurman’s
method.

First, we define the set γk as those segments for which the
joint probability density has only one significant peak (begin-
ning with iteration number k � 1). Second, we form amask, as
shown in Fig. 5, which is unity for the set γk and zero for other
(low-confidence) segments. We multiply estimated fields in
the pupil by this mask and compute the partial PSFs, giving
us an estimate of the light in each plane contributed by just
those segments. Third, we subtract these partial PSFs from
the measured PSFs to arrive at residual PSFs. Negative num-
bers in the residual PSFs are replaced by zero. Fourth, using
the residual PSFs, we reestimate the tips and tilts for those
segments in which we are not confident, denoted γ̄k, using
the method described above (including the application of a
blurring kernel). The residual PSFs take the role of the data.
Figure 3(c) shows a resulting probability density for the
residual PSFs; note that it has only a single peak as compared
with the multiple peaks in Fig. 3(b). We can then construct the new estimate as

ψ̂k�1 �
8<
:
Kγ̄k �I −Mγk �ψ̂k;γk ��; γ̄k

ψ̂k;γk ; γk
; (7)

where the set γk denotes the segments in which we are con-
fident in our phase estimate on the kth iteration, γ̄ denotes the
segments in which we are not confident, I represents the mea-
sured data, ψ̂k;γk denotes the phase estimate for the segments
in the set γk only, andMγk �·� is a numerical forward model that
uses the estimated pupil phases to form estimated PSFs for
the segments in set γk. The procedure for applying Mγk �·� is

Fig. 3. Example probability densities (shown as the square root).
(a) An unambiguous one with a single peak, (b) an ambiguous one
with multiple peaks, and (c) the density from (b) after it has been cor-
rected to remove ambiguity.

Fig. 4. Comparison of (a) a true wavefront, (b) the tip–tilt estimated
by Thurman’s method, (c) their difference, (d) the phase retrieval re-
sults starting from the initial ray-based estimate from Thurman’s
method, and (e) the error in the phase retrieval. Note that three par-
ticular segments have larger tilt errors in the ray estimate and higher
order errors in the phase retrieval. The color bar units are waves.

Fig. 5. For the examples, the mask identifying high-confidence seg-
ments used to remove light from the PSF and joint density functions.
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as follows. Form a two-dimensional mask that is unity at every
point within the segments that are part of γk and zero every-
where else. Form complex fields from this mask and the wave-
front information. Propagate the fields to the nominal focus
using numerical fast Fourier transform propagation, and from
the nominal focus to each image plane using angular spectrum
propagation (this model is appropriate for systems where the
detector moves physically to introduce focus diversity). Take
the squared magnitudes of the complex fields in the image
planes to form image estimates; the result ofMγk �·� is an entire
focus-diverse intensity data set resulting from the provided
wavefront estimates. The operator Kγ̄k �·� denotes the process
of using Thurman’s method to construct a tip–tilt estimate for
the segments in γ̄k. Equation (7) is repeated iteratively, with ψ̂k

being the phase estimate at iteration k.
In order to make progress, each iteration of Eq. (7) should

identify at least one segment whose joint probability was pre-
viously ambiguous but that is unambiguous after removal of
the light from the high-confidence segments. Thus, as we iter-
ate, more segments are put into γk. Iteration continues until
either all segments are in γk or until γk�1 � γk (meaning the
algorithm can make no more progress). In this later case
we take the highest probability peaks for the remaining seg-
ments and proceed with phase retrieval.

In the example problem, one iteration was sufficient to
achieve an adequate tip–tilt estimate. Figure 6 shows the
improved wavefront reconstruction in our example problem.

In most cases, this iterative process was sufficient to remove
the ambiguity in the joint probability densities and arrive at
good tip–tilt estimates.

4. AVOIDING PHASE RETRIEVAL
STAGNATION
As in Thurman’s previous work, we used the tip–tilt estimates
from the geometrical optics method as a starting guess for
phase retrieval. For the result shown in Fig. 4 we used a non-
linear optimization-based phase retrieval algorithm with a
sum of squared differences of intensity error metric and a con-
jugate gradient search strategy using analytic gradients
[1,10,11]. When we used Thurman’s original algorithm, the
starting guesses were close enough for phase retrieval to con-
verge only 60% of the time. When we used our guesses derived
from the improved algorithm described in Section 3, the rate
of convergence was much higher, but still not 100%. Cases
where the algorithm failed to find a good solution can be iden-
tified by comparing the final error metric value with the ex-
pected value based on the noise present in the data or by
visually assessing the agreement between the modeled PSFs
and the measured data. So typically the user of the algorithm
would be aware that the fitting had failed in these cases rather
than being misled to select an incorrect solution. We identified
two primary modes for this stagnation. The first is tip–tilt er-
rors in a single segment. Either as a result of an insufficiently
accurate tip–tilt estimate in the starting guess or due to the
stochastic nature of the nonlinear optimization in the phase
retrieval algorithm, the tip–tilt for one of the segments may
become significantly different from the correct value. This
leads to stagnation in the phase retrieval algorithm, since gen-
erally moving energy from a segment having an incorrect tip–
tilt estimate to its correct position would require the light to
move away from a bright area through a dark area in one or
more PSF planes to get to the correct bright area, raising the
error metric. The gradient-based phase retrieval algorithm
does not allow that. In this stagnated case, the phase retrieval
algorithm was largely unable to fit the intrasegment aberra-
tions as well as the tip–tilt of the segment having the incorrect
tip–tilt, but generally the other segments achieved a reason-
ably good fit. This problem can be solved by repeating the geo-
metrical optics analysis used to construct the tip–tilt starting
guess for that segment, but taking into account the improved
knowledge of the higher-order phase errors of the other seg-
ments. This requires first determining which segment is most
likely to have an incorrect tip or tilt. We did this by consider-
ing the difference between the measured data and the mod-
eled data:

ΔIl � Il −Ml�ψ̂pr�; (8)

where ψ̂pr is the stagnated phase retrieval result andMl is the
forward model for the lth plane. In this case Ml does not
include any masking but instead represents the model PSF in-
cluding all segments. We blurred these differenced PSFs and
converted them into angular space as in Eq. (4) to get

εl;j�θx; θy� � BΔIl�θxf � xrefl;j ; θyf � yrefl;j �: (9)

Note that it is no longer appropriate to consider εl;j as a prob-
ability density, even though it is similar in form to pl;j , since it

Fig. 6. Comparison of (a) the true wavefront, (b) the improved esti-
mated wavefront by the ray-based estimate using Eq. (7), (c) their dif-
ference, which is improved from the result in Fig. 4(c), (d) phase
retrieval results starting from the improved ray-based estimate, and
(e) the error in phase retrieval. Note that the residual wavefront error
in (e) is small (thousandths of a wave) for all segments. The color bar
units are waves.

664 J. Opt. Soc. Am. A / Vol. 31, No. 3 / March 2014 A. S. Jurling and J. R. Fienup



has a zero mean. Rather, εl;j represents the distribution of er-
rors from the model in the lth plane as seen from the jth seg-
ment. We combined the information from the different planes,
in this case using a sum rather than a product, given by

εj�θx; θy� �
X
l

εl;j�θx; θy�: (10)

We used the peak-to-valley deviation in εj�θx; θy� for the jth
ray,

Δεj � max�εj�θx; θy�� −min�εj�θx; θy��; (11)

as a good indicator of which segment is the most likely to have
a wrong tip–tilt value. We selected the segment in error, je, by
choosing the value of j for which Δεj is largest. Given the
stagnated phase retrieval result ψ̂pr, we can form the new
estimate,

ψ̂new �
(
Kje �I −Mγ �ψ̂pr;γ ��; je

ψ̂pr;γ ; γ;
; (12)

where γ is the set of all segments except the jeth. Note that
because ψ̂pr is the stagnated result of phase retrieval, it can
also contain global phase terms; these should also be kept un-
changed. Only the segment coefficients for segment je are
changed. Specifically, the tip–tilt estimate of the jeth segment
should be updated; the higher-order segment coefficients of
the jeth segment are probably very wrong, and we set them
to zero. Then phase retrieval is continued from this estimate.
This approach is somewhat related to Zielinski and Fienup’s
approach in [12], but our approach can identify suspect seg-
ments without human assessment of PSFs and can iteratively
improve the estimates without recourse to the full phase
retrieval algorithm; Zielinski and Fienup’s approach relies
on reseeding suspect segments with random tip–tilt values.

The next common stagnation mode in this approach is an
error in global tip–tilt if each PSF is allowed to have a separate
global tip–tilt to account for camera motion or telescope jitter
between frames. If these global estimates become incorrect,
the phase retrieval algorithm can again stagnate. This is easily
resolved by generating modeled PSFs using the stagnated
phase retrieval result and registering each PSF against the si-
mulated data for the same frame by finding the location of the
peak of the cross correlation [13] between the modeled PSF
and the data. That peak location is then used to compute a
corresponding error in global tip–tilt, which is applied to
the phase estimate. Phase retrieval is then restarted. This stag-
nation mode typically occurs as an error of several pixels in
one of the focus-diverse image planes. It appears to be caused
by a strong fringe in the part of the image being shifted over by
at least one full period of the fringe, so that shifting the image
to the correct position would require moving across the fringe
nulls, temporarily increasing the error metric.

5. MONTE CARLO SIMULATION RESULTS
We applied the methods described above in a simulated sys-
tem with an aperture consisting of 18 hexagonal segments
with an average of 1.8 waves RMS of lower-order global aber-
rations, 0.4 wave RMS of lower-order segment aberrations,
and segment tip–tilts ranging between zero and 1.4 waves

RMS. All global and segment aberrations were assumed to
be unknown. The system and simulation parameters are the
same as those described in [8]. We used defocus settings of
0, �6, and �8 waves peak-to-valley, similar to but not the
same as those planned for the JWST Near Infrared Camera
(NIRCam). When the defocus is very large, the light from each
segment forms a blob separate from the light from the other
segments, as in a Hartmann test, making the identification of
the segments easier. Including planes with larger defocus
(such as the�12waves for NIRCam [7]) would likely improve
the performance of the basic method by reducing overlap of
blobs from separate segments.

Applying the iterative tip–tilt estimation without the stagna-
tion avoidance methods led to convergence in 183 of the 200
cases we considered (92% convergence success). By combin-
ing the improved starting guesses with the techniques for
avoiding stagnation, we were able to achieve sucess in 196
cases (98% convergence success) for phase retrieval over
the entire range of segment tip–tilts we considered. Of the ad-
ditional 13 cases that converged with the stagnation avoid-
ance techniques, 9 had stagnated due to single-segment tip–
tilt errors and 4 had stagnated due to global tip–tilt errors.

Of the four trials that failed to converge after the applica-
tion of stagnation avoidance, two represented cases where the
first stagnation mode (tip–tilt error of a single segment) oc-
curred and the tip–tilt reestimation process was not able to
find a better solution. In the other two cases there were errors
in the higher-order wavefront over the whole aperture, and
the particular failure mode was not clear.

Figure 7 shows a comparison of the success rate between
Thurman’s method (dashed line), our improved method in-
cluding the stagnation avoidance methods (solid line), itera-
tive estimation without stagnation avoidance (solid line
with squares), and phase retrieval used alone with a starting
guess of zero phase (dotted–dashed line). Thurman’s method
works well with very large tip–tilts, where there is little
chance for confusion between individual segments, and ordi-
nary phase retrieval works well for small tip–tilts, where there
is no need for tip–tilt bootstrapping. Our improvements help
the most in the 0.25–1.25 wave RMS tip–tilt regime, where
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Fig. 7. Fraction of converged cases comparing the new method with
iterative estimation, Thurman’s approach, and standard phase
retrieval. The cases are binned by RMS tip–tilt, with the upper edge
of the bin interval on the horizontal axis.

A. S. Jurling and J. R. Fienup Vol. 31, No. 3 / March 2014 / J. Opt. Soc. Am. A 665



ordinary phase retrieval algorithms are outside their capture
range and the blobs in the PSF from different segments are not
yet well enough separated for Thurman’s algorithm to work
reliably.

6. CONCLUSION
We have improved upon Thurman’s geometrical optics tip–tilt
estimation approach by introducing a method using the num-
ber of peaks within the joint probability density function to
quantify our confidence in a particular estimate and use it
to recursively reestimate tip–tilts, yielding more robust esti-
mates. We also introduced a refinement of this approach that
uses partially successful stagnated phase retrieval results to
further improve the tip–tilt estimates. Finally, we introduced
a method using image registration to avoid phase retrieval
stagnation in global (per PSF) tip–tilt terms. Using these meth-
ods together allowed us to solve the capture range problem
for segment tip–tilts; phase retrieval converged successfully
in 98% of cases over a broad range of segment tip–tilt values.
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