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1. INTRODUCTION
It is useful to measure the wavefront aberrations of an optical
system. In a laboratory environment this may be done using
interferometry or wavefront sensing hardware, such as a
Shack–Hartmann wavefront sensor. However, it is often desir-
able to measure the wavefront of a system using only the
hardware already present for its imaging function. This is par-
ticularly relevant for space-based imaging systems where
mass and volume are at a premium and external test hardware
such as interferometers are not feasible. Alternately, a wave-
front sensing approach using built-in imaging hardware may
be required simply because a system was not designed origi-
nally to support wavefront sensing and no such hardware is
available; the classic case of the Hubble Space Telescope
spherical aberration problem combines both of these
scenarios [1].

Phase retrieval algorithms [2,3] have been used for image-
based wavefront sensing in a number of applications, and
are planned for use in fine phasing of the James Webb Space
Telescope (JWST) [4]. These algorithms work by modeling the
system and its aberrations and fitting a point-spread function
(PSF) computed from this model against the measured PSF
data, using an iterative-transform or nonlinear optimization
approach. In this paper we will focus on the nonlinear optimi-
zation phase retrieval [2,3] family of algorithms for wavefront
sensing. These algorithms typically take some provided infor-
mation about the system as a given, such as the operating
wavelength or a known pupil constraint. Uncertainty in these
given parameters can limit the accuracy of the algorithms, so
there has been a trend of extending phase retrieval algorithms
to treat formerly fixed parameters as additional variables. This
has led to algorithms able to retrieve point-by-point or para-
metric amplitude models, spectral weights, and defocus dis-
tances, for example. For nonlinear optimization algorithms,
it is highly desirable to obtain an analytic form of the gradient
of the error metric with respect to the unknown parameters.
One parameter in particular has until now resisted such
analysis: the sampling parameter Q � λF∕p, where λ is the

wavelength, F is the f -number, and p is the detector pixel
pitch [5]. Uncertainty in Q can be equivalently seen as uncer-
tainty in the wavelength, effective focal length, f -number,
pixel pitch, or plate scale. Previously, Q optimization has been
done using grid searching [6] and finite difference gradients
[7]. In this paper, we demonstrate a new method for Q
retrieval using a chirp z-transform and a reverse-mode algo-
rithmic differentiation [8,9] process to obtain efficient scaling
and analytic gradients.

In Section 2, we review the Q-optimization problem and the
chirp z-transform algorithm. In Section 3 we define some nota-
tion conventions for the mathematical sections of the paper. In
Section 4 we review the mathematical model for a simple non-
linear optimization phase retrieval algorithm. In Section 5 we
develop the analytic gradient for the chirp z-transform in one
dimension, which we extend to two dimensions in Section 6.
In Section 7 we incorporate the chirp z-transform model into
the phase retrieval algorithm from Section 4. In Section 8 we
present the results of a computer simulation study. Finally in
Section 9 we draw conclusions. Some of this material was
previously presented in the conference paper [10].

2. Q OPTIMIZATION
The difficulty in obtaining analytic gradients for Q arises from
two aspects. First, the sampling in a numerical propagation is
typically controlled by using zero padding in a fast Fourier
transform (FFT), which induces a fundamental quantization
on Q. In this model, Q is not a continuous quantity, and we
cannot differentiate with respect toQ. This aspect of the prob-
lem can be addressed [6] by using a matrix-multiply discrete
Fourier transform (DFT). This, however, introduces an addi-
tional problem: by using a matrix-multiply DFT to compute the
propagation, we have given up the favorable asymptotic scal-
ing of the FFT [11], so the cost of computing propagations for
large array sizes grows faster than for typical FFT-based
phase retrieval algorithms. Second, because the sampling
parameter appears in the kernel of the transform rather than
its argument, the analytic gradient does not follow the typical
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pattern of phase retrieval gradients seen in [3]. For this rea-
son, previous work [7] has relied on a finite-difference gra-
dient with respect to Q. One of the issues addressed by [7]
is fixed FFT sampling relations: if the phase retrieval model
uses FFTs, the finite integer array size places limits on the step
size in the gradient so that it may not be possible to achieve an
adequate finite difference approximation. This problem is ad-
dressed in [7] by combining the finite difference gradient
approximation with a forward model using the matrix multi-
plication two-dimensional (2D) DFT, which allows continuous
sampling control at the expense of potentially increased com-
putational costs. Although a finite-difference gradient is not
excessively computationally onerous for a single parameter,
it introduces several potential problems. First, the user is re-
quired to choose an appropriate step size for the finite differ-
ence approximation. Second, it degrades the numerical
accuracy of that component of the gradient, due to taking
differences of two similar numbers.

In this paper, we address the requirement to continuously
control the sampling parameter by adopting a chirp z-
transform [12–15] propagation model. The chirp z-transform
is a generalization of Bluestein’s FFT algorithm [13] for com-
puting FFTs with prime and nonhighly composite transform
lengths, which can also be used to compute transforms with
arbitrary sampling. It can compute any transform that could
be computed using a matrix-multiply DFT (uniformly sampled
transforms with arbitrary spacing in both domains) and main-
tains the same asymptotic scaling behavior as the FFT (with a
modest constant-factor penalty). See [16] for an application to
digital holography. Depending on the array sizes and imple-
mentation details, in some cases there can be a performance
benefit to using the matrix-multiply DFT over the chirp
z-transform, particularly for smaller arrays. Either algorithm
could be used as the basis for a Q optimization algorithm; in
this paper we limit our consideration to chirp-z-transform-
based solutions. Finally, we employed manual algorithmic dif-
ferentiation [8,9] to obtain the analytic gradients with respect
to Q. This provides a formal step-by-step process for trans-
forming the algorithm used to compute the chirp z-transform
in the forward direction into an algorithm for computing
the gradient with respect to Q, which was not previously
achieved.

3. NOTATIONAL CONVENTIONS
In this paper, boldface symbols denote vector or array quan-
tities, italics but unbolded symbols denote scalar quantities,
and the overbar denotes differentiation of the final error met-
ric with respect to the quantity denoted by the symbol under
the bar. The overbar notation is adapted from [8] and devel-
oped in detail in [9]. Following the convention we adopted in
[9], the small circle operator ∘ will denote the element-wise
scalar product of two arrays. Also, a superscript applied to
a bold variable, such as D2, indicates element-wise raising
to a power.

4. PHASE RETRIEVAL REVIEW
In order to place Q retrieval within the context of a larger
phase retrieval algorithm, we will present here a monochro-
matic single-image phase retrieval algorithm that nevertheless
exhibits many of the qualities of more sophisticated
algorithms that might be used in practice. We begin by

parameterizing the wavefront W that we wish to retrieve in
terms of a set of Zernike polynomials Z,

W �
X
n

anZn; (1)

where the a vector denotes the Zernike coefficients of the
wavefront. Next, using that wavefront we form a complex
field in the pupil:

g � A ∘ exp
�
i
2π
λ
W
�
; (2)

where A is a discrete representation of the amplitude trans-
mittance of the pupil of the system and λ is the wavelength
of the light. In this (fixed sampling) model, Q is controlled
by constructing A so that the clear aperture is embedded in
a larger array of zeros. We then propagate this field to the im-
age plane using an FFT (in order to doQ optimization, this will
later be replaced with the chirp z-transform, and the require-
ment to embed the clear aperture in zeros will be lifted):

G � FFTfgg: (3)

We form a model of the intensity of the image:

I � jGj2 � G ∘ G�: (4)

Finally, using this modeled intensity we can form an error
metric:

E �
X
m

�Im − Dm�2; (5)

where D is the measured PSF data (an image of a point
source) and m indexes the pixels of the image. This formu-
lation of the error metric relies on the energy in the pupil
amplitude in Eq. (2) being selected such that after the FFT
propagation in Eq. (3), the overall intensity in Eq. (4) is nor-
malized appropriately compared with the data, so that the er-
ror metric in Eq. (5) will be approximately zero when the
model Zernike coefficients match those that produced the
data PSF. In practice, we prefer to employ the bias and gain
invariant metric developed in [17], but for explanatory pur-
poses will retain the simple sum of squared differences metric.
See the discussion at the end of Section 8 for a caveat relating
to this formulation. Once we have defined the error metric, we
must find the vector of Zernike coefficients that minimizes it,
formally:

â � argmin
a

�E�a��: (6)

Finding the global minimum of the error surface defined by
Eq. (5) is not trivial. Even limiting our consideration to low
order Zernikes (perhaps the first 15), the search spaces are
of too high a dimensionality to permit exhaustive brute force
searches. Instead, we employ gradient search algorithms such
as nonlinear conjugate gradient or the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm [18]. In order to keep
the computational cost of the algorithm from growing propor-
tionally to the number of parameters, we use analytic gradient
techniques to form expressions for the gradients of the error
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metric as shown in [2,3]. Here we use the reverse mode
gradient formalism developed in [9] to derive the needed
gradients. For our example forward model, the gradient is
given by

Ī � 2�I − D�;
G � 2G ∘ Ī;

ḡ � IFFTfḠg;

W � 2π
λ
Ifg� ∘ ḡg;

ān �
X
p

�W ∘ Zn�p; (7)

where If ·g denotes taking the imaginary part and p indexes
over the wavefront pixels. With these gradients in hand, we
proceed to minimize the error metric and find a local mini-
mum of the error surface from Eq. (6). The success of the
technique is then predicated on three requirements: (1) A
global minimum exists, (2) that global minimum is near to
the point corresponding to the true wavefront coefficients
(if there is noise in the data it will not be at the exact truth),
and (3) our starting guess for phase retrieval is close enough
to the global minimum that the nonlinear optimizer will locate
the global minimum rather than another local minimum. The
first two requirements are typically satisfied by phase retrieval
models, with the exception of trivial degeneracy like the twin
image problem in single-plane phase retrieval (where there
are two solutions, and one is a reflection and complex conju-
gation of the other). The third requirement is referred to as the
“capture range problem,” and whether it is met in practice
depends on the magnitude of the wavefront aberrations and
quality of initial wavefront guesses. Although there is at
present no general solution to the capture range problem, for
many practical problems the capture range is sufficient to
use phase retrieval effectively and we will not consider it
further here.

The phase retrieval model shown above exhibits fixed FFT
sampling relationships enforced by Eq. (3) and optimizes only
over wavefront parameters, not sampling parameters. Over
the next two sections we will replace the FFT propagation
model with the more flexible chirp z-transform and provide
the required analytic gradients for the sampling parameters.

5. ONE-DIMENSIONAL TRANSFORM
While our goal is to develop a 2D chirp z-transform, we will
first consider the simpler 1D DFT case. Instead of a fixed FFT
length L, the scaling of the transform will be described by the
quantity α, which is inversely proportional to Q:

α � 1
QNc

; (8)

where Nc is the number of pixels across the nominal clear
aperture of the system. For a padded FFT, α is one over
the FFT length. Ultimately, we wish to obtain the gradient
with respect to α. For a general uniformly sampled transform,
we have

Xm �
XN−1

n�0

xne−2πi�m−Δm��n−Δn�α: (9)

We have added the terms Δm and Δn to allow for translations
in the input and output domains and to account for moving the
origin to the center of the array if desired. We are interested in
particular in an input vector x of lengthN and an output vector
X of lengthM . The chirp z-transform is based on the factoring
identity

nm � n2 �m2
− �n −m�2
2

: (10)

Including the linear shift factor, this can be written

�n − Δn��m − Δm� � 1
2
��n − Δn�2 � �m − Δm�2

− �m − n − Δm� Δn�2�: (11)

Inserted into Eq. (9), this gives rise to three factors; the first, a
pre-factor, depends on the input coordinates:

βn � exp�−iπ�n − Δn�2α�;
β � exp�−iπn̂2α�; (12)

where n̂ is a vector of indices running from −Δn to N − Δn − 1.
The second, a post-factor, depends on the output coordinates:

γm � exp�−iπ�m − Δm�2α�;
γ � exp�−iπm̂2α�; (13)

where m̂ is a vector of indices running from −Δm
to M − Δm − 1. The third depends on the difference of
coordinates:

zm−n � exp�iπ�m − n − Δm� Δn�2α�;
zp � exp�iπ�p − Δm� Δn�2α�; (14)

where the p � m − n allows us to define z as an array inde-
pendently from its indexing by m and n. So we can write the
whole DFT in Eq. (9) as

Xm � γm
XN−1

n�0

xnβnzm−n: (15)

We can recognize the above as a discrete convolution. Letting
⊗ denote convolution and ∘ denote element-wise product, this
can be written in vector form as

X � γ ∘ ��x ∘ β� ⊗ z�: (16)

Essentially, the chirp z-transform algorithm consists of em-
bedding this discrete convolution in a circular discrete convo-
lution and then computing the convolution as a product in the
Fourier domain using FFTs. This process is well described in
[12], but we will sketch it here as well. First, we must select a
transform length,

L ≥ N �M − 1; (17)
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for the FFT used to compute the circular convolution; it can
be chosen arbitrarily to maximize FFT performance if desired,
provided that Eq. (17) is satisfied. Next we define extension
and truncation operators. The operator

ŵ � extend�w; L� (18)

takes the vector w and adds sufficient zeros to the end so that
the total length of ŵ is L. The truncation operator

w � truncate�ŵ; M� (19)

takes the first M elements of ŵ to yield w with length M .
Finally, we define the circular extension of z:

ẑp �
8<
:

expfiπ�p − Δm� Δn�2αg; 0 ≤ p ≤ M − 1
expfiπ�p − L − Δm� Δn�2αg; L − N � 1 ≤ p ≤ L − 1

arbitrary; otherwise
:

(20)

The z array can (depending on choice of L) contain arbi-
trary values in the central region because we are computing
a circular convolution but are interested only in M outputs
and N inputs, so some parts of the convolution kernel are
either multiplied with zeros in the input or discarded from
the output. The arbitrary region and the construction of z
can be seen more clearly in Fig. 4 of [12]. If we define p as
the index vector of lengthM from 0 toM − 1 and q as the index
vector from L − N � 1 up to L − 1, we could write this as

ẑp � expfiπ�p − Δm� Δn�2αg;
ẑq � expfiπ�q − L − Δm� Δn�2αg: (21)

Using these definitions, we can write the chirp z-transform
algorithm (adapted from [12]) as

y � β ∘ x;

ŷ � extend�y; L�;
Y � FFT�ŷ�;
Z � FFT�ẑ�;
H � Y ∘ Z;

ĥ � IFFT�H�;
h � truncate�ĥ; M�;
X � h ∘ γ: (22)

The reverse mode gradient for the input vector using the
relations from [9] is

h̄ � X̄ ∘ γ�;

ˆ̄h � extend�h̄; L�;
H̄ � GIFFT� ˆ̄h�;
Ȳ � H̄ ∘ Ẑ�;

ˆ̄y � GFFT�Ȳ�;
ȳ � truncate� ˆ̄y; N�;
x̄ � ȳ ∘ β�: (23)

The operations GFFT and GIFFT denote the reverse mode
gradients for FFT and inverse FFT (IFFT), respectively. GFFT

is proportional to IFFT and GIFFT is proportional to FFT,
but both may have scaling factors depending on how the
particular FFT and IFFT implementations used are defined.
If the forward and inverse FFT have the form (in one
dimension)

FFTfxgm � a
XN−1

n�0

xn exp
�
−i2πnm

N

�
;

IFFTfxgm � b
XN−1

n�0

xn exp
�
i2πnm

N

�
; (24)

then

GFFTfx̄g � a
b
IFFTfx̄g;

GIFFTfx̄g � b
a
FFTfx̄g: (25)

See [9] for a more complete discussion.
This derivation allows one to differentiate with respect

to the input variables of the transform itself. But what if
we want to differentiate with respect to parameters of the
transform kernel? In particular, we are interested in α.
Since the α dependence is located in β, γ, and z, we require
their gradients first. Calculating the derivatives for α in-
volves differentiating a number of expressions of the form

y � exp�ax�; (26)

where a is a complex constant vector. This has the gra-
dient rule [9]

x̄ �
X
n

�a� ∘ y� ∘ ȳ�n: (27)

For the post factor we can apply the gradient rules to get

γ̄ � X̄ ∘ h�; ᾱγ �
X
m

��iπm̂2� ∘ γ� ∘ γ̄�m; (28)

where ᾱγ denotes the contribution to the derivative with
respect to α through the dependence of γ on α. For the
pre-factor, we apply them to get

β̄ � ȳ ∘ x�; ᾱβ �
X
n

��iπn̂2� ∘ β� ∘ β̄�n: (29)

Like ᾱγ , ᾱβ denotes the contribution to the gradient with
respect to α via β’s dependence on α. For the kernel
factor, we apply the gradient rules and get two gradient
contributions:

Z̄ � H̄ ∘ Y�;

ˆ̄z � GFFT�Z̄�;

ᾱp �
XM−1

p�0

f−iπ�p − Δm� Δn�2g ∘ ẑ�p ∘
ˆ̄zp;

ᾱq �
XL−1

q�L−N

f−iπ�q − L − Δm� Δn�2g ∘ ẑ�q ∘
ˆ̄zq; (30)

where ᾱp and ᾱq represent the contribution of the two
parts of z defined by Eq. (21) to the gradient with respect
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to α. The full gradient with respect to α is obtained by
combining the four gradient terms to get

ᾱ � ᾱβ � ᾱγ � ᾱp � ᾱq: (31)

6. TWO-DIMENSIONAL EXTENSION
We now extend the discussion in the previous section to ar-
bitrary (uniformly) sampled 2D DFTs, given by

Xmr;mc
�

XN r−1;

nr�0

XNc−1;

nc�0

xnr;nc
e−2πi��mr−Δmr��nr−Δnr�αr��mc−Δmc��nc−Δnc�αc �;

(32)

where the Roman subscripts “r” and “c” denote row and col-
umn, respectively. Note that the Fourier kernel can be directly
factored into row and column components, so that the factori-
zation in Eqs. (10) and (11) can be applied separately along the
two dimensions. The form in Eq. (16) applies equally to the 2D
case, provided we interpret the convolution as 2D and extend
β and γ into two dimensions. Because of the complete factor-
ing of the kernel, rather than constructing full 2D extensions
of β and γ, we can instead construct 1D versions for each di-
mension and combine them. Analogously to Eq. (15), we have

Xmr;mc
� γmr

γmc

XN r−1;

nr�0

XNc−1;

nc�0

xnr ;nc
βnr

βnc
zmr−nr

zmc−nc
: (33)

This allows us to define the 1D vector quantities βr, βc, γr,
γc, zr, and zc in the same way we did previously, with N r and
Nc taking the role of N ,Mr andMc taking the role ofM , and Lr

and Lc taking the role of L. Note that we adopt a subscript
convention where (for example) N r denotes the length of a
row (the number of columns) so that N r is the length of βr.

In order to write the 2D form of the algorithm compactly,
we expand our definitions of the extend and truncate opera-
tions from Eqs. (18) and (19) into 2D. In 2D the extend oper-
ator takes the form

ŵ � extend�w; Lr; Lc� (34)

so that ŵ has length Lr along the row dimension and Lc along
the column dimension, and truncate takes the form

w � truncate�ŵ; M r; Mc�; (35)

where w has lengthM r along the row dimension andMc along
the column dimension. Finally, we define a vector–matrix–
vector triple product operator,

d � ha; b; ci ⇒ dnr;nc
� anr

bnr ;nc
cnc

; (36)

where b is 2D and a and c are 1D, making d 2D consisting of
the entries of b with the rows rescaled by a and the columns
rescaled by c. The gradient rules for this operator are

b̄ � ha�; d̄; c�i;
ānr

�
X
nc

c�nc
b�nr;nc

d̄nr ;nc
;

c̄nc
�

X
nr

a�nr
b�nr;nc

d̄nr ;nc
: (37)

Using these operators, we can write the 2D transform algo-
rithm as

y � hβr; x; βci;
ŷ � extend�y; Lr; Lc�;
Y � FFT�ŷ�;
H � hZr;Y;Zci;
ĥ � IFFT�H�;
h � truncate�ĥ; M r; Mc�;
X � hγr; h; γci: (38)

We can use reverse mode gradient rules to write the gra-
dients of the error metric with respect to the input parameters,
given the gradients of the error metric with respect to the
outputs:

h̄ � hγ�r ; X̄; γ�ci;
ˆ̄h � extend�h̄; Lr; Lc�;
H̄ � GIFFT� ˆ̄h�;
Ȳ � hẐ�

r ; H̄; Ẑ�
ci;

ˆ̄y � GFFT�Ȳ�;
ȳ � truncate� ˆ̄y; N r; Nc�;
x̄ � hβ�r ; ȳ; β�ci: (39)

As in the 1D case, we still need to track the dependence on
α through the algorithm above. All of the α dependence ap-
pears in the β, γ, and z terms; the lines that require additional
attention are all of those that involve a vector–matrix-vector
product. For the post-factor, we get

γ̄r;nr
�

X
nc

γ�c;nc
h�nr;nc

X̄nr ;nc
;

γ̄c;nc
�

X
nr

γ�r;nr
h�nr;nc

X̄nr ;nc
; (40)

while for the pre-factor, we get

β̄r;nr
�

X
nc

β�c;nc
y�nr;nc

ȳnr;nc
;

β̄c;nc
�

X
nr

β�r;nr
y�nr;nc

ȳnr ;nc
: (41)

For the kernel factors, we get

Z̄r;nr
�

X
nc

Z�
c;nc

Y�
nr ;nc

H̄nr;nc
;

Z̄c;nc
�

X
nr

Z�
r;nr

Y�
nr;nc

H̄nr;nc
: (42)

Notice that γ̄r, γ̄c, β̄r, β̄c, Z̄r, and Z̄c are all 1D and are exactly
analogous to their counterparts in Eqs. (28), (29), and (30).
Now that we have decomposed the α dependence into 1D
components, we can use the formulas derived in the 1D case
together with Eq. (31) to produce ᾱr and ᾱc. We summarize
the required gradient relations here. From Eqs. (28) and
(29) we get
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ᾱr;γ �
X
mr

��iπm̂2
r � ∘ γ�r ∘ γ̄r�mr

;

ᾱc;γ �
X
mc

��iπm̂2
c� ∘ γ�c ∘ γ̄c�mc

;

ᾱr;β �
X
nr

��iπn̂2r � ∘ β�r ∘ β̄r �nr
;

ᾱc;β �
X
nc

��iπn̂2c� ∘ β�c ∘ β̄c�nc
: (43)

Following from Eq. (30), we get

ᾱc;p �
XMc−1

pc�0

f−iπ�pc − Δmc � Δnc�2g ∘ ẑ�c;q ∘ ˆ̄zc;q;

ᾱc;q �
XLc−1

qc�Lc−Nc

f−iπ�qc − Lc − Δmc � Δnc�2g ∘ ẑ�c;q ∘ ˆ̄zc;q;

ᾱr;p �
XM r−1

pr�0

f−iπ�pr − Δmr � Δnr�2g ∘ ẑ�r;q ∘ ˆ̄zr;q;

ᾱr;q �
XLr−1

qc�Lr−N r

f−iπ�qr − Lr − Δmr � Δnr�2g ∘ ẑ�r;q ∘ ˆ̄zr;q: (44)

To find ᾱc and ᾱr we sum together the respective components:

ᾱr � ᾱr;β � ᾱr;γ � ᾱr;p � ᾱr;q;

ᾱc � ᾱc;β � ᾱc;γ � ᾱc;p � ᾱc;q: (45)

In the common case where α � αr � αc, we have the final
gradient relation:

ᾱ � ᾱr � ᾱc: (46)

This gives us a straightforward, though somewhat involved,
algorithm for computing the gradient with respect to α. We
should, however, emphasize that all of the operations required
to compute these gradients are on 1D vectors, so the addi-
tional computational cost for these gradients is small com-
pared to the full 2D algorithm.

7. PHASE RETRIEVAL ALGORITHM WITH Q
OPTIMIZATION
We can define the forward chirp z-transform from the
previous section as

X � CZT�x; α�: (47)

and its gradient propagation form as

x̄ � CZTx�x; α; X̄�;
ᾱ � CZTα�x; α; X̄�; (48)

where CZTx is defined by Eq. (23) and CZTα is defined by
Eqs. (43)–(46). We have denoted the gradients with respect
to x and α as separate functions because they will appear
in different places in the phase retrieval algorithm. In practice
they would be computed simultaneously, taking advantage of
the same intermediate calculations in Eq. (39). By using these
gradients we can modify our phase retrieval algorithm from
Section 4 to optimize over Q. This results in a forward model
that is the same as Eqs. (1)–(5) but replacing FFTfgg in Eq. (3)

with CZT�g; α�. The corresponding gradient model modifies
Eq. (7) by changing IFFTfḠg to CZTx�g; α; Ḡ� and adding

ᾱ � CZTα�g; α; Ḡ�: (49)

In order to find a solution, we jointly optimize with respect
to a and α in our nonlinear optimizer.

8. COMPUTER SIMULATION
In order to measure the effectiveness of this algorithm and its
ability to find Q values that are significantly different than the
starting guess, we simulated noise-free PSFs with known Q
values and wavefront aberrations with an RMS magnitude
of 0.1 waves. We simulated 16 independent random wavefront
realizations. We repeatedly ran the phase retrieval algorithm
described in the previous section, including optimization over
Q, starting with a constant wavefront and different initial
guesses for Q. Figure 1 shows (left) the true and fit PSFs
and (right) the true and fit wavefronts for a case where the
true value for Q was 2.5 and the initial guess was 2.2. Figure 2
shows the history of three quantities over the optimizer run:Q,
the RMS error of the wavefront compared with the true sol-
ution, and the normalized mean-squared error (NRMSE) dis-
agreement between the model and the data (the square root of
the phase-retrieval error metric). We can see that Q stayed
relatively constant in the initial iterations. Around iteration
15, the algorithm began to make progress and quickly found
the correct value of Q, during which time the error metric and
wavefront error did not change very much. Only after an ap-
proximately correct Q value was found did the algorithm be-
gin to make good progress, reducing the error metric and
fitting the wavefront. The final value for the estimate of Q
was 2.50000006585, essentially perfect due to the absence
of noise. The data consistency metric for the simulation
was a bias- and gain-invariant metric [17].

Figure 3 shows the results from a Monte Carlo study of dif-
ferent true Q values and initial estimates for Q over the 16 dif-
ferent wavefront realizations (all with 0.1 waves RMS
wavefront error). The horizontal axis shows the true simu-
lated value of Q, the vertical axis shows the initial guess
for Q, and the gray levels show the fraction of cases that

Fig. 1. Simulated (a) true PSFs, (b) true wavefront, (c) fit PSFs, and
(d) fit wavefront. The color bar is in units of waves.
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reached an excellent (accurate to within 0.01%) solution forQ.
The simulated PSFs used for the Monte Carlo simulation in-
cluded Poisson noise for 1,000,000 total photons and 10
photon-electrons RMS read noise. We note that the capture
range is much larger than the few-percent level errors in
knowledge of Q we might expect in a reasonably well charac-
terized system.

When attempting Q retrieval simulations like these, one
should be aware of a potential pitfall, which we encountered
in earlier versions of these simulations. In the common defi-
nition of the DFT we used in Eq. (32), the total power in the

output field depends on α (or on the pad length for a padded
FFT). In simulations, we multiply the data by an appropriate
constant to produce simulated intensity images at the desired
signal level. If the phase retrieval model is constructed by
multiplying the model data by the same constant used in the
data simulation, then the constant will be known to the phase
retrieval algorithm. This will give the algorithm a strong
(but entirely nonphysical) signal to which it will fit Q: only
the correct Qwill have a total power that agrees with the data.
Using error metrics like that of [17] that presume no knowl-
edge of the scaling between model PSFs and data avoids this
problem.

9. CONCLUSION
We have demonstrated a nonlinear-optimization phase
retrieval algorithm for determining the sampling factor Q
based on a chirp z-transform numerical propagator and an al-
gorithmic differentiation approach to constructing analytic
gradients, including a derivation of the analytic gradients
for the 2D case. This allows a direct optimization fit of Q
without using finite difference gradients or experiencing the
unfavorable asymptotic scaling of the matrix-multiply DFT
propagator. This enables Q retrieval in problems involving
high-fidelity models or large datasets. We have also briefly ex-
plored the capture range of the algorithm and observed that it
is able to find the true Q value even when the initial guess is
significantly in error.
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