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In this paper, we discuss two effective methods for computing optical propagations using two-dimensional (2D)
discrete Fourier transforms: the matrix triple product (MTP) and the chirp z-transform (CZT) and analyze
their performance both in theory and via benchmarks compared to the performance of a traditional padded fast
Fourier transform (FFT). We show that, in many regimes of interest for phase-retrieval algorithms, the MTP or
CZT is comparable to or better than the FFT in terms of run time while offering more flexible control over the
sampling. We propose that for many applications, the CZT makes a robust general purpose alternative to the
padded 2D FFT. © 2018 Optical Society of America
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1. INTRODUCTION

In image reconstruction and phase retrieval, the two-
dimensional (2D) Fourier transform is very commonly used
to model an optical propagation from the pupil of an imaging
system to an image plane. When modeled numerically using
sampled grids in a computer, propagations are typically imple-
mented using a fast Fourier transform (FFT) algorithm [1]. The
use of the FFT is advantageous because it exhibits favorable
asymptotic scaling compared to direct integration methods and
because highly optimized implementations [2,3] are available.
However, the use of the FFT also imposes a fixed relationship
between the sample spacing in its input and output domains
based on the integer transform length. The array length and
sampling relationship can be controlled coarsely through
zero-padding, but only in integer steps. This fixed relationship
is not desirable for some applications, in particular broadband
phase retrieval and phase retrieval in the presence of significant
chromatic aberrations. As a specific example of the broadband
case, consider wavefront sensing for alignment of an astronomi-
cal telescope, where it is advantageous to maximize the signal-
to-noise ratio in the image of a star by using the widest spectral
filter available [4,5]. With regard to chromatic aberrations,
recent work in phase retrieval for measurement of residual
dispersion in chirped-pulse amplification (CPA) lasers has
shown fine control of the simulated wavelength can resolve am-
biguities in the sign of the dispersion [6,7].

Furthermore, the FFT assumes every pixel of its input
domain is potentially nonzero and every pixel of its output do-
main is of interest. In practice, many phase retrieval and image
reconstruction algorithms work in a regime where fields are
constructed such that their intensities will be Nyquist-sampled.
In this case, the input pupil fields are zero-padded such that
half of the input array in each dimension is equal to zero.
Furthermore, when computing point spread functions
(PSFs) for phase retrieval, it often happens that only the inner
portion of the simulated array is of interest, either because of
the aliasing introduced in the other regions by the discretization
of the pupil or because there is simply little PSF energy in those
other regions. In those cases, alternative transforms that allow
for the smaller nonzero extent of the pupil and limited region of
interest in the image may be more computationally efficient.

In this work, we explore three methods for computing the
transforms that allow arbitrary sampling and limited regions of
interest in the pupil and image. Each of these makes different
trade-offs among speed, flexibility, and implementation diffi-
culty. Naïve direct integration of the discrete Fourier transform
(DFT) is discussed in Section 2.C, the matrix triple product
(MTP) DFT is derived in Section 2.D, and the chirp
z-transform (CZT) is explained in Section 2.E. In Section 3,
we demonstrate how the need to accurately simulate complex
physical optics models changes the relative computational costs
in several specific examples. We show that the MTP and CZT
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are advantageous over the FFT in many situations, particularly
when flexibility in choosing sample spacing is important.

2. THEORY

A. General

Let the variables x and y denote the continuous coordinates of
the pupil (Fourier transform input) plane and fx and fy denote
their Fourier spatial frequency conjugate variables (for a sum-
mary of symbols used throughout this paper, see Table 2).
Consider a complex optical field g�x, y� with finite extent
Dx andDy in the x and y directions, respectively. Its continuous
Fourier transform is given by

G�fx , fy� �
ZZ

∞

−∞
g�x, y� exp�−2πi�fxx � fyy��dxdy: (1)

This continuous integral, while useful for theoretical analysis
and for some special cases, is not suitable for computer model-
ing of most optical fields. For practical models implemented in
the computer, we need to have discrete analogs toG�fx , fy� and
g�x, y� and to compute finite sums. The discrete analog we will
use can be written as

G�r, s� �
X

m, n∈M,N

g �m, n� exp�−2πi�mrΔxΔfx � nsΔyΔfy��,

(2)

where the setsM andN represent the range of values of m and
n defining the nonzero area of g. If g�x, y� is sampled with in-
tervals Δx and Δy, then g �m, n� is nonzero over a rectangle of
width M by N pixels defined by

M � Dx

Δx
, N � Dy

Δy
: (3)

Common choices for the range of indices are

M � f0,…,M − 1g (4)

and

M � f−bM∕2c,…, dM∕2e − 1g, (5)

where b·c and d·e denote floor and ceiling, respectively, and
likewise for N . Similarly, if we are interested in the output
plane G�fx , fy� only over a region of dimensions Cx by Cy,
then the corresponding region of interest in pixels in G�r, s� will
be of size R by S, defined by

R � Cx

Δfx
, S � Cy

Δfy
: (6)

We can also write the DFT [Eq. (2)] as

G�r, s� �
X

m, n∈M,N

g �m, n� exp
�
−2πi

�
mr
K

� ns
L

��
, (7)

where

K � 1

ΔxΔfx
, L � 1

ΔyΔfy
: (8)

As we will later see in detail, K and L correspond to implicit
periods of both g �m, n� and G�r, s�, and must be larger than the
regions of interest defined by M, N , R, and S in order to pre-
vent missing data and introducing artifacts. Figure 1 shows a

visual interpretation of these values. We note that, at this stage,
there is no need for the periods K and L to be integer-valued.
While integer periodicity is often a useful assumption, it is not
strictly necessary for the correctness of the DFT.

In the next section, we will analyze the discrete representa-
tion [Eq. (7)] by reconstructing it through a series of approx-
imations to g�x, y�. First we make it sampled, then periodic,
then both sampled and periodic. Although a periodic and
sampled pupil is nonphysical, it is the model that our computer
simulations implicitly use when we attempt to represent real
systems. Understanding the sampling and aliasing trade-offs
implicit in its construction is important. When dealing with
the continuous quantities in what follows, a subscript S will
denote a sampled version of a quantity, while a subscript P will
denote a periodic version of the quantity.

As a tool to explore periodic and sampled representations,
we will use the impulse train or “comb” function [8]:

comb�ξ, η� ≡
X∞

p, q�−∞
δ�ξ − p�δ�η − q�, (9)

whose Fourier transform pair [8] is

comb�ξ, η�↔FT comb�fξ, fη�: (10)

Using the comb, we can represent a sampled pupil as

gS�x, y� � comb

�
x
Δx

,
y
Δy

�
g�x, y�

�
X

m, n∈M,N

g�mΔx, nΔy�δ�x − mΔx�δ�y − nΔy�ΔxΔy,

(11)

the Fourier transform of which is

GP�fx , fy� � G�fx , fy� � comb�fxΔx, fyΔy�ΔxΔy

�
X∞

p, q�−∞
G
�
fx −

p
Δx

, fy −
q
Δy

�
, (12)

where � denotes 2D convolution. This convolution with the
comb creates a periodic replication of G�fx , fy� in the Fourier
domain. At this point, fx and fy are still continuous quantities,
but by sampling g�x, y� we have forced G�fx , fy� to be periodic
(indicated by the P subscript):

GP

�
fx �

p 0

Δx
, fy �

q 0

Δy

�
� GP�fx , fy�, (13)

Fig. 1. Visual depiction of the sizes of the input array g (M × N ),
output array G (R × S), and DFT period (K × L).
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where p 0 and q 0 are integers. This periodicity is the origin of the
wraparound aliasing artifacts in images computed via FFT,
where, for example, a streak exiting one side of the Fourier
transform of an image will appear to enter on the opposite side
and continue. It should be understood that this aliasing is not a
result of the fixed FFT sampling relationships, but rather a fun-
damental consequence of the uniform sampling of the pupil.
Once the discrete sample locations are fixed, both the maxi-
mum unique field of view of GP�fx , fy� and the form of the
aliasing due to wraparound therein is determined. Although
the algorithms we will explore in the following sections give us
the freedom to sample GP�u, v� flexibly and oversample it arbi-
trarily, they cannot eliminate or reduce the intrinsic aliasing
in GP�fx , fy�. The intrinsic aliasing can be reduced by selecting
a smaller Δx, or by modifying the nominal g to reduce high-
frequency content.

The second step toward the discrete transform we will con-
sider is making the input field periodic, which will give us a
sampled output without sampling g�x, y�:

gP�x, y� � g�x, y� � comb

�
x
Tx

,
y
Ty

�
1

TxTy
, (14)

where we require Tx ≥ Dx and Ty ≥ Dy to avoid overlap
between the periods. The factor of �TxTy�−1 is included to pre-
serve the units of gP. Defined this way, gP�x, y� satisfies the
condition

gP�x, y� � gP�x � Txp̃, y � Tyq̃�, (15)

where p̃ and q̃ are arbitrary integers. The Fourier transform of
gP�x, y� is

GS�fx , fy� � G�fx , fy�comb�fxTx , fyTy�, (16)

which is a sampled model but has no wraparound artifacts.
Unfortunately, because it requires computing a continuous
Fourier transform via integration, GS is not applicable to sim-
ulating the general case with arbitrary pupils and aberrations,
which typically must be handled digitally using discrete models.

A pupil model that is fully realizable in the computer must
be discrete in both the input and output. To achieve this, we
construct a pupil-domain model that is both sampled and peri-
odic. We do this by making the sampled model from Eq. (11)
periodic with periods Tx and Ty, as we did in Eq. (14):

gSP�x,y�� gS�x,y�� comb

�
x
Tx

,
y
Ty

�
1

TxTy

�
�
comb

�
x
Δx

,
y
Δy

�
g�x,y�

�
� comb

�
x
Tx

,
y
Ty

�
1

TxTy
,

(17)

which has Fourier transform

GPS�fx , fy� � GP�fx , fy�comb�fxTx , fyTy�
� �G�fx , fy� � comb�fxΔx, fyΔy�ΔxΔy�
× comb�fxTx , fyTy�, (18)

which is both periodic and sampled; it has the same period
1∕Δx and 1∕Δy as Eq. (12). We can also write this as

GPS�fx , fy�

�
X∞

r, s�−∞
GP�fx , fy�δ�fx − rΔfx�δ�fy − sΔfy�ΔfxΔfy,

(19)

where Δfx � 1∕Tx and Δfy � 1∕Ty. If we introduce the dis-
crete quantity G�r, s� as the amplitude of the delta functions
under the sum we get

G�r, s� � GP�rΔfx , sΔfy� (20)

and

GPS�fx , fy�

�
X∞

r, s�−∞
G�r, s�δ�fx − rΔfx�δ�fy − sΔfy�ΔfxΔfy, (21)

where G�r, s� is the discrete quantity such that its values are the
complex amplitudes of the δ functions in GPS�fx , fy�. This
makes G�r, s� a sampled version of GP�fx , fy�. We can observe
that since GPS�fx , fy� has periods 1∕Δx and 1∕Δy in continu-
ous coordinates,G�r, s� has periods 1∕�ΔfxΔx� and 1∕�ΔfyΔy�
in pixels, which are the definitions of K and L previously given
in Eq. (8). We can likewise define the discrete version of
gSP�x, y�, g �m, n�, such that

gSP�x, y� �
X∞

m, n�−∞
g �m, n�δ�x − mΔx�δ�y − nΔy�ΔxΔy:

(22)

We are again defining the discrete quantity g �m, n� as the
amplitudes of the δ function samples in gSP�x, y�. By construc-
tion, gSP�x, y� has periods Tx � 1∕Δfx and Ty � 1∕Δfy in
continuous space and, correspondingly, g �m, n� has periods
1∕�ΔfxΔx� and 1∕�ΔfyΔy� in pixels; note that this is the same
as the periods of G�r, s�.

To show how G�r, s� may be computed, we explicitly
evaluate the Fourier transform of gSP�x, y� in the form given
by Eq. (22), and use the sifting property of the delta functions
to find

GPS�fx , fy� �
X∞

m, n�−∞
g �m, n� exp�−2πi�fxmΔx � fynΔy��:

(23)
Using the knowledge that, by definition, g �m, n� is periodic, we
can rewrite the infinite summation in Eq. (23) in terms of
summations over the nonzero area �M,N � of a single period,
such that

GPS�fx , fy�

�
X∞

m 0, n 0�−∞

� X
m, n∈M,N

g �m, n�

× exp�−2πi�fx�m� Km 0�Δx � fy�n� Ln 0�Δy��
�
, (24)

where m 0 and n 0 are introduced to index each repetition of the
unique portion of g �m, n�. Replacing the periods K and L with
their definition in terms of sample spacing in Eq. (8) and

1786 Vol. 35, No. 11 / November 2018 / Journal of the Optical Society of America A Research Article



moving the parts of the Fourier kernel independent of �m, n�
out of the inner summation yields the product of two indepen-
dent sums:

GPS�fx , fy� �
X∞

m 0,n 0�−∞
exp

�
−2πi

�
m 0 fx

Δfx
� n 0 f y

Δf y

��

×
X

m,n∈M,N

g �m,n� exp�−2πi�fxmΔx� f ynΔy��:

(25)

The infinite sum on the first line of Eq. (25) is only nonzero at
points where fx and fy are integer multiples of Δfx and Δfy,
respectively, while at the nonzero points, it goes towards
infinity. Therefore, Eq. (25) may be written in terms of delta
functions to yield

GPS�fx , fy�

�
X∞

r, s�−∞
δ�fx − rΔfx�δ�fy − sΔfy�

×
X

m, n∈M,N

g �m, n� exp�−2πi�mrΔxΔfx � nsΔyΔfy��: (26)

We recognize this expression is the same weighted set of delta
functions in Eq. (21), with the weights G�r, s� now given by

G�r, s� �
X

m, n∈M,N

g �m, n� exp�−2πi�mrΔxΔfx � nsΔyΔfy��,

(27)

which is equivalent to the definition of the DFT stated
previously in Eq. (7) in terms of K and L. If K and L are in-
tegers, this gives the standard 2D DFT/FFT; but in general,
they need not be integers.

We define two sampling ratios QP and Q I in terms of the
sizes of the nonzero regions of interest in the pupil and image
planes, respectively, with relation to the fundamental periods K
and L:

QP
x �

K
M

QP
y �

L
N

Q I
x �

K
R

Q I
y �

L
S
: (28)

In the common case of square arrays and equal sample spacing
in both directions, we have K � L, M � N , and R � S, and
then QP

x � QP
y � QP and Q I

x � Q I
y � Q I. Notice that since

the nonzero region and region of interest can usefully span at
most one full period, we have QP ≥ 1, Q I ≥ 1. QP relates to
the finite extent of g �m, n� and thus to the band limit of G�r, s�:
With QP � 1, G�r, s� Nyquist samples G�fx , fy� and with
larger values of QP, it oversamples G�fx , fy�; QP � 2 corre-
sponds to Nyquist sampling for jG�fx , fy�j2. We will see later
that this definition of QP can be connected with the sampling
factor from [9]. Q I similarly relates the width of the region of
interest in G�fx , fy� to the wraparound period introduced by
finite sampling of g�x, y�; it can be thought of as a model fidel-
ity factor related to the acceptable amount of wraparound alias-
ing in G�r, s�; increasing Q I moves the repeated copies of G
further from the region of interest and reduces their influence.

Since Q I and QP are both connected with the overall period of
the discrete transform, we have the following relations:

MQP
x � RQ I

x � K , (29a)

NQP
y � SQ I

y � L: (29b)

Notice that K and L are the padded array size in a conventional
FFT-based propagator. This relationship allows us to make a
consistent choice of array sizes in terms of our desired sampling
in the two domains. Only three of M , Q I

x, R, and QP
x can be

chosen independently.
Typically in an application, some of the variables are stipu-

lated by the physics of the problem, and some are free to be
chosen by the modeler to meet the needs of the model. In
the phase retrieval applications we will discuss, R and QP

x

are generally fixed, and Q I
x and M can be chosen (and likewise

in y). In this case we express the requirement on M as

M � Q I
x

R
QP

x

, (30)

and similarly in y. Notice that the ratio on the right side is the
number of Nyquist samples across the region of interest. The
equality can be relaxed to a greater-than-or-equal requirement
for computational purposes if we break the strict correspon-
dence between M and the diameter of the nonzero region
of g�x, y� and allow it to be the width of potentially larger array
that the nonzero part of g�x, y� fits inside.

Regardless of the underlying physics, a particular set of
M , R, Q I

x, and QP
x (and analogous y dimension quantities)

uniquely defines a particular numerical DFT calculation prob-
lem. We will next consider several methods for calculating these
DFTs, which produce the same numerical results but make
different trade-offs in computational cost.

B. FFT

If we require K and L to be integers in Eq. (8), then Eq. (7)
becomes the definition of a conventional DFT/FFT. In this
case, both G�r, s� and g �m, n� are taken to be 2D arrays of size
K × L. The 2D FFT has asymptotic computational complexity:

tFFT ∝ K L log2�K L�: (31)

Although we can make an FFT-based algorithm aware of the
finite extent and region of interest by padding the input with
zeros from size M × N up to size K × L and cropping the out-
put down to size R × S, the knowledge that many of the data
points are unnecessary is not leveraged to improve the speed of
the algorithm. We make the following observations about this
formulation:

1. It has favorable asymptotic complexity for large arrays.
2. The image sample spacing is restricted by Eq. (8) with

integer K and L.
3. It is efficient for transforms where the nonzero extent of

g and the region of interest of G are similar to the array size
K × L, and conversely, is inefficient when either of those is
much smaller than K × L. In other words, the FFT is most
efficient when QP � Q I � 1.

4. If M and R are fixed, the cost of the FFT is driven by
QP and Q I.
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C. Naïve Direct Integration

We can of course compute Eq. (2) directly by simply perform-
ing the sum over m and n. If we let the number of nonzero
points in g �r, s� be RS and the number of points of interest
in G�m, n� be MN , then the computational cost of the direct
sum is

t INT ∝ MNRS: (32)

If the transform will be repeated many times, we can precom-
pute a matrix of the complex kernel factors (the matrix will have
sizeMN × RS) and implement the transform as a matrix prod-
uct with the vector (of length RS) representation of g �r, s�; that
saves the potentially expensive complex exponential calculation
and allows the use of fast linear algebra functions to compute
the sum. Implementing the sum as a matrix product does not
ultimately improve the asymptotic computational complexity.
We can make the following observations about the direct in-
tegration method:

1. It has unfavorable asymptotic complexity, making it
unacceptably slow for many practical numerical applications
that require large arrays.

2. It is most efficient for transforms where either the non-
zero extent of g or the region of interest in G is small.

3. It is extremely flexible; the location of the input and
output samples of g and G can be arbitrary. Not only are ar-
bitrary Δx, Δy, Δfx , and Δfy possible, but arbitrary samplings
where the points do not fall on regular grids [e.g., are not
described by Eq. (2)] are possible.

D. Separable DFT/MTP

For the cases typically of interest in phase retrieval, we do not
require the full generality of the naïve direct integration method
above. If we limit ourselves to the regularly sampled grids of the
DFT from Eq. (2), we can improve on the naïve algorithm. By
factoring the separable DFT kernel into two one-dimensional
(1D) kernels and moving one sum inside the other to get

G�r, s� �
X
m

exp�−2πiΔxΔfxmr�

×
�X

n
g �m, n� exp�−2πiΔyΔfyns�

�
ms

, (33)

the term in brackets represents a whole 2D matrix, which is
indexed by the subscript ms. The sum in brackets costs
MNS to compute, while the outer sum costs RMS to com-
pute, so the overall cost is cubic:

tMTP1 ∝ RMS �MNS � MS�N � R�: (34)

This is equivalent to performing a 1D DFT on each row, fol-
lowed by 1D DFTs for every column. It can be implemented
more efficiently, however, if we recognize that the two sums
have the form of matrix products. If we define the following
quantities:

Ωx�r,m� � exp�−2πiΔxΔfxmr�, (35)

Ωy�n, s� � exp�−2πiΔyΔfyns�, (36)

we can write Eq. (33) as the MTP [10,11]:

G � ΩxgΩy, (37)

where Ωx, g , and Ωy are all interpreted as matrices. If the
desired sample spacings can be held constant, Ωx and Ωy

can be computed once and reused, alleviating the need to repeat
the expensive trigonometric operations required to construct
them. For the general case where R ≠ S ≠ M ≠ N , the com-
putational cost of this triple product depends on the order in
which we compute the matrix products. If we group the triple
product on the right, we get the same as Eq. (33) above:

G � Ωx�gΩy�, (38)

and we again get Eq. (34), whereas if we group on the left,
we get

G � �Ωxg�Ωy (39)

and

tMTP2 ∝ RMN � RNS � NR�M � S�: (40)

In the case where R ≈ S ≈M ≈ N ≈ K ≈ L, the cost of the
sum in Eq. (33) is O�N 3�, while naïve direct integration by
Eq. (2) is O�N 4�, and the FFT is O�N 2 log N �. In other
words, the separable DFT achieves a linear speedup compared
to direct integration and is slower than the FFT by less than a
linear factor. While naïve direct integration is impractical for
many problems because of its severe computational cost, the
separable DFT remains practical for a much larger range of
array sizes.

We may also write a simpler form of Eq. (40) in terms of the
sampling ratiosQ I andQP for cases where the arrays are square,
but K ≠ M . Using Eq. (30) to replace M , we obtain

tMTP ∝
Q I

QP
R3

�
1� Q I

QP

�
: (41)

While the complexity analysis offer no distinction between the
explicit sums of Eq. (33) and the MTP of Eq. (38), in practice
the MTP implementation is favored for two reasons. First, the
matrix multiplication routines in high-performance linear alge-
bra packages are highly optimized for performance and can
achieve substantially better constant factor performance than
a typical handwritten implementation of the sum. Second,
state-of-the-art algorithms for multiplying two square matrices
can achieve asymptotic performance better than the N 3 naïve
matrix product used here, so in practice, depending on the
numerical libraries employed, the matrix multiply DFT may
actually scale somewhat better than this analysis indicates, as
discussed in [12]. Because of these advantages, we do not
consider the explicitly separated sum in our benchmarks.

Summarized,

1. The separable DFT (or MTP) has complexity midway
between that of direct integration and the FFT.

2. Like direct integration, the separable DFT (or MTP) is
most efficient when the nonzero extent of g or the region of
interest of G is small.

3. The sample spacing and number of samples of g and G
may be arbitrary, but both must be sampled on regular
Cartesian grids.

4. If M and R are fixed, the cost of the separable DFT is
independent of QP and Q I.
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The origins of the MTP and separable DFT techniques are
difficult to trace. The MTP (for square matrices) was employed
for computational savings in [10] and [11]. However, the
essential insight is that a 2D DFT is separable into 1D DFTs
along rows and columns. Indeed, transforming rows and col-
umns in one dimension at a time is a common method for
computing 2D FFTs, as mentioned in [13] and [14], while
the matrix multiplication version is mentioned in [15], but
none of these references appears to be the origin of the MTP.

E. CZT

In this section, as in Section 2.D, we maintain the restriction
that the coordinate axes x, y, fx , and fy be regularly sampled,
while allowing the sample spacings Δx, Δy, Δfx , and Δfy to be
arbitrary. In this regime, we have an alternative to the MTP in
the CZT algorithm [16], also known as Bluestein’s FFT [17].
The algorithm works by treating the DFT as a convolution,
which may be computed in the Fourier domain via FFTs.
This gives it the same asymptotic complexity as an FFT, and
a performance advantage over MTP for large arrays.

Following the formulation in [18], we define new
parameters:

αx ≡ ΔfxΔx �
1

K
, αy ≡ ΔfyΔy �

1

L
, (42)

which depend on the sample spacing values, and substitute
them into Eq. (2) to obtain

G�r, s� �
X

m, n∈M,N

g �m, n� exp�−i2π�mrαx � nsαy��: (43)

A key insight is that the factors 2mr and 2ns may be rewritten
as [17]

2mr � m2 � r2 − �r − m�2,
2ns � n2 � s2 − �s − n�2, (44)

which yield, when inserted into Eq. (43),

G�r, s� � exp�−iπ�r2αx � s2αy��
×

X
m, n∈M,N

fexp�−iπ�m2αx � n2αy��

× g �m, n� expfiπ��r − m�2αx � �s − n�2αy�gg, (45)

G�r, s� � a�r, s�
X

m, n∈M,N

b�m, n�g �m, n�h�r − m, s − n�, (46)

where we have defined a, b, and h as

a�r, s� ≡ exp�−iπ�r2αx � s2αy��, (47a)

b�m, n� ≡ exp�−iπ�m2αx � n2αy��, (47b)

h�m, n� ≡ exp�iπ�m2αx � n2αy��: (47c)

The summation in Eq. (46) is in the form of a discrete con-
volution between h�r, s� and the product b�r, s�g �r, s�. According
to the convolution theorem of Fourier transforms, this can be
computed as a product in the Fourier domain; that is, one
multiplies the Fourier transforms of the two factors, and then
the inverse transforms their product. However, this discrete

Fourier-domain convolution is circular, whereas the summa-
tion in Eq. (46) represents a noncircular convolution. We can
make the circular convolution compute the correct sum by ap-
propriately zero-padding g �m, n�, b�m, n�, and h�m, n�, while du-
plicating some values in h�m, n�, as explained in detail in [16]
for 1D transforms. Here we show the analogous results for 2D
DFTs. We denote the dimensions of the CZT’s internal
padded arrays as K 0 × L 0 and the padded quantities with a
hat, and use & and ∥ to represent “and” and “or,” respectively:

ĝ �m, n� ≡
8<
:

g �m, n�, �0 ≤ m < M�& �0 ≤ n < N �

0, �M ≤ m < K 0�∥�N ≤ n < L 0� ,

(48a)

b̂�m, n� ≡
(
b�m, n�, �0 ≤ m < M �& �0 ≤ n < N �
0, �M ≤ m < K 0�∥�N ≤ n < L 0� ,

(48b)

ĥx �m� ≡

8>><
>>:

exp�iπm2αx �, 0 ≤ m ≤ R − 1

arbitrary, R − 1 < m < K 0 −M � 1

exp�iπ�m − K 0�2αx �, K 0 −M � 1 ≤ m < K 0
,

(48c)

ĥy�n� ≡

8>><
>>:

exp�iπn2αy�, 0 ≤ n ≤ S − 1

arbitrary, S − 1 < n < L 0 − N � 1

exp�iπ�n − L 0�2αy �, L 0 − N � 1 ≤ n < L 0
,

(48d)

ĥ�m, n� � ĥx �m�ĥy �n�: (48e)

The minimum amount of padding required to prevent wrap-
around artifacts from the circular convolution is that which en-
sures that the internal DFT period is larger than the sum of the
input and output array sizes, i.e.,

K 0 ≥ M � R − 1, (49a)

L 0 ≥ N � S − 1. (49b)

However, additional padding may be added in order to bring
the array sizes up to some value that is particularly advantageous
for an FFT, e.g., a highly composite number. It is important to
note that these manipulations are only applied to the forward
and inverse Fourier transform pair that are used internally by
the CZT and do not affect the sample spacings of the input and
output data arrays g and G. Instead, the sample spacings are
reflected in the values αx and αy. This is an important difference
between the CZT and conventional FFT and is key to its
flexibility when modeling optical propagation.

With the above quantities defined, the algorithm may be
expressed succinctly as

G � a ∘ crop��b̂ ∘ ĝ� � ĥ�, (50)

or, equivalently in the Fourier domain, as

G � a ∘ crop�F −1fF fb̂ ∘ ĝg ∘ Ĥ g�, (51)
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where Ĥ is the Fourier transform of ĥ, the bold symbols re-
present matrices, and the ∘ symbol denotes the Hadamard
product (i.e., element-wise multiplication). The arrays contain-
ing �b̂ ∘ ĝ� � ĥ and F −1fFfb̂ ∘ ĝg ∘ Ĥ g are of size K 0 × L 0, but
only the first R × S are multiplied by a. The “crop” statement
represents a function that removes the unused portions of the
K 0 × L 0 arrays.

It should also be noted that quantities a, b̂, and Ĥ are all
independent of the particular input data g being transformed,
and instead only depend on the choice of sample densities and
array sizes in the input and output domains. For iterative algo-
rithms such as phase retrieval, which run the same transform
many times with different data, these need only be computed
once and can be reused on subsequent iterations.

The asymptotic complexity of the CZT algorithm is domi-
nated by its internal pair of FFTs, which is

tCZT ∝ K 0L 0 log2�K 0L 0�: (52)

If the minimal amount of padding [Eq. (49)] is applied to the
CZT’s internal arrays, then Eq. (52) becomes

tCZT ∝ �M � R��N � S� log2��M � R��N � S��: (53)

We may also express Eq. (53) in terms of QP and Q I by
substituting from Eq. (29) to obtain, for the case of R � S,
QP

x � QP
y � QP, and Q I

x � Q I
y � Q I:

tCZT ∝
�
R
�
1� Q I

QP

��
2

log2 R
�
1� Q I

QP

�
: (54)

In summary,

1. The CZT has an asymptotic computational complexity
of the form N 2 log N [Eq. (52)], similar to that of an FFT.

2. The CZT is, in theory, a constant factor slower than a
single FFT, since it uses two FFTs of at least twice the data
array size, and it contains extra multiplicative factors.

3. In contrast with the standard FFT, the CZT algorithm
does not impose any restrictions of its own on the sample spac-
ing or number of samples in g or G. (We note that the usual
Nyquist sampling requirements still apply, as with any DFT.)

4. In practice, the arrays used internally by the CZT can be
zero-padded to a size that allows for more efficient FFTs
without affecting the sample spacings of the input and output
arrays.

3. APPLICATIONS

A. Polychromatic Phase Retrieval

In this section, we wish to explore the application of the propa-
gators, discussed previously, to phase-retrieval algorithms. We
will assume that the continuous amplitude transmittance of our
system A�x, y; λ� is discretely sampled, to give A�m, n; λ�, and
likewise the wavefront aberrations W �x, y; λ� (in units of opti-
cal path length) are sampled to giveW �m, n; λ�. The λ indicates
that these two quantities may vary with wavelength. In order to
account for the broadband nature of the systems, we will
modify the propagators to control sampling while holding
the discretization of W and A fixed. This is a choice: it is also
possible to interpolate A and W or to use a polynomial basis
for W and an analytic model for A that allows us to produce
different sampled approximations of A and W and hold the

propagation model fixed. However, if we ultimately hope to
obtain a point-by-point amplitude or pupil reconstruction, it
is desirable to keep a fixed-pupil model so that a single
point-by-point model can be used for all wavelengths without
interpolation, as in [4].

The PSF at the image plane of a polychromatic system in the
Fraunhofer approximation in continuous coordinates is

I�u, v� �
Z

∞

−∞
w�λ�

����
ZZ

∞

−∞
A�x, y; λ� exp

�
i2π
λ

W �x, y; λ�
�

× exp
�
−i2π
λf

�ux � vy�
�
dxdy

����2dλ, (55)

where w�λ� is the spectrum of the source, f is the focal length,
and u∕λf is the equivalent of fx in Eq. (1). This formulation
includes the potential of both chromatic wavefront aberrations
W �x, y; λ� and wavelength-dependent variations in transmit-
tance, A�x, y; λ�. The discrete form is

I �r, s� �
X
k

wk

����X
m, n

A�m, n; λk � exp
�
i2π
λk

W �m, n; λk �
�

× exp
�
−i2π
λkf

�mrΔuΔx � nsΔvΔy�
�����2, (56)

where Δx and Δy are sample spacings in the pupil, Δu and Δv
are sample spacings in the image plane, and k indexes the wave-
lengths. We recognize the sum over m and n as a DFT. We can
write the exponential term in the form of the DFT from Eq. (7)
with the substitutions

Δfx →
Δu
λkf

, Δfy →
Δv
λkf

: (57)

The width of the clear aperture of A (given by Dx and Dy)
determines the minimum size of the M × N input array that
contains all nonzero values in the pupil, according to Eq. (3).
We can use these quantities and combine Eqs. (8) and (28) to
arrive at another expression for QP, based on the physical
parameters of the system [9]:

QP
x,k �

λkf
DxΔu

, QP
y,k �

λkf
DyΔv

: (58)

Similarly, the period of the DFT in each dimension in Eq. (8)
may now be given as

Kk �
λkf
ΔxΔu

, Lk �
λkf
ΔyΔv

: (59)

Typically, QP is determined by the physical parameters of the
system being modeled, while Δx and Δy are chosen by the
modeler subject to sampling fidelity requirements of the pupil
phase and amplitude. Once these are chosen, M and N are
determined through Eq. (3), and thus the DFT periods are
fixed via Eq. (59). When we have pixelated measured data
in both the pupil and image planes, matching the physical
sample spacings in both domains without interpolation is pre-
cluded by use of an FFT. In this scenario, an arbitrarily sampled
method is needed.

We will now derive requirements relating M and N to the
image size. Let us assume that the vast majority of the energy of
the PSF of our system falls within a rectangle of size R by S
pixels, and that to avoid the aliased energy in the image we wish
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to have a factor of Q I extra space around the image, as intro-
duced in Eq. (28). Choosing Q I � 2 is a good balance between
computational cost and accuracy, but other choices are possible.
Since K and L are also the spatial periods of the computed
fields in the image plane, we can express the extra space require-
ment as

K ≥ Q IR, L ≥ Q IS (60)

for any particular wavelength. Through Eq. (29), the following
conditions on M and N hold for all wavelengths:

M ≥
Q IR
QP

x

, N ≥
Q IS
QP

y

, (61)

where these should be satisfied for whatever wavelengths carry
the most stringent sampling requirements. Handling polychro-
matic propagation with the MTP and CZTmethods is straight-
forward. For the MTP, one may specify a distinct Ωk in
Eq. (35) for each kth wavelength, and the CZT distinct arrays
for Eqs. (48b)–(48d) may be computed with a different αk for
each wavelength. These changes do not affect the array sizes the
algorithms operate on, and so the choice of wavelength com-
ponents does not affect the per-wavelength computational cost.
For the FFT, the pad sizes depend on wavelength, and so the
cost can be affected.

B. Broadband Achromatic Phase Retrieval

In this section, we narrow our consideration to the
achromatic broadband case, where A�m, n; λk� � A�m, n� and
W �m, n; λk � � W �m, n�: the system pupil and aberrations are
independent of wavelength. In this case, the only wavelength
dependence of the PSF is through the changes in the propaga-
tion calculation with wavelength. We will assume in this
section that the bandwidth is large enough that these changes
are significant, and more than one discrete wavelength is
required to accurately model the system.

For the sampling requirements given in Eq. (61), we will
consider the shortest wavelength, λ0, which in the achromatic
case will carry the most demanding sampling requirements. If
we take the minimum for M and N , we can plug back into
Eq. (61) and get a simple expression for the FFT lengths of
the individual transforms:

Kk �
λk
λ0

Q IR, Lk �
λk
λ0

Q IS: (62)

If R ≈ S, the cost to compute an FFT propagation for an indi-
vidual wavelength will be

tFFT,k ∝
�
λk
λ0

Q IR
�

2

log2

�
λk
λ0

Q IR
�
, (63)

with the relative cost of the longer wavelengths increasing faster
than the square of the wavelength. By contrast, the CZT cal-
culation of the same DFT has a cost given by Eq. (52), inde-
pendent of λk∕λ0. So we expect that, for problems with large
enough bandwidth, the CZT form will outperform the FFT
form, as larger values of λk∕λ0 increase the run time in Eq. (63)
relative to that of Eq. (54). This effect will be demonstrated
with benchmarks in Section 4.B.

C. Narrowband Phase Retrieval with Chromatic
Aberrations

In this section, we consider scenarios where the choice to sim-
ulate multiple wavelengths is motivated not by a large band-
width, but by the presence of large chromatic aberrations
over a relatively narrow bandwidth, such as in the case of CPA
lasers with misaligned grating stretchers or compressors
[6,19–22]. If the propagation is computed with FFTs, then
a small difference between adjacent spectral components is dif-
ficult to represent with Eq. (62), since array sizes are restricted
to integer values. IfΔλ is the spacing required between adjacent
wavelengths to adequately model the chromatic aberrations,
and the shortest wavelength is λ0, then increments in the array
dimensions ΔK and ΔL for the FFTs are

ΔK � Δλ
λ0

K0, ΔL � Δλ
λ0

S0: (64)

In order for ΔK and ΔL to be integers, the expressions to the
right of the equal signs in Eq. (64) must be at least unity. Since
the reference wavelength λ0 and the necessary spectral sample
spacing Δλ are determined mainly by the physical system,
the burden to meet the integer spacing requirement falls to
K0 and L0:

K 0, L0 ≥
λ0
Δλ

: (65)

We note that in some cases we could be flexible in our choice of
λ0, but this is of limited usefulness, since only a small range of
wavelengths is of interest for a narrowband system.

The requirement in Eq. (65) tends to increase the computa-
tional cost for smaller wavelength spacings. Since the padded
array size for the FFT must be greater than or equal to λ0∕Δλ,
we modify Eq. (63) for narrowband polychromatic propagation
to show that

tFFT,k ∝
�
λk
λ0

max

�
Q IR,

λk
Δλ

��
2

log2

�
λk
λ0

max

�
Q IR,

λk
Δλ

��
:

(66)

Comparison of Eq. (66) with the CZT complexity in Eq. (54)
reveals how a CZT may be faster than the equivalent padded
FFT for this application. For example, if the desired sample
spacing is 1 nm and the reference wavelength is 1000 nm, then
the minimum array size for a padded FFT is 1000 pixels, and
the cost of propagating the reference wavelength component
(where λk � λ0) is 10002 log2 1000

2 ≈ 20 × 106 operations.
If, for instance, the region of interest in the image plane is
256 pixels wide and we use Q I � QP, then the cost of one
of the internal FFTs in the CZT is 2562 log2 256

2 ≈ 1 × 106

operations. Since there are two internal FFTs in a CZT (assum-
ing Ĥ in Eq. (51) was precomputed), we can say that the FFT
has to do on the order of �20 × 106�∕�2 × 106� � 10 times
more operations than the CZT. This argument based on
the asymptotic complexity provides an intuitive explanation
for cases where a CZT-based propagation is faster than an
equivalent propagation using an FFT, but we also remember
that these formulas neglect leading scaling factors and constant
minimum values that will affect the run time in practice, and
we will not attempt to determine these constants analytically.
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Instead, we will explore the real-world performance through
comparative benchmarks in Section 4.

Finally, we remark that the restriction in Eq. (65) also drives
requirements on the pupil array sample spacings (Δx and Δy).
Combining the relations in Eqs. (3), (58), and (29) and evalu-
ating them for λ0 gives

λ0f
ΔxΔu

� K0: (67)

Since the values of λ0, f , and Δu are driven by the physical
system (Δu is typically chosen to match the pixel pitch of
the image-plane detector), a large increase in K0, like the factor
of 4 increase in the example above, would need to be accom-
panied by a proportional change in the selection of Δx to pre-
serve these physical parameters. This is especially inconvenient
if the system model has an initial estimate of the wavefront that
has been measured in the pupil plane in addition to data in the
image plane, as in [7,22]. In this case, it is desirable to choose a
pupil sample spacing that matches the initial estimate instead of
interpolating the measured data to another grid. Matching Δx
to the physical pixel pitch is trivial with the MTP or CZT, but
requires some extra considerations for the FFT.

The computational complexities for each of the three
algorithms, when applied to polychromatic Fraunhofer propa-
gations with square arrays, are summarized in Table 1.

4. BENCHMARKS AND PERFORMANCE
COMPARISON

This section shows the real-world performance of the previously
discussed DFT algorithms. It is important to remember that the
actual run time of any algorithm is dependent on choice of hard-
ware, the underlying numerical libraries available in the software
environment, and the details of a particular implementation.
Results for other systems will vary, but with this example, we
seek to show how the ideal choice of DFT algorithm can be in-
fluenced by the physical parameters of the optical simulation.
The benchmarks that follow were run on an NVIDIA Tesla
K20X graphics processing unit (GPU) (driver version 352.39,
CUDA toolkit version 7.5), inMATLAB 2016a under Red Hat
Enterprise Linux 6.6. MATLAB’s parallel computing toolbox
was used to execute code on the GPU. Run times were measured
with MATLAB’s built-in timeit () and gputimeit ()
functions for central processing unit (CPU) and GPU
implementations, respectively, and all variables were stored in
double-precision floating point.

It should also be noted again that, for a phase-retrieval
application, the arrays Ĥ , â [Eq. (47a)], and b̂ [Eq. (47a)] used
by the CZT and Ωx and Ωy used by the MTP are the same on
every iteration, so they should be stored and reused. For this
reason, the time taken to compute these arrays is not included
in the timing measurements.

All of the benchmarks in this section were done with square
arrays; that is, R � S, M � S, QP

x � QP
y � QP, and

Q I
x � Q I

y � Q I.

A. Monochromatic Models

We begin the section with a simple simulation of propagation
for a monochromatic model. The run times for equivalent
CZT, FFT, and MTP computations over a range of 2D array
sizes are shown on a log scale in Fig. 2. In each trial, a single
optical field represented by an array of complex numbers is
propagated to the image plane with the given DFT algorithm.
In this example, we set values for Q I and QP to unity, so that
the array sizes in the pupil and image planes are naturally the
same. We can see from the figure that the two FFT-based al-
gorithms (FFT and CZT) scale better with array size than the
MTP, as expected, with the FFT being a clear winner at large
sizes. At small array sizes, the curves are flat, which we interpret
as the run times being dominated by fixed overhead cost of
communication between the MATLAB interpreter and the
GPU, rather than the numerical calculation itself. In that range,
the MTP does the best. The CZT times show a “stair-step”
behavior, which is a result of the way this CZT implementation
chooses array sizes for its internal FFTs. Since the two internal
FFTs in Eq. (51) can be padded up to any array size without
regard to the physical parameters of the overall DFT, our im-
plementation pads the data arrays to whatever size yields the
best performance (based on previous benchmarks). For small
ranges of PSF array sizes, there tends to be one nearby array
size that has the fastest time and is chosen instead of a range
of nearby sizes. Since the nearby DFTs with smaller PSF array
sizes are all using the same internal FFT size, they have nearly
the same run time. In this example, the FFT is the most effi-
cient of the three in terms of handling large arrays. However,

Table 1. Summary of Computational Complexities

Algorithm Complexity

FFT
Monochromatic �Q IR�2 log2�Q IR�
Broadband

	λk
λ0
Q IR



2log2

	λk
λ0
Q IR



Narrowband

�
λ2k

λ0Δλ

�
2
log2

�
λ2k

λ0Δλ

�
CZT

h
R
�
1� Q I

QP

�i
2
log2R

�
1� Q I

QP

�
MTP Q I

QP R3�1� Q I

QP�
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Fig. 2. Run time comparison for Q I � QP � 1 as a function of
PSF size R for a monochromatic simulation.
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this simple case is the most advantageous case for the FFT,
since the data array sizes in both domains are the same, there
is only one wavelength component, and QP � Q I � 1. In the
following examples, we will see how the flexibility of the arbi-
trarily sampled methods allow them to maintain good perfor-
mance with a wide variety of simulation parameters.

As discussed in Section 2.A, it is common to use Q I � 2 to
reduce aliasing effects, and QP � 2 to ensure that the intensity
of the PSF is Nyquist-sampled. Figure 3 shows the timing
results for this case. For a given PSF diameter, the larger QP

corresponds to a smaller physical pupil size compared to the
previous example. However, the increase in Q I requires finer
sample spacing in the pupil. Since QP and Q I are both in-
creased by a factor of 2, the net effect is that the CZT and
MTP have the same cost in this case as in the previous example.
The FFT, on the other hand, is unable to take advantage of the
smaller physical pupil size represented by the increase in QP,
since it must pad the pupil array up to the same size as the
image plane array. The array size is doubled with Q I � 2,
so the performance of the FFT is worsened by a factor of 4
compared to the previous case. As a result, the performance
of the CZT is comparable to that of the FFT in this case.

In order to explore the dependence onQP in more detail, we
now consider cases where the region of interest in the pupil
plane is smaller than the overall aperture size. In particular, this
is relevant to phase retrieval on optical systems with segmented
apertures and to transverse translation diversity using with a
subaperture mask, where subregions of the pupil will be propa-
gated, while the detector array was designed to adequately sam-
ple a PSF from the full aperture. In these cases, the DFT period
K given in Eq. (59) and region of interest in the image plane R
stay the same, but a smaller region of interest in the pupil plane
means propagation with a higher QP. Figure 4 shows the FFT
time holding constant, since its run time does not change asQP

increases: even though the number of pixels needed to represent
the pupil is smaller, the pupil-plane data array is always the size
of the DFT period. The run time of the CZT changes in accor-
dance with Eqs. (52) and (54). As the number of pixels in
the pupil decreases, the padded array size K 0 × L 0 may decrease

until it is nearly equal to the array size R in the image plane.
The MTP has a run time driven by Eq. (34), or equivalently by
Eq. (40), since the arrays are square. The decreasing array size
in the pupil plane allows the cost to continuously decrease,
which makes the MTP the most efficient for large QP.

B. Polychromatic Models

Next, we examine performance of the three algorithms for pol-
ychromatic simulations. The first example is an optical system
with a spectrum ranging from 500 nm to 1.5 μm, which is
modeled at five evenly spaced discrete wavelengths. The model
uses Q I � QP � 2. The run times shown are the total time
needed to propagate all five wavelengths. The timing results
in Fig. 5 show the CZT and MTP performing similarly, as
they did for the monochromatic case. The FFT, however, per-
forms poorly for all array sizes, consistent with expectations
based on Eq. (63). The FFT can only maintain consistent sam-
ple spacing for each wavelength component by padding the
data arrays significantly. The largest wavelength, for example,
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Fig. 4. Time versus QP, for PSF size of 1024 × 1024 pixels. Image
size is held fixed and pupil sampling is varied to accommodate the
change in QP.
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Fig. 3. Run time comparison for Q I � QP � 2 as a function of
PSF size R for a monochromatic simulation.
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Fig. 5. Timing comparison for a broadband simulation.
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requires padding by a factor of 3 (since the wavelength in
Eq. (62) is 3 times larger than the reference), which increases
the run time for that wavelength by a factor of 9. This is more
than enough to overwhelm the FFT’s previous advantage over
the other two methods. For example, we observe that for the
112 × 112 array size, the FFT is 6.6× slower than the MTP, and
3.1× slower than the CZT. At the 1008 × 1008 array size, the
FFT is 2.1× slower than the MTP, and 3.6× slower than
the CZT.

The next polychromatic simulation models a narrowband
spectrum of only 10 nm wide, centered at 1 μm. Again, five
evenly spaced wavelength components are propagated, and
Q I � QP � 2. The total run time for all five wavelengths is
shown in Fig. 6. Again, the CZT and MTP take the same time
to propagate each wavelength, as if the simulation were mono-
chromatic (the total time shown on the plot includes the cost of
running all five wavelengths). The FFT’s performance is greatly
degraded by the padding issues discussed in Section 3.C. The
FFT must use a highly oversampled representation of the pupil
plane, so that an integer change in the array size corresponds
with the needed small fractional changes in wavelength. This is
evidenced by the “stepped” nature of the curve in Fig. 6. Each
step corresponds with a jump to the next smallest array size that
permits integer changes to correspond with the fractional wave-
length differences. As in the previous case, the padding require-
ments are enough to make the FFT slower than the MTP and
CZT. For the 112 × 112 array size, it is 10.7× and 5.2× slower
than the MTP and CZT, respectively, and at the 1008 × 1008
array size it is 2.4× slower and 4.2× slower.

C. Advantageous Array Sizes

An important factor in the CZT’s good performance in poly-
chromatic simulations is its freedom to choose advantageous
array sizes without affecting the physical parameters of the sim-
ulation. To see the significance of this freedom, we can look at
how the performance of an FFT implementation varies with
array size.

Figure 7 shows benchmarks of the FFT for a small range of
2D square array sizes (the axis labels show the length of one

side). It is well known that FFTs are more efficient for highly
composite array sizes, for example [23]. The plot shows that, in
this case, the difference in run time between a good, highly
composite array size and the poorest performers is roughly a
factor of 6. This highlights the disadvantage faced by the
FFT when it is forced to use a less-than-ideal array size for
some wavelengths in a broadband simulation. Additionally,
we see that the performance does not follow the theoretical
N 2 log N curve locally; the actual performance is very
array-size- and library-dependent.

Figure 8 shows run times for the same sizes when executed
on a CPU. On this hardware, the range from best to worst array
sizes is comparable to the GPU, but the times are more evenly
dispersed in between. The libraries available for the CPU
(FFTW via MATLAB in this example) are likely to be more
refined than libraries available for a GPU, which could explain
how the FFT handles noncomposite array sizes more gracefully
on a CPU.
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Fig. 6. Timing comparison for a narrowband polychromatic
simulation.
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Fig. 7. 2D FFT times on the GPU, including highly noncomposite
array sizes.
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Fig. 8. 2D FFT times on the CPU (FFTW), including highly non-
composite array sizes.
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In the polychromatic simulations of Section 4.B, regularly
spaced wavelength components were chosen to sample the
spectrum, which led to some padded array sizes for the FFT
that are noncomposite. One may improve the performance
of the FFT by shifting the choice of wavelengths to simulate
so that the array sizes are closer to composite numbers, but then
adjustments to the spectral weights are required [4]. The best
possible outcome of this would be to recover the FFT’s perfor-
mance from the monochromatic cases, as in Fig. 2 or 3. One
could also decide to allow slight errors in QP for the sake of
using more desirable array sizes, but such approximations
should be made with care. The arbitrarily sampled methods
allow any choice of wavelengths without affecting performance
or accuracy.

5. CONCLUSION

In this work, we considered in detail three methods for com-
puting optical propagations: the commonly-used FFT, the
MTP, and the CZT. We explored, both through theoretical
considerations in Section 2 and benchmarks in Section 4,
the computational trade-offs and sampling issues in choosing
one or the other of these methods. The computational perfor-
mance is more easily understood in terms of sampling factors
QP and Q I, from Section 3.B. Summarizing the results of these
benchmarks:

• For monochromatic models withQP � Q I � 1, the FFT
performs best (see Fig. 2).

• For monochromatic models with QP � Q I � 2, the
CZT and FFT both have good performance (see Fig. 3).

• For small array sizes in general, the MTP tends to
outperform the other methods, contrary to its less favorable
asymptotic complexity.

• When QP is large, the CZT and MTP can substantially
outperform the FFT. For very large QP with fixed PSF size, the
MTP greatly outperforms the other methods (see Fig. 4).

• For polychromatic problems, the MTP and CZT gener-
ally outperform the FFT, sometimes by substantial margins, as
shown in Figs. 5 and 6.

• Outside of the case where QP � Q I � 1, the FFT does
not have a large performance advantage over the CZT.

From these results we make some general observations:
Contrary to popular practice, a padded FFT is often not the
fastest choice for computing oversampled DFTs. The 2D
CZT is a good candidate for a general purpose replacement
for the padded FFT; it offers reasonable asymptotic complexity
in all regimes and flexible control over image and pupil sam-
pling. For small array sizes, the MTP tends to outperform the
other methods.

In applications where the absolute fastest performance is
required, all three methods should be benchmarked on the
particular hardware and array sizes of interest; the crossover
points where one method or the other offers the best perfor-
mance will depend on the particular hardware and libraries in
use. Getting the best possible performance out of the FFT or
CZT requires careful choice of transform lengths to optimize
performance of the particular FFT libraries on the available
hardware.

APPENDIX A

Symbols used throughout this paper are defined in Table 2.
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