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1. INTRODUCTION

Phase retrieval algorithms have seen a variety of applications
in optics, including wavefront sensing and image recon-
struction. Many of these algorithms employ a nonlinear-
optimization approach, where an error metric (typically some
form of data consistency metric, possibly modified with
penalty terms to enforce additional constraints) is optimized
(or minimized) using a gradient-based search algorithm to find
a solution to the problem. This approach has three advan-
tages: the forward model can be modified in a straightforward
way to account for real-world effects such as broadband light
or detector integration area, the error metric can be tuned to
the particular noise statistics present in the data, and the
search strategy can benefit from the extensive literature in
nonlinear search algorithms. These advantages come with a
price: the better-performing nonlinear search algorithms
(such as conjugate gradient or BFGS [1]) require computation
of the gradient of the error metric. Phase retrieval and image
reconstruction algorithms typically optimize over many
parameters, particularly in the case of a point-by-point phase
or amplitude function for wavefront sensing or image
reconstruction. In order to maintain computational efficiency,
it is desirable to avoid using a finite-difference gradient
calculation (whose cost scales linearly with the number of
parameters). For a high-order polynomial wavefront or point-
by-point aberration, a finite-difference gradient could cost
hundreds or thousands of times the cost of a single error
metric evaluation. Instead, analytic gradient formulations
are employed [2,3], with costs on the same order as a single
error metric evaluation. In previous work wherein analytic
gradients are reported, they are typically derived by writing
an explicit expression for the error metric and symbolically
differentiating with respect to each of the input parameters
to produce an expression for the gradient. This is mathemati-
cally straightforward, but somewhat laborious, and it
limits the choice of forward models to those that the
researcher understands how to differentiate symbolically.
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This leads to the following algorithm implementation and
testing strategy:

1. Write forward model and error metric symbolically.

2. Implement forward model in computer and test.

3. Derive symbolic expression for gradients of the
forward model.

4. Implement gradient model in computer and test.

The researcher is essentially writing two closely related
pieces of software that together make up the complete rou-
tine. If this approach is followed rigorously, a small change
in the forward model can require repeating a large amount
of work in the gradient derivation to produce an appropriate
new gradient. We and others have observed recurring patterns
in the form of these gradient calculations; even with changes
in the choice of error metric and propagation models, the
overall flow of the calculation remains the same. We have also
observed that, for phase retrieval algorithms, the computa-
tional cost to compute the gradient (having already computed
the forward model) is approximately the same as the cost to
compute the forward model itself. The cost of computing the
forward model is also largely independent of the number of
parameters; that is, the cost of computing the forward model
and gradient is approximately twice that of computing the
forward model alone.

The literature in the field of algorithmic differentiation [4]
reveals that both of these observations reflect more general
principles. The recurring computational structure of the phase
retrieval analytic gradient is an ad hoc manual implementation
of areverse-mode algorithmic differentiation strategy. The ob-
servation that the cost of computing the gradient is a small
multiple of the cost of computing the forward model is ac-
tually a manifestation of the “cheap derivative principle.” This
principle applies when one employs the reverse-mode
strategy to compute the gradient of a scalar function of many
variables. The algorithmic differentiation literature [4] also
provides several key additional insights:
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1. The cheap derivative principle applies to almost all
well-behaved scalar functions, not just the largely linear oper-
ations typically employed in phase retrieval algorithms. The
cheap derivative principle is also not limited to functions that
can be expressed directly in a symbolic mathematical form
but extends to functions that are described by algorithms
and computer codes, provided that the elementary operations
in the algorithm are differentiable in the vicinity of the evalu-
ation point. Since any numerical function can be ultimately
expressed as a sequence of floating-point additions and multi-
plications, which are differentiable, this is not a significant
limitation in practice.

2. The software structure of the forward-model code pro-
vides the structure for the derivative code; it is possible to
produce the derivatives on a step-by-step basis by reversing
the steps in the forward model and applying appropriate
differentiation rules.

3. As a consequence of the previous point, if a forward
model can be divided into reusable subroutines, the gradient
calculation can be subdivided in the same way. Therefore, we
can modularize the components of a phase retrieval algorithm
and its gradient. This means that different image-domain error
metrics, numerical propagation models, and pupil models can
potentially be used together in a “mix and match” fashion
without requiring additional gradient derivations.

4. The generation of analytic gradients can be done en-
tirely mechanistically in software, either by recording the
execution history of the forward model and playing it back
to compute the gradient or by making source code transfor-
mations on the forward model itself.

The fourth point suggests that computing analytic gradients
for arbitrary functions is essentially a solved problem; indeed,
various software packages implement algorithmic differentia-
tion techniques in various languages. However, these pack-
ages have some limitations and design choices that hinder
their application for phase retrieval algorithms. First, the
formulation in [4] is primarily written for scalar operations,
whereas phase retrieval algorithms are most naturally ex-
pressed in terms of multidimensional vector representations.
Second, the formulation in [4] is given in terms of real-valued
functions, while phase retrieval algorithms are typically ex-
pressed at least partly in terms of complex fields and com-
plex-valued Fourier representations. Third, phase retrieval
algorithms rely heavily on specialized numerical routines such
as the fast Fourier transform (FFT), which are typically pro-
vided by third-party libraries; these libraries appear as a black
box to typical algorithmic differentiation tools, and derivative
computation cannot proceed through them unless the tool is
provided with customized derivative rules for the particular
library. Finally, algorithmic differentiation tools are most well
developed for lower-level compiled languages such C, C++,
and Fortran, while many phase retrieval algorithms are imple-
mented in high-level interpreted languages such as MATLAB,
where the tools are not as well developed and/or are expen-
sive and proprietary. We will revisit the topic of current
algorithmic differentiation tools in Appendix A.

Fortunately, it is not necessary to possess an automated
tool in order to benefit from the concepts and techniques
of algorithmic differentiation. Instead, so-called “manual auto-
matic differentiation” requires only that the programmer
understand the approach; the actual gradient code is
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produced by hand. The technique of algorithmic differentia-
tion provides a recipe to convert the forward-model code into
the reverse-model gradient code in a systematic and straight-
forward way.

In this paper, we extend the existing algorithmic differen-
tiation techniques in order to apply them to the complex-
valued multidimensional arrays employed in phase retrieval
algorithms, as well as the commonly occurring special numeri-
cal functions. We will provide the “recipe” for operations that
occur commonly in phase retrieval algorithms and show how
these components can be connected to compute gradients for
more complicated algorithms.

The cost of the traditional symbolic approach to computing
analytic gradients can be seen by considering some examples.
Equations (11) and (12) in [5] give lengthy analytic gradients
for the optical field for a phase retrieval algorithm that models
point-spread functions with undersampled broadband light.
This is in contrast with the description of the forward model,
which is broken down into individually digestible steps in
Egs. (2)—(6). Using the algorithmic differentiation techniques
we will discuss here, the same step-by-step approach could be
applied to the analytic gradient calculation. Furthermore,
since many of the elements of the forward model in [5] are in
common with those of the algorithm for the simpler mono-
chromatic and adequately sampled case, only the novel
elements of this particular algorithm, in this case mainly
Eq. (6) of [5], would require new gradient derivations. As an-
other example, consider Egs. (C6) and (C20) in [6], which to-
gether give gradients for wavefront parameters in a problem
with an unknown extended object. Again the gradient expres-
sion is lengthy and required substantial work to construct.
Again an algorithmic differentiation approach to the gradient
would greatly reduce the required effort and allow focusing on
the novel aspect of the forward model (in this case convolu-
tion with unknown extended objects).

The advantages of the algorithmic differentiation approach
to constructing phase retrieval algorithms can also be seen
when combining elements from existing models to solve new
problems. As a motivating example, consider modeling the
following situation. We take through-focus images of a small
object with a segmented-aperture telescope. The detected im-
ages are undersampled in intensity by more than a factor of
two (so that the underlying optical fields are also under-
sampled) and furthermore were taken through a broadband
filter. We wish to determine if the small object is a single star,
two or more stars near one another, or a small extended ob-
ject. Modeling this scenario involves combining the extended
object convolution models of [6] with the undersampled im-
aging models of [5]. If the analytic gradients for this case were
derived in the usual direct symbolic method, much of the
work in both papers would have to be repeated to produce
the gradient expression of the new model, even though the
forward model would be a straightforward combination of
two. If the two subproblems were treated with the algorithmic
differentiation approach described later in this paper, the two
gradient models could be combined simply to produce the
correct gradient for the combined problem.

The remainder of this paper is organized as follows:
Section 2 introduces the notation we will use to distinguish
scalar and array quantities. Section 3 sketches the forward
model for a simple phase retrieval problem to provide a
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concrete context for the work in the remaining sections.
Section 4 develops the basic mathematics of reverse-mode al-
gorithmic differentiation for real-valued variables. Section 5
extends the treatment of algorithmic differentiation to include
complex-valued variables. Section 6 gives reverse-mode
gradient rules for many common arithmetic operations on
complex-valued array quantities. Section 7 addresses some
of the subtleties of calculations that mix real and complex var-
iables. Section 8 develops the gradient rules for general linear
operators in detail. Section 9 develops a reverse-mode gra-
dient rule for an algorithm for downsampling images by pixel
binning (boxcar averaging), which can be used for under-
sampled phase retrieval algorithms. Section 10 revisits the
phase retrieval algorithm from Section 3 and applies the
reverse-mode rules developed in the previous sections to it.
Section 11 shows how the simple model from Sections 3
and 10 can be modified to incorporate nonlinear detector
response. Section 12 summarizes the paper and concludes.
Finally, Appendix A reviews currently available software tools
for algorithmic differentiation in MATLAB and Python.

2. NOTATIONAL CONVENTIONS

In phase retrieval and image reconstruction algorithms, we
are typically interested in numerical operations over two-
or higher-dimensional arrays of real or complex numbers
(typically represented as single or double precision floating-
point numbers in a computer). In order to express algorithms
using these arrays more compactly, we will adopt the follow-
ing conventions: a variable written in italics, like «, is a scalar
variable. A variable written in bold italics, like y, is a vector or
higher-dimensional array. An italics subscripted variable de-
notes a scalar element of the corresponding bold variable;
e.g., ¥, is the nth element of y. A bold subscripted variable
denotes one of a collection of vectors or tensors; e.g., in a
focus-diverse phase retrieval problem, the two-dimensional
array of measured data in the nth plane might be denoted D,,.

Additionally, the application of scalar operations to every
element of an array is a very common feature of our algorithms,
so we will adopt the convention that a scalar function applied
to a bold italics variable denotes the application of the scalar
function to each element of the input vector to produce an out-
put vector of the same size and shape. That is,

Y= =y, =f(x,). €Y

In order to accommodate this we do not extend the notation of
bold indicating a vector quantity to indicate a vector-valued
function; an unbolded function may be either scalar or vector
depending on the context. Additionally, although the element-
wise multiplication of two vectors or matrices (called a
Hadamard product) is somewhat unusual in abstract linear al-
gebra, it is quite common in phase retrieval algorithms, while
the more typically usual matrix multiplication is relatively
unusual in phase retrieval algorithms. We will adopt the con-
vention that the element-wise product is denoted by x o y, with
the implicit requirement that x and y must have the same size
and shape. The matrix product, on the other hand, is denoted
here by x * y, with the implicit requirement that the shapes of x
and y must be compatible for matrix multiplication. Note that
this use of the in-line asterisk is different from the convention
adopted by some authors, where x * y denotes a convolution.
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To avoid confusion between element-wise products and matrix
products, in this paper we reserve the implied multiplication
for scalar-scalar and scalar-vector products; that is, xy and
xy are both valid expressions, but xy is not. We will define
the superscripted power operators applied to arrays as their
scalar counterparts applied to the whole array, e.g.,

2], = 2. @

Finally, since we are primarily interested in deriving gra-
dient relations for numerical programs implemented in the
computer, we do not formally distinguish between the set of
real numbers and the set of floating-point numbers; both will
be denoted by R. Likewise, the set of complex numbers rep-
resented as pairs of real numbers or pairs of floating-point
numbers will both be represented by C.

3. SIMPLE NONLINEAR-OPTIMIZATION
PHASE RETRIEVAL ALGORITHM

In order to place the techniques developed in the remainder of
the paper in a more concrete context, we will review the struc-
ture of a simple nonlinear-optimization-based phase retrieval
algorithm. We will consider a simple conventional case: a sys-
tem with a known pupil transmittance and unknown low-
order Zernike aberrations illuminated by monochromatic light
with point-spread functions detected with adequate sampling
in a plane near focus. The forward model for this problem be-
gins with the numerical specification of the pupil. Let the
transmittance of the pupil be described by the array A and the
wavefront aberrations of the system by the array W, in units of
optical path difference from a perfect converging spherical
wave. The wavefront W will be given by the basis expansion

W= Zanzn, €]

where Z,, are sampled Zernike basis functions and a is a vector
of coefficients. The complex optical field in the pupil of the
system is

A
g=ao e (W), @
where 1 denotes the wavelength, and recall that o denotes
element-wise multiplication. Under the Fraunhofer approxi-
mation we can propagate the optical field in the pupil plane
to the image plane with a FFT

G = FFT{g}. ®)

If the point-spread function is desired in a defocused plane,
the focus term in a should be adjusted. For simplicity we here
assume that the sampling is controlled by zero-padding A
around the known transmittance function and that the overall
power in G is controlled by adjusting the scale of the ampli-
tude A. The observed point-spread function intensity will be
simply the squared magnitude of the optical field in the image
plane:

I1=G|. ©)

Given measured point-spread function data D we can form a
sum-of-squared-differences error metric
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E= Zwm(lm _Dm)zs ™
m

where m is a lexicographic index over image pixels and w is a
weighting function used to reject bad pixels and control the
normalization of the error metric if desired. I is indirectly a
function of a, the estimated Zernike coefficients. For a given
choice of the error metric, £ will describe how much our
modeled point-spread data I disagrees with the measured
data D. In order to find the unknown Zernike coefficients,
we wish to find the Zernike coefficients that minimize the
error metric:

i = argminE. ®
a

Since Egs. (4) and (6) are nonlinear, this minimization prob-
lem cannot be solved with simple linear techniques; instead it
requires nonlinear-optimization techniques. The nonlinear-
optimization approach we employ is to begin at a starting
point a® and search along directions that reduce E using
gradient-based search algorithms such as nonlinear conjugate
gradient or BFGS [1]. The number of terms in a varies greatly
from problem to problem. If the system is dominated by a sin-
gle aberration (e.g., spherical aberration) a single parameter
may be sufficient. For a system with only low-order aberra-
tions, 15 terms may be sufficient. For systems with significant
higher-order aberrations, hundreds of terms may be required.
Ultimately for systems with very high-order aberrations, the
polynomial model in Eq. (3) can be replaced with a point-
by-point phase map, which could have thousands or hundreds
of thousands of pixels in it. Because of the high dimensionality
of the search space in these problems, it is imperative to be
able to compute the required search directions in a way whose
cost does not increase proportionally with the number of
parameters. Traditionally this was done as a single monolithic
calculation using differential calculus; for this forward model,
that would yield the following:

2
W= 7”3{1FFT[4W o(I-D)°G*|og*l,

oE _

aa. = 2WeZuy, ©)

p

where W represents an array of the partial derivatives with
respect to the individual pixels in the wavefront, i.e.,

— oF

W, = m, (10)
and 3{*} denotes taking the imaginary part. Equation (9) is
equivalent to combining Eqgs. (19) and (47) in [3] after account-
ing for the error in Eq. (47) of leaving off, in the second and
third lines, the factor W () in the first line. Most of the com-
putational cost of Eq. (9) is in computing W, which is then
used to compute all of the partial derivatives for the individual
coefficients of a. In the point-by-point phase map case, W it-
self is the wavefront model so W is the required gradient with
respect to individual pixel values. The techniques discussed in
the following sections will allow us to construct a function
that computes the same numerical results as Eq. (9) without
having to actually derive and write down the full expression;
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instead we may work locally with the steps in the forward
model to propagate gradients through the calculation. This
will mean that, for example, the work needed to account
for the error metric in Eq. (7) need not be repeated if we
change the propagation method in Eq. (5) or the pupil model
in Egs. (3) and (4). This extends to the inclusion of more com-
plicated effects such as extended objects, detector undersam-
pling, segmented apertures, and chromatic effects, although
we will not explore the details of all of those models in this

paper.

4. BASICS OF ALGORITHMIC
DIFFERENTIATION

In this section, we review algorithmic differentiation. For a
detailed overview of these concepts, see [4]. Algorithmic dif-
ferentiation is based on the chain rule for partial derivatives.
We will use the form of the chain rule for partial derivatives
given in [7]. If we have a function f* defined by

f=f(x,x,....,x,), an
where the x's are given by
x; = x;(Uy, U, ..o Uy,), (12)

then the partial derivatives of f with respect to the u’s are
given by

of "L of ox;

The transformation u to x is essentially a change of varia-
bles; the final value f is the same whether it is expressed as a
function of the x or u variables. In the context of a numerical
calculation, the u variables would represent an earlier set of
intermediate variables, and the x variables would represent a
later set of intermediate variables. All that is required to com-
pute the gradient with respect to the u variables is to already
know the gradient with respect to the x variables and to know
the slope of the x variables with respect to the « variables at
the point of interest.

Let us consider a more complicated scenario:

= 1), va=fa01),  E=f300), (14)
where bold denotes a vector quantity (so f; and f5 are implic-
itly vector-valued functions). We wish to ultimately obtain the
derivatives of E with respect to the elements of x. Working
from the end, we can use the chain rule for partial derivatives
to break this apart. The third line above gives us

oF

vy =S502), (15)

where prime denotes the first derivative of the (scalar) func-
tion f3 with respect to each input variable, and the vector in

the denominator indicates a vector of derivatives. This could
also be written in the form

oF oF
— ] =—, 16
(avz)k o (18)
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where k indexes the elements of vy. Alternately, one can write
it as an explicit gradient,

oF
—=V, E. 1
v, =V an

This initial step does not require the chain rule since it
involves only a single function. Working backward, we can
apply the chain rule to the next-to-last step to compute the
partial derivatives of E with respect to the wth element of v;:

EorEm
aVl w % avZ,k avl.w

The first term in the product is the quantity we computed in
the previous step, and the second is made of entries from the
Jacobian of the function f». We can apply the chain rule again
to compute the final gradients:

E E o
Ry T
), tovy, o,

Again, the first term in the product is the quantity we com-
puted in the previous step, and the second is made of entries
from the Jacobian of the function f. This general strategy can
be applied to any longer sequence of intermediate calcula-
tions. Consider a general case in which

Ve =Sk We-1)- (20)

Assuming we know the gradients of E with respect to v, we
can compute the gradients of E with respect to v,_; as

oE 5 OF  ov, @
q

&Ulc—l.w a’Ulc,q aka—l.w

This process can be repeated reverse iteratively from the
output variable to the input variable to propagate the
gradient dependencies through all the steps in the calculation.
Note that although the f;, functions are not necessarily them-
selves linear, the gradients are transformed linearly at each
step. Also, each step need only be aware of its own input and
output variables; its role in the larger calculation has no
impact on how the derivatives are propagated through the cal-
culation. In [4], the authors adopt the notation that differen-
tiation of the final dependent variable is denoted by an
overbar, so that

oF
r=— 22
rT= (22)
if the final dependent variable is E. They do not explicitly dis-
tinguish between scalar and vector x, but we will: if x is a
vector, X will be a vector of partial derivatives, so that

oF
= — 2
=g (23)
or
x=V,E (24)
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Because the metrics we are considering are scalar functions
that ultimately yield a single output variable, the use of the
overbar is unambiguous: it always refers to differentiation
of that final scalar output variable. Let us consider an example
using this notation. Let

y=s(x). (25)
and let its Jacobian be given by

ayﬁl

ox,’

f;nn(x) =

(26)

where it should be taken that f is one step in a larger calcu-
lation that will ultimately produce the scalar quantity E. Our
goal is, given y, to compute . If we let the final scalar quantity
be E, then the two overbar vectors are given by

_ oF _ oF
x"EJ’ ymEW' e
n m

We can find x using the chain rule for partial derivatives:

oF oF dy,, _ _
- = _ s = ' . 28

o = D, = LS 29
Notice that the second part of Eq. (28) computes ¥ as a func-
tion of x and y. We will take this relationship as defining a
function that we will call f(x,¥), so that we can write

By =@ =D Y @) (29)

m

or in vector form

X=f(x.y). (30)

That is, if f is some function that maps its domain (x) to its
range (), then £ is the function that maps a gradient with re-
spect to y (¥) to a gradient with respect to x (¥). Because we
can write Eq. (28) for a general function, we know that f exists
and depends only on x and y. Equation (28) defines a pro-
cedure for evaluating f using the Jacobian of f; this provides
a formal definition of £, but in general for a particular f, it is
not required to explicitly compute the Jacobian.

Notice that Eq. (28) is a matrix product between y and the
Jacobian matrix of f, which we could also write as

S(x.3) =y *f(x) (B1)

if we interpret y as a column vector (which is the convention
in [4]). This emphasizes the simple linearity of the derivative
propagation. Note, however, that in the rest of this paper we
are interested in arbitrary multidimension variables, so we
will not adopt the column vector format employed in [4].
Although the matrix product description of the chain rule
given above is mathematically correct, in general it is not nec-
essary to explicitly calculate the Jacobian and perform the
multiplication in order to propagate derivatives. Instead, for
each elementary numerical operation that makes up a pro-
gram, an appropriate manipulation on the gradient variables
can be derived. Before deriving these elementary operations,
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let us illustrate a generalized numerical function G that com-
putes an error metric E in terms of a vector of parameters x,,
so that the total metric is

E = G(xo). (32)

We wish to extend it so that we can also compute X, the gra-
dient with respect to x,. Let us assume the forward model for
G has the form

= f1(xo),
=fa(x1),
: (33)

L :fn(xn—l)»
E =ux,.

Note that x,, is a scalar while the other x variables are vectors.
Let us assume for the moment that we know how to construct
the f,, (x, %) functions, defined analogously with f in Eq. (31),
corresponding to the f,, functions in the forward model. Then
to propagate gradients, the reverse-mode form of the gradient
will be

E=

oy

%, =
X1 :fn(xn—lﬁzn) (34)

Xy =f1.(x075€1)~

This shows the general pattern of a reverse-mode gradient
calculation: for every step in the forward model, there is a
corresponding step in the gradient model, carried out in
the reverse order.

5. EXTENSION TO COMPLEX VARIABLES

We wish to derive an extension of the algorithmic differentia-
tion procedure and the overbar gradient notation to include
complex variables. To clarify, we do not wish to generalize
the algorithmic differentiation procedure to encompass the
differential operator of complex analysis, where the domain
of applicability would then be functions that are differentiable
in the complex sense (i.e., satisfying the Cauchy—Riemann
equations). Instead, we wish to generalize the approach to
the practice typically seen in numerical computing, where
complex numbers are stored and processed in the computer
in terms of their real and imaginary parts. Additionally, we will
require that the final scalar variable denoted by the overbar is
a real scalar variable, so that for gradient calculations we are
always differentiating that real scalar variable with respect to
some other intermediate variable. It is tempting to think that,
even under these stipulations, the complex-differential oper-
ator may be the appropriate choice in dealing with intermedi-
ate calculations involving complex numbers. However, many
simple operations, such as taking the real or imaginary part of
a complex number, do not satisfy the Cauchy-Riemann equa-
tions and cannot be addressed via a complex differentiation.
Since these operations are indispensable in numerical com-
puting with complex numbers, we must have a framework
that is not limited to complex-differentiable functions. As long
as the models we are interested in can be thought of ultimately
as some vector of real-valued parameters leading to a real-
valued scalar result, we do not lose generality or introduce
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an approximation by ignoring requirements for complex
differentiability.

Any complex number stored in the computer can be
thought of as two real numbers, so that for every function
from N complex numbers onto M complex numbers, there is
an equivalent function from 2N real numbers to 2M real num-
bers. We will apply the concepts of conventional real-variable
calculus and algorithmic differentiation to these real numbers.
Given the complex-vector-valued function

y=r), (35)

we wish to preserve and extend the overbar notation for dif-
ferentiation with respect to an implicit final output variable
and the definition of a gradient propagation for a function
so that we can write

i =f(x5) (36)

with an appropriate interpretation for complex-valued func-
tions. We can make the following definitions:

YEyR+ 1
X = XR =+ ixl,
YR =Sr(*R, X1,
1 = f1(xg, x1). (€D
In this section, we will assume the final dependent variable of

interest is £, some scalar error metric. We can define the over-
bar gradient variables as

_ oF
XRn = @,
_ oF
In = Ev
. OF
Yrn = %a
_ oF
Yin = @ (38)

Essentially, the problem here is the following: given yi and
¥1, compute ¥z and ¥;. We can do this with the chain rule,

oE ayl.m
m ayl,m axR.n

oE
-%'R.n — Z ayRm +
m ayR.m C)‘%‘R.n

= Y g, Y@ | A 21)

6xR,n po den
= froa(XR. X1 IR 1),
By, = Z oE aZ/Rm oE oy,
" ayR m axln m ayl,m axl,n
_ _ U rm@r,21) _ (PR, 21
B ZyR.m axl,n + Zyl.m axl,n
= fra (R X1 IR, 1) (39)

If we now define the complex extensions of the barred
gradient variables as
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Y=yr + b1, X =xg +ixg, (40)

then we can define f(x,j) by

Sx.5) =fr(g. 21: 3. F1) + U1(er. X1:5R. 5. 4D

Equations (39), (40), and (41) together define the mean-
ing of Eq. (36) and provide the extension of Eq. (30) to com-
plex variables. Our principal remaining task is to determine
f(x.y) for common operations of interest in phase retrieval
error metrics; Eq. (39) defines a procedure for propagating
derivatives for a general function, but we can derive a form
of f(x,¥) based on the particular form of f(x).

6. GRADIENT PROPAGATION RULES FOR
COMMON OPERATIONS

In this section we will show, in Table 1, the gradient propaga-
tion rules for common operations. We will write the gradient
propagation rules assuming that a particular intermediate
variable appears only in the expression under consideration.
However, in practice, this is often not the case. When the same
intermediate variable is used in multiple parts of a calculation,
itisnecessary to add the gradient contributions from the differ-
ent components. That is, given this situation,

i =J1(x),
Y2 =fa(x), (42)

where E depends on both y; and y, in an unspecified general
way, the gradient with respect to x is given by

X =f1(x.51) +fo(x.52). 43

In principle, it is possible to extend this to a general case in
which a given variable appears at several places in the forward
model by summing over gradient contributions for each place
where the variable appears. In practice this may be an error-
prone process: it may be difficult to track everywhere that a
given variable appears in a computer program. We would like
to preserve the correspondence from Eq. (34), that one step in
the forward model corresponds to one step in the reverse
model, without introducing this nonlocal summation. This
can be accomplished by using what [4] refers to as the incre-
mental update. For a step in the forward model

y=s), (44)

we implement the gradient for this step in the reverse model
using incremental updates as

X +f(x.3), (45)

where the left arrow indicates assignment. That is, the value of
X is updated with the contribution from the particular function
in question. This update is interpreted as a concrete operation
on mutable variables in a computer code, not as an abstract
mathematical relationship between variables. The variable ¥
can be thought of in practice as an accumulator; every state-
ment in the forward model involving x produces a gradient rule
in the reverse model that updates the ¥ accumulator with the
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gradient contribution arriving from that forward-model term.
The gradient in Eq. (43) would instead be written in two steps
as

XX+ fo(x.52).
Fex +f1(x.51). (46)

which now correspond to the steps in Eq. (42). Note that strict
use of the incremental update requires that ¥ be initialized. At
the first place ¥ is used in the gradient calculation (correspond-
ing to the last place x was used in the forward model), ¥ should
be initialized to an array of zeros of the same size as x. This
initialization can be avoided by identifying the first use of x
and using the gradient formulas as written here for that point.
Note that this use of the incremental update is, strictly speak-
ing, optional; it is possible to instead track every case in which
the same variable appears in more than one operation and ex-
tend the logic of Eq. (43) by explicitly summing over them.

In order to apply these methods in practice, the researcher
needs to know which intermediate results are required to
compute the gradient. We have formally written the gradient
propagation function above as a function of x and y, but for
some nonlinear functions the gradient can be computed more
efficiently as a function of y and y, or of y, x, and y. Since y can
be computed from x, this makes no formal difference. In the
following gradient forms, we will assume that both the input
(x) and output (y) variables are available for the gradient if
they are needed. We will use whichever affords the most effi-
cient result: if a variable appears in the gradient propagation
rule, that variable will need to be kept available for use in the
gradient.

We will now consider various common operations. An as-
terisk in a superscript denotes complex conjugate. Unless
noted otherwise, the variables written in bold in this section
may be arrays of complex numbers. For simplicity, we will
usually notate them as one-dimensional vectors of length
N, but this includes multidimensional arrays with a total num-
ber of elements N as well. Note that operations that mix
vectors and scalars require special care, as in Eq. (63). For
addition and multiplication, the gradients for these mixed
forms are given in Egs. (48) and (51) in Table 1, but in general
they can be derived from a vector form and the scalar broad-
cast rule in Eq. (61) in Table 1.

Finally, for gradient forms involving more than one term,
like addition or multiplication, if one of the terms is a constant
with respect to whatever variables are of interest, the gradient
rule for that term can be simply ignored.

Note on Eq. (59) in Table 1: the incremental update in this
particular case bears some additional consideration. Only the
elements in the subset @ need to be updated; that is, the
incremental update is

Xlal«x[a]l +y (62)

with the other elements of ¥ unchanged. Note that ¥ may re-
quire explicit initialization in this case, even if this indexing is
the first appearance of the variable; X should be an array of the
same size as x, not the size of the subset indexed by .
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Table 1. Gradient Rules

Name Forward Model Gradient Model Parameter Domains #

Addition z=x+y X=z,y=12 x,y.z€CN Ity
Scalar-vector addition z=x+y T=)2,y=12 zyeC¥ xeC! (48)

7
Element-wise product Z=x0y X =yrez,y=x"oz x,y,2€CN 49)
Matrix product Z=Xx%*y x=zxy" y=xT*xz xeCV yeCPM 7 e CNM (50)
Scalar—vector product z=2xy T=)YrZy, ¥y =22 zyeC¥ xeC! (B
7
Raising to a constant power y=x° X =co(x*) Loy x,yeCN ceRN (52)
Element-wise square magnitude y=|x] X =2xo R{y} xeCV, yeRY (53)
Real part y = Rix} Rix} = Ry} xeCV,yeRY (54)
Imaginary part y=3fx} {x} = Ry} xeCN,yeRN (55)
Complex exponential y=¢ X=joy* x,yeCV; (56)
Imaginary complex exponential y=e* X =3y} xeRN, yecCN (67
Basis function expansion y=>Ya,B, Ay = > YuoBn(u,v) yERVM B e RPANVM g c RP (59)
7 w
Array indexing y=x[a] ¥[a] =y x,y € CV, a is an index (59)
Array assignment yla] =x X =j[a] x,y € CY, a is an index (60)
Scalar broadcasting Y=o VY =Y Un yeCV xeCt (61)
m

7. MIXING COMPLEX AND REAL
VARIABLES

Most of the derivative rules derived in the previous section are
written for complex-valued quantities. This can lead to com-
plications when an expression combines both real and com-
plex quantities. For example, the forward-model expression

z2=x+1y (63)
with real x and y is a potential problem. A direct application of
the gradient rules for addition and multiplication would give

xr =2, Y= -1z, (64)
where in general Z is complex. However, this cannot be cor-
rect; since x and y are real, the imaginary parts of x and ¥ must
be zero (since the error metric may not depend on the imagi-
nary part of a strictly real quantity). The issue here arises from
the mixing of real and complex quantities in Eq. (63). In order
to evaluate the expression we implicitly extended x and y into
complex numbers, but our gradient rule did not take this into
account. Equation (63) could be written more explicitly as
¥ =x-C, ¥y =y-C, z=a +1, (65)
where we use the prime notation to denote that x’ and y' are
temporary intermediate variables created from x and y, re-
spectively, and we use the — C notation to denote embedding
a real number into the complex plane on the real axis, e.g.,
R’} ==, 3{o'} = 0. (66)
Although it is common practice to consider all numbers to be
implicitly complex numbers with the imaginary part being

zero for real numbers, this does not reflect how real numbers
are actually stored and processed in a computer. In order to
understand what is actually evaluated, it is more accurate to
consider real and complex numbers as distinct, with an
explicit extension operator. Clearly, the gradient derived in
Eq. (64) does not account for this extension into the complex
plane. We can rectify this by noting the gradient pair for the
complex extension as

¥ =x-C, xr=RN{x'}. 67
Including this directly in the gradient rule yields a modified
version of Eq. (64):

x = RN{z}, y = -N{iz}. (68)
Although the implicit promotion of real variables to complex
variables may appear somewhat abstract, the practical impli-
cation is quite simple: the gradients of real variables should
themselves be real, which can be achieved by taking the real
part before performing the gradient update.

8. LINEAR OPERATORS

We have discussed the gradient propagation of several
common elementary operations, but arbitrary linear operators
are of particular interest in optics and phase retrieval algo-
rithms. Regardless of how it is numerically implemented,
any linear operator can be formally written as a matrix prod-
uct (assuming the input and output arrays are represented in
lexicographic order):

Ym = ZAmnxn, y=Axx.
n

(69)
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Using Eq. (50) in Table 1, we could write down the gradient
rule for this case:

¥ =AT"xj. (70)
However, since this particular case is of such centrality, we
will present an explicit derivation of its gradient propagation

rule here. First, we consider the real part of the gradient
vector,

oF . oF [)yRm JoF 0yLm

xR, B — OYRm asz — Y1 OXRy
- ZyR m {ZAmnxn} + Zyl m

= Zng ax Z(AR.man,n _AI,m’nan)
m

B

+ Zyl m Z(AR mnLln +AI mnR, n)
= Z@R,mAR.ml + Z@LmAI,ml- (71)
m m

Next we consider the imaginary part,

oE _ Z OE 0yrm Z O oyim
oxy 5 O0Yrm 0Xyy = OY1m 0%y

_ d
= ;yR,m JI[ Zn:(AR.manm - AI.man,n)

+ Z.@Im
m

= _Z@R.mAI.ml + ZZ_/LWLAR.W' (72)
m m

d
% ;(ARA,man.n + AI,man.n)

Next, we can assemble the whole complex gradient vector:

oF . OF

= — i

(3
6.76Rl + axu

= ZQR mARmt + ZZ/I mALmi — 123/12 mALmi

m

+ iZZ_/LmAR,mJ
= Z(yRm + 7/ylm)(AR ml — 7’AI ml) = Zym ml

=Y A" (73)

m

or, in matrix form,
¥ =AT" xj, (74)

which agrees with the expected result given in Eq. (70). For a
general matrix A, the transpose conjugate is not equal to the
inverse, and thus for a linear operator the inverse is not
necessarily the correct operation to propagate gradients.
Although we may speak casually of the gradient calculation
as the “inverse” of the forward model, this is not correct math-
ematically: the gradient calculation does not require that the
forward model be invertible. Therefore, valid analytic gra-
dients can be obtained even for operators that are not invert-
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ible (i.e., the corresponding matrix for the operator is
singular). An example is a multiplane diffraction problem in
which an optical field passes through a mask in an intermedi-
ate plane. Given the field just after the mask we cannot invert
the problem and find the field just before the mask, but we can
find an analytic gradient for the field just before the mask
given the field just after the mask. This is a difference between
Gerchberg—Saxton-type iterative transform phase retrieval al-
gorithms and nonlinear-optimization phase retrieval algo-
rithms: the iterative-transform-type algorithms require an
explicit inverse and may become unstable if the forward
model is not invertible, although this may be addressed by
“patching” the inverse model to stabilize it. For example, in
the masking example, the masked-off portions can be saved
in the forward model and added back into the inverse model
to account for the “missing” energy as was shown in [3].

The discrete Fourier transform (DFT) (typically computed
using FFT algorithms) is of particular interest in phase
retrieval, so we will consider a DFT as an example of a linear
operator. For the general case of an arbitrarily normalized
DFT,

N-1
2
y = DFT{x), (w

YUnm —aan exp N ) (75)

n=0

we identify the matrix element as

—i2
Ay = @ €Xp (71 ﬂnm) (76)
N
so we can write the gradient propagation as
N-1
Ty = Z (AT*)nm@m
m=0
N-1 ;
2znm
= R——— 77
a% exp( N )ym (77

If the inverse DFT is likewise arbitrarily normalized, so that

N-1 .
2anm
IDFT{x},, = b;xn exp( N ) (78)
then the gradient rule can be written as
= EIDFT{y} (79

Essentially the same derivation holds if we reverse the roles
of DFT and IDFT. Note that although the FFT algorithm is dif-
ferent from the matrix multiplication form used in this proof,
these results apply to FFTs and IFFTs as well, since they
ultimately compute the same numerical results as the DFT
and IDFT, respectively. In the form used in the previous
section, we can note the gradient rules for the DFT and IDFT
are as follows:

Forward DFT y=DFT{x} %= %IDFI‘{y‘} xyeCy (80

b

Inverse DFT  y=IDFT{x} x= aDFT{j:} xyeC¥ 8D
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This is consistent with the earlier claim that in general for
linear operators the transpose conjugate (rather than the in-
verse) is the correct model to propagate gradients. In the case
of the DFT and IDFT operators, the transpose conjugate is the
inverse only if they are defined such that the transforms are
unitary.

9. PIXEL BINNING

Phase retrieval and image reconstruction algorithms often
must simulate images as they would be sensed on a physical
detector. The values of the image pixels we obtain are essen-
tially a definite integral of the underlying continuous intensity.
For images that are adequately sampled, this integration effect
can be ignored, but when simulating undersampled images or
when high fidelity is required, it should be taken into account.
When working with discrete arrays in a computer, one can
approximate the definite integral over a finite pixel area by
simulating a forward-model image with an integer-factor-finer
sampling than the final desired sampling and summing to-
gether blocks of adjacent pixels to approximate a single larger
pixel; this is a form of downsampling, although distinct from
the downsampling by decimation that is often used. We will
illustrate this with an example of a 6 x 4 image being down-
sampled to a 2x2 image. We will call the original high-
resolution image a and the downsampled image b, where

Qoo Qo1 Qo2 Qo3
Ay a1 Q2 a3
a= | @0 G2 G2 G | (82)
agp a1 Qdg2 0dg3
Qg0 Qg1 Qg2 Q43
a50 051 Q52 Q53

The lower-resolution image is given by

_|boo b | _
|: §=0 Z?in:O A Zrz =0 A, i| (83)
Zn:S Zm:O A Zn =3 Zm 2 (lnm

If we now presume to have the array of gradients with respect
to the elements of b and wish to compute the gradients with
respect to the elements of a, we note that each element of a
contributes linearly to a single element of b, so each element
of @ should depend on a single element of b as well. If we con-
sider one term only,

boo = @go + o1 + @yo + a1 + Az + 2y, (84)
we can use the chain rule to find a,

or oE ob or .
2 Dum _ 2 _5,. (85)
aaoo prw ()b,,m 0(1,00 aboo

Gy =

where the sum collapses because a, appears only in the sum
for byy. We could also have arrived at this directly using
Eq. (47) in Table 1. Essentially, we can construct a by
inspection,
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boo  boo  bor  bor
boo  boo  bo1  bor
boo  boo  bor Do
by by b by
by by by by
by by bu by

a= 525(13) = (86)

We can define the bin and tile operators in a more general case
as

(r+1)p (s+1)q

Yo b 87

n=rp m=sq

(bm(a))

where blocks of size p by ¢q from a are binned together to form
the final image and

(ﬁle(”)) = Oinsp).im/als (88)
pxq nm

where the bottom side bracket denotes rounding down. Both
these definitions assume zero-based indexing for a and b. The
gradient rules for the tile and bin are as follows:

Pixelbinning y=bin(x) ¥=tile(j) xeRVMycRPNxaM (89)
pxq pxq

Pixeltiling y=tile(x) x=Dbin(y) xeRPV¥MycRVNM (90)
pxq Pxq

where the first rule follows from the same argument advanced
in Eq. (85). The second rule follows from noting that, for the
tiling operation, a p by q block of output pixels depends on a
single input pixel, so all of their gradient contributions need to
be added together. Note that although the bin and tile play
symmetric roles in their respective gradient formulations, they
are not inverses of one another in general (indeed bin has no
inverse). While for all x,

bin [tile (x)] = pqx, oD

DPXq Lpxq

in general,

tile [bm(x)] # pgx. 92)

pxq

The bin and tile are linear operators, though bin is not invert-
ible; this illustrates the claim that the steps in a nonlinear-
optimization forward model need not be invertible to have
tractable reverse-mode gradient models.

10. SIMPLE PHASE RETRIEVAL
ALGORITHM REVISITED

Now that we have developed the necessary derivative rela-
tionships, we revisit the analytic gradient derivation of Eq. (9).
We will go through the forward-model steps in reverse, in the
order in which they would be executed in the reverse-mode
strategy. The error metric in Eq. (7) yields

I=2woe(-D) (93)

through the application of Egs. (47), (49), and (52) in Table 1.
The squared magnitude in Eq. (6) yields

G=2I-G (94)
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from Eq. (53) in Table 1. We have dropped the real part since 1
is always real. The FFT in Eq. (5) gives us

g = IFFT(G) (95)

by Eq. (80). The complex pupil formation in Eq. (4) gives us
— 2m _ N
W = 7 ~s[g og ] (96)

according to Egs. (49), (51), and (57) in Table 1. The basis
expansion in Eq. (3) yields

a, =Y WyZy, 97
D

following Eq. (58) in Table 1, if we take p as indexing both
dimension of the arrays. We can obtain Eq. (9) by simply back-
substituting Egs. (9394)-(95) into Eq. (96), but for the practi-
cal purposes of implementing an phase retrieval algorithm, we
need not do so. Instead we may choose to implement the indi-
vidual steps as pairs of subroutines or classes in an object-
oriented design so that they can be reused in other projects.

11. EXAMPLE: NONLINEAR DETECTOR
RESPONSE

To illustrate the utility of this approach, we will consider
phase retrieval in a system with unknown second-order detec-
tor nonlinearity and Gaussian noise. The model for the
detected intensity D is

D=aloI+bl+c+n, (98)

where the constants a, b, and ¢ are not known exactly and
must be estimated, and n is noise. We will use a weighted
sum of squared differences of intensity error metric, in which
M is the model for the data, and w is the weighting function.
The phase retrieval forward model is then

W= Z%Zn,
n

2r
0=—W,

A
g = Ao exp(if),
G = FFT{g},

I=|G?=GoG*,

M =al°l+ bl +c,

E =) [we(M-D), 99)
n

where Z is a three-dimensional array containing Zernike basis
functions, A is a known pupil amplitude, and 1 is the system
wavelength. For the intermediate quantities, @ is the pupil
phase, g is the complex field in the pupil plane, G is the com-
plex field in the image plane, and I is the image intensity.
Notice that with the exception of the nonlinear intensity re-
sponse in the second to last line, this forward model is essen-
tially identical to that of Egs. (3)-(7). Recall from Eq. (2) that
the square in the error metric is interpreted as the scalar
square applied to the array quantity in parentheses. We apply
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the derivative propagation rules step by step to compute the
gradient with respect to the a,, coefficients:

M = 2w (M - D),

T=2aloM + bM = Mo (2al + 1),
G =2GeI,
g = IFFT{G}.
0 = 3{g*g}.
__ o2 -
W= 7” ,
a, =y (WeZ,),. (100)
m

where we can make reference to Egs. (93)-(97) for everything
except the nonlinear response to intensity. The gradients with
respect to a, b, and ¢ are

a=Yy M5  b=>M,,. &= M, (101
m m m

The sums in the equations above arise from the implicit broad-

casting of the scalars a, b, and ¢ to sizes compatible with 1

using the rule from Eq. (61) in Table 1, not from the final

sum that forms the error metric.

Observe that we were not required to write an explicit func-
tion for the error metric as a function of W, a, b, and ¢ in order
to obtain the gradients; specifying the steps to compute the
forward model was sufficient. Also notice that, in the gradient
derivation, only the second line in Eq. (100) relates to the
nonlinearity; the rest is identical to a phase retrieval algorithm
for a linear detector. Finally, the addition of the gradients with
respect to a, b, and ¢ has no impact on the form of the gra-
dients for W. This highlights the modularity enabled by this
approach; code relating to one part of a model can be kept
largely separate from code relating to other parts, and a
change in one part of the forward model requires a change
in only the corresponding part of the gradient.

12. CONCLUSIONS

We have shown how the standard technique of reverse-mode
algorithmic differentiation can be applied to computer pro-
grams making use of multidimensional arrays of complex
numbers. We have provided the complex forms of the gradient
propagation rules for various elementary operations in a for-
mat suitable for application via “manual” algorithmic differen-
tiation, i.e., without requiring the use of an automated
software tool to produce the gradient calculations. The deri-
vation of analytic gradients for phase retrieval obtained in the
traditional way (by hand, using symbolic differentiation) re-
quires a substantial investment of time for the researcher
and limits the ease with which novel forward-model formula-
tions can be explored; the use of the techniques discussed
here can greatly reduce that amount of time. Additionally,
the structure of the reverse-mode algorithmic differentiation
process allows us to separate code and variables into related
data structures and subroutines relating to different steps in a
forward model. This allows modularity and reuse of code in
related families of error metrics.
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APPENDIX A: REVIEW OF CURRENT
SOFTWARE TOOLS

Although there are many software packages that can perform
some aspects of the reverse-mode algorithmic differentiation
discussed in this paper, we found at the time of this writing
none that were fully suitable to our needs—hence the
“manual” approach taken in this paper. For research purposes
we are primarily interested in high-level interpreted languages
such as MATLAB and Python that allow rapid development
and interactive exploration. This rules out the use of tools de-
veloped for Fortran or C/C++, including Tapenade [8], ADOL-
C [9], and CppAD [10]. We prefer free and open source tools
both so that their working can be understood and to avoid
encumbering research software with additional software
licensing requirements and costs. Additionally, automatic/
algorithmic differentiation tools support only “forward-mode”
differentiation, a process similar to that described in this pa-
per, which is beneficial for algorithms in which a small num-
ber of inputs yields a large number of outputs, but not
optimization problems with a single scalar error metric.

For MATLAB, although there are several tools listed in [11],
we found none that were both free and supported reverse-
mode calculations. For Python there are more options, includ-
ing [12-14]. All three of these libraries work on an operator
overloading approach (see [4] for a discussion of operator
overloading), which makes them incompatible with external
numerical libraries that are not written to be aware of their
own special data types and limits their application for large
array oriented calculations. Theano [15], while not specifically
an algorithmic differentiation tool, does support array ori-
ented calculations and is able to produce gradient functions
programmatically; however, it requires adopting a very differ-
ent style from that typically used in Python numerical pro-
grams and still requires the user to supply gradient rules
like the ones discussed in this paper for any library functions
outside of its own core features. The AlgoPy project [16] ap-
pears to be addressing some of these limitations, but is still in
very early development as of this writing.

One might also considering using a traditional symbolic
mathematics tool such as SymPy [17] to compute gradient
expressions. While these tools are certainly able to compute
the symbolic derivatives of a given expression, they are mainly
intended to work with a small number of named continuous
scalar variables rather than a discrete calculation where the
variables are entries in large arrays. As such they lack the
ability to compactly express the phase retrieval and image
reconstruction calculations we are interested in. Further-
more, in many cases the reverse-mode algorithmic differentia-
tion gradient calculation benefits greatly from reusing
intermediate values computed in the forward model, which
inherently requires the two to be computed together, whereas
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a symbolic computing tool typically will try to produce an
expression for the gradient in isolation.

In summary, though there are many software packages that
touch on parts of the gradient calculation problem, it is the
view of the authors that none of the present packages meet
the needs of phase retrieval and image reconstruction algo-
rithms without requiring substantial additional work. There-
fore we put forth the manual algorithmic differentiation
approach discussed in this paper.
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