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The emerging astronomical technique known as wide-field spatiospectral interferometry can provide hyperspectral
images with spatial resolutions that are unattainable with a single monolithic-aperture observatory. The theoretical
groundwork for operation and data measurement is presented in full detail, including relevant coherence
theory. We also discuss a data processing technique for recovering a hyperspectral image from an interferometric

data set as well as the unusual effective transfer function of the system.
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1. INTRODUCTION

The theory and method of wide-field spatiospectral, or double-
Fourier, interferometry is intended for spectroscopically imag-
ing extended astronomical objects with a spatial and spectral
resolution that, due to cost, weight, and size limitations, cannot
be achieved by any single-aperture telescope. This system de-
sign can be thought of as a combination of a Michelson stellar
interferometer and a Fourier transform imaging spectrometer.
Mathematical models for wide-field double-Fourier interfero-
metric imaging have already been developed by Lyon ez al.
[1,2] and by Elias ez al. [3], who create a more general model
that considers polarization effects. The model herein will as-
sume the scalar field approximation, which will resemble the
analysis of Lyon et al. [1,2]; however, it will address some issues
regarding the system’s spectral optical transfer function
(SOTF), a term introduced by Thurman and Fienup for Fizeau
Fourier transform imaging spectroscopy [4,5]. This interpreta-
tion will have consequences on image reconstruction and sys-
tem design. A full derivation of the ideal measurement model is
presented in Section 2 with a discussion of sampling consider-
ations and resolution limits in Section 3. The image synthesis
algorithm is introduced in Section 4 prior to an examination of
the interferometer’s imaging properties and limitations, for
which we provide some possible solutions, in Section 4.D.
Concluding remarks and future work are provided in
Section 5. For completeness, connections to coherence theory
are provided in Appendix A. Throughout the following deriva-
tion, we will consider the case of Fresnel propagation, which
will be most pertinent for laboratory experiments but also
applies to astronomical imaging as well.
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2. MEASUREMENT MODEL
A. Source to Beam Combiner

Before looking into the specifics of the interferometer, we begin
by determining the electric field generated by the astronomical
sources of interest and propagated to the plane of the interfer-
ometer’s entrance pupil, having coordinates x;, = (xi,, i, )-
We start by considering only a monochromatic point source
located at & = (&, 17) with wavelength 4. Due to the extremely
large distance, z, between the astronomical source and the
interferometer, we define the source position by the paraxial
approximation for the direction cosines given by the angle with
respect to the axis of the interferometer (line perpendicular to
the entrance pupil plane of the interferometer that bisects the
interferometer apertures and also can be referred to as the line-
of-sight) as

a=wp=-""=F 0

zZ zZ

where the negative sign in the above definition is a matter of
sign convention. Note that in a laboratory setting, an effectively
large distance, z, is attained by placing the source to be imaged
at the focus of collimating optics. In what follows, we will adopt
the spectroscopy convention for the scalar wavenumber x =
1/4 = v/c such that the wavevector is related to the wavenum-
ber and the direction cosines through k = xer.

Assuming E(a; k) is the field produced by the source at an
arbitrary field angle and wavenumber, we can now write the
Fresnel approximation, associated with that source field
component, for the field incident on the aperture plane of
the interferometer at time # as
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E (2, a; k) = 7,2 exp (Zﬂ x; )E (0t %)

x exp(imkza?) exp(i2nkx;, - @), 2
where
iz
V1= 3)
K

and a? = |a|®. The time dependence for a monochromatic
source is given by a simple time-harmonic relationship, so it
is not explicitly included in the list of the above arguments.
Without loss of generality, we will reserve the integration over
all source angles and all wavenumbers until they are needed for
computing intensities. We will eventually be concerned with
relative intensity values, so the exact value of y, is not very
important, but, for completeness, we will continue to redefine
¥, as hew constants appear.

Most astronomical objects are incoherent sources, meaning
the fields of all the radiators in the object are uncorrelated; this
will be important for simplification later on in the derivation.
The presence of spatial or spectral correlation (partial coher-
ence) in the source could induce significant effects, such as,
but not limited to, spectral shifting or broadening of the field
measured by an interferometer ([6], Section 5.8). The addi-
tional considerations of partially coherent and coherent sources
would require significant analysis, are unlikely to occur in
nature, and will not be discussed any further.

The field just after the entrance pupil plane, having trans-
mittance A(x;,;K), is given by

Eap (xin’ a; K) = A(xin; K)Ein (xin) Qa; K)’ (4)

where the phase of A(xy,; k) would be caused by aberrations or
other path delays. We assume that the interferometer will have
two apertures that are equally displaced about the axis of the inter-
ferometer, located in the same plane, and pointed in the same
direction. The vector distance between the centers of the aper-
tures is the baseline B = (B,, B,). A simplified diagram of the
interferometer is shown in Fig. 1 for a fixed baseline. The two
fields just after the equally displaced apertures in the entrance
plane of the interferometer are given by

B
Al (xin - E > K) Ein(xin’ a; K)’ (5a)

El,ap(xin) a; K) =

E2,ap (xin) a; K) =

B
A2 (xin + E 5 K) Ein (xin) a; K)) (5b)

=cAr

=l

S(a K) <‘E a; K)’2> E (xm,a >

Fig. 1. Simplified diagram of a wide-field spatiospectral interferom-
eter for a fixed baseline, showing coordinate relationships and basic
system configuration.
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where £ ,, and £} ,, are implicidly functions of B as well as 7. In
practice, the two light-collecting apertures A; and A,, which
could be afocal telescopes, are likely to have some differences that
would amount to different pupil aberrations, which may be wave-
number dependent, and have possible amplitude variations across
each. Such an aperture function can be defined, for example, as

(3,03 K) P50 |y, | < DJ2

0 el > D2 ©

An(xin; K) = {

where x,, ., is the coordinate system centered on the th aperture,
a, and @, are the nonnegative amplitude and the phase across the
nth aperture, respectively, and | - | denotes the Euclidean norm of
a vector. This definition for the aperture function transmits the
correct portion of the electric field for each baseline, while pre-
venting «,, and ®,, from having baseline dependence. Note that
the support of 4, need not be circular as assumed in Eq. (6).

From the apertures, the field in one arm of the interferom-
eter is time (path) delayed relative to the field in the other arm
before the fields are combined at a beam splitter such that they
are co-aligned and now share the same coordinate system. We
denote the time delays induced by the two arms of the inter-
ferometer as 7; and 7,. The equivalent path delays are related
through L, = ¢7,. Combining the fields at the interferometer
is equivalent to shifting the fields in Eq. (5) such that 4 and 4,
become collocated within the established coordinate system.
For simplicity, we will assume that the coordinate system where
the fields are combined is given by x,,,, = x;,. We have chosen
to relabel the coordinate system at which the fields are com-
pup 15
shifted relative to x;,, which only affects the following analysis
by changing the nominal values of 7; and z,.

We combine this information with Eq. (5) in order express
the fields from arm 1 and arm 2 of the interferometer as

bined because it is possible to design a system where x

El,pup (xpup’ @; K)

B
= El,ap (xpup + 5, a; K')

B
= A (pup;s ) Ein (xpup + PR K>

. , K 1 \?
= y,6#1®) p2ma-clrtT)] oy [z’ﬂ; (xpup + 53) ]ES (a; )

) . 1
x Ay (%pups K) exp(inkza*) exp [zcha . (xpup + EB) } s

(7a)

EZ pup (xpup) HS )

B
_EZap pup 2)“’(

1 \2
= y,6/72(9 gi27Mz-c(t40)] ey [Zﬂ'K <xpup - EB) ]ES (o; 1)

1
x Ay (%403 K) exp(inkzer’) exp [z’2m<a . (xpup - —B)} ,

2
(7b)
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where £, and £, are implicitly functions of 7, and 75,
and ¢, (x) and @, (k) are the additional piston phases acquired
during non-common path propagation from beam splitters and
reflections off mirrors in the system. Assuming that ¢, (x) and
@,(x) are independent of wavenumber and that mirror reflec-
tions in the arms of the interferometer are the only contributors
to ¢, and @,, then Ap = @, - ¢, = mn for some integer m,
depending on the number of reflections. Note that for a non-
ideal system, one must pay more attention to the transmission
and reflection coefficients of all optical elements in the inter-
ferometer, especially for all elements before the beam splitter.

The above fields are then combined at the beam splitter,
often considered the exit pupil of the interferometer, generating
new fields, £5 and E4, at the two output ports of the splitter:

E3 = rbsEl + tbsEZ) (Sa)

E4 =t By + rpEs, (8b)

where 7, and #, are the beam splitter’s amplitude reflection
coefficient and amplitude transmission coefficient, respectively.
The above equations are valid in both the pupil and image
planes, so we will be more explicit about input variables when
E5 and E4 are computed later. For a lossless, symmetric beam
splitter, the phase difference between 7, and #, is 7/2 [7].
Also, assume a 50/50 beam splitter such that |r, | = |#,,] =
1/+/2. The intensity reflection and transmission coefficients
are then R = |r,|> = 1/2 and T = |#,,|*> = 1/2. The wide-
field extension of double-Fourier interferometry can be ob-
tained by adding an imaging lens after the beam combiner such
that if either one of the beams is blocked before beam combi-
nation, a panchromatic image of the source is obtained at the
detector array. Appendix A discusses connections to coherence
theory, which are best formulated just after beam combination.
For the time being, the most important result, as shown in
Appendix A, is that the source is assumed to be spatially
and spectrally incoherent, resulting in the following relation-

ships [Egs. (A8) and (A9)]:
(Ei (s k) E(a’sk")) = W (e a'sK)6(x - &)
x oS, (k)5 -a’,xk-x"), (9)

(IE(a:6)|) o oS, (a; x), (10)

where W and S are the cross-spectral density and spectral
density, respectively, of the source; ¢ = A*/x = (zx?)™! is
the proportionality constant when the source is incoherent
(Lambertian) ([8] Eqs. 5.5-19); and (-) is the ensemble aver-
age, equivalent to the time average from start time 7, to end
time #, defined by

()= /tb...dt. (11)

_tb_ta

Although there are proportionalities in Egs. (9) and (10), we
will take them to be equalities because the scaling factors affect
the overall scaling of the spectral density rather than its shape.
The delta function in Eq. (9) helps to reduce the dimension-
ality of the integrals related to the interference of the two beams
in the following section.

B. Wide-Field Image Formation
Instead of propagating the fields £5 and £, [Eq. (8)] just after

the beam splitter to the image plane, it may be easier to con-
sider propagating £ and £, [Eq. (7)] to the image plane indi-
vidually and then generate fields £5 and £ at the image plane
using Eq. (8). The image plane coordinates, %, have the same
transverse origin (optical axis) as the pupil coordinates, x
and are defined as

pup>

(‘ximg’ }/img) ximg

0=00,0)=—>""= s 12

(0,,0,) 7 7 (12)

where [ is the effective focal length of the imaging lens sub-
sequent to beam combination. Any phases acquired after beam
combination are common path, will cancel when the intensity
of the combined field is taken in the measurement plane, and
will not contribute to the interferogram. For this reason, we
will ignore the quadratic phase term that depends on image
plane location and constant-phase terms in the following

propagations. From Eq. (7),
E im0, ;)

K .
— . -i27Kk0-x,,, 12
Cif / £ pup (Fpupy @ K)e e d X,

— 7/zei(pl(K) exp (lﬂ'%Bz) eiZﬂK[z—C(t+T1)]ES (a; K')
Z
x exp(inkza?)e™*B / Ay (%05 K) exp (iﬂ ngup)

B
x exp |:—i2ﬂ'K <0 -a- 2_z> . xpup} dzxPLlP

= 7,6 exp (Z'ﬂ'%Bz) 2= HT)] exp (inkza?),
z

B )
x by {(0 - —) - K:| E (a; k)™ B, (13a)
2z
Esim(0, o 1)

K .
— . —i27k0 %, 12
B F / EZ’P”P (xP“P’ a; K)e” o d Xpup
. K , .
= 7,6 exp <17r4—32) e2mlz=ct+0)] exp (inkza®)
z

x by |:<0 + ZE) - K:| E (a; k)™ * B, (13b)
z

where

5, (05 5) = / Ay (s ) €xp (ingxgup>
x exp(-7i27k6 - xpup)dzxpup (14)
is the coherent impulse response, or amplitude spread function,
for the nth aperture, and
kK izK 2
72271?=;F=?-
Note that [ ...d*x,,, is understood to be a 2D integral. We

reserve integration over source angle and wavenumber for when
we compute the image intensity; for simplicity, we also assume

(15)
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unit magnification between @ and 6. Notice that if the baseline
length is not small compared with the source distance, the im-
age location will be a function of the baseline, where the fields
from each arm shift in opposing directions. We can ignore this
feature for astronomical imaging, but this effect must be con-
sidered for laboratory experiments if the source to be measured
by the interferometer is not aligned properly to the front focal
plane of the collimating optic, which is needed to simulate a
distant source. It is also worth noting that we can ignore the
quadratic phase term in Eq. (14) if we carefully position the
detector to be at the best focus for any given image measure-
ment, but the quadratic phase is negligible for astronomical
sources and for laboratory sources that are properly collimated.

The total intensity at the image plane is found by taking the
squared magnitude of £5 or £ and then taking the time average
using Eq. (11). The total field at the image plane depends on
contributions from all wavelengths and field angles (although
each location in the image plane is associated with a narrow
range of angles). In the rest of the derivation, we will use the
assumption that the sources are spatially and spectrally incoher-
ent, as summarized mathematically by Egs. (9) and (10). If we
block either arm of the interferometer, we are left with the image
intensity contributions from each arm independently. Using

Egs. (9)—(11) and (13),
)

1,0) = <‘ /0 B / 11 Ey (6, s 0)dadi
=tk [ [T [ [l (o-3) -

0
< by Ka - ;iz) _a; K'} (E*(a; ) E, (a's ')

x d2a’d?adi’ dx
[ 1 B
= |7’3|2/ / Pia K@—) - K] S, (ar; k) d*adx,
0 I 2z
(16a)
© 1 2
1,(0) = <‘/ / Ez)im(ﬂ,a;K)dzadK >
0o J-1
0 1 B
=|73|2/ / Pz,z{(g-i-z—)—a;lc]
0o J-1 4
x S(a; K)dzadK, (16b)
K 1 2z« z 17)

= 1/2 _— = —_— =
=0 yzz’f Pk fif g

where the point spread function (PSF) for the nth arm of the
interferometer is given by

Pn(0,€) = |h,(0,1)|% (18)

Using Egs. (8), (9), (11), (13), (16), and (17), the image
intensities for the combined fields for a fixed delay difference
At = 1, - 7, are then
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15(0)= <M)m/_llE3,im(0,a;K)d2adK 2>

© 1
= <‘/ / [rbSEl,im(a’a;K) + tbsE2,im(0;a;K)]d2adK
0o J-1
=RI[,(0)+T1,(0)

0 [ 1 1
+2Re {rﬁs Ths / / / / (E Lim (0,a;1)
o Jo JaJa

xE)im (0;a,§K,))d2a,d2(ldK,dK:|

)

= 1O +1,0)]

Re { [ Wa'g(a;x')a(x-x')dx'dk}
0 0

~ 110 +1,0))-m { A ® Wgn;w;x)dx], (19a)

2
3] 1 2
1,(0) = <’/ / E4im(0, a; x)d*adk >
0o Ja

- %[11(0) + L,0)] + Im [ A " wimo; K)dx],
(19b)

where
W3 (6;x)

1 1
_ / / (Y (0,000 Es (0,0 s)) o et
21

1 1
— |},2|2/ / A9 exp (—l'7Z'4KZBZ> e—inkzaz e—z‘ZnK[z—r(H-rl )]
-1Ja

« e—z’m«LB exp <i71'4£32) Eiﬂxza'z gﬂﬂk[z—f(t-&-rz)]e—z‘m(af,B
Z

lf02) o fr:2) ]

x (Ef (k) E(a';)) d*a’ d*a
— |},3 |2€iA(p(K) e—ichcAr

L [(2) el f02)

x e 2B S (g ) d2ar (20)

is the cross-spectral density between the fields from the inter-
ferometer’s entrance apertures after propagation to the interfer-
ometer’s image plane. In the above equations, we applied the
assumptions that R = 7" = 1/2 and that the phase difference
between 7, and #,, is 7/2. We also assume that the field is
stationary in the wide sense so that the interference terms,
(£} imE2im) and W13, do not vary with start time ¢, in
Eq. (11), but is implicitly a function of Az, and that S;(a; k)
does not vary over the course of data collection. This technique
is not well suited for imaging quickly changing sources.
Equations (19a) and (19b) can be combined into a single
equation for the image intensity:
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1540) =311, 0) + 1,®)] % Im [ / ) Waf;(ouc)dx]. (21)

The coherent impulse responses due to the apertures are
now addressed. Equation (13) shows that, in general, the loca-
tions of the amplitude spread functions depend on the ratio of
the baseline separation to the source distance. For astronomical
sources, the source distance is much greater than the baseline
length, allowing the baseline dependence to be dropped if
the image shift is negligible compared with the interferometer’s
finest resolution [see Eq. (32)]:

| B max 1
22 (Kpax| Blomax) ™!

1
z > EKmax|B|ilax) (22)

<1,

where K, is largest measured wavenumber and |B],,,, is the
longest baseline length. For experimental setups that must sim-
ulate distant sources using an image at the focus of a collimating
mirror, a steering mirror can be used to ensure that the coherent
impulse responses overlap for all baseline lengths. For these rea-
sons, the baseline dependence on image location will be ignored

for the rest of this paper, and Egs. (16) and (20) become

0 1
1O =1t 7 [ 5,0 aws @ndad (2

0 1
5O =P [ [ 500 @ns@oeads (@30
0 -1
W11n21 (0’ K') — |y3|2€iA(p(K) e—z’Zm(AL

1
y / 120 - @ )25 (o ) e, (24)
-1

where the optical delay has been converted to units of length
using AL = ¢At and where the spectral point spread functions
(SPSEs) [4,5] of the apertures are defined as

Pma(056) = 15,05 6)5,(6; 1), (25)

where 7 and 7 are the indices of the apertures in the interfer-
ometer. Inserting Eq. (24), Eq. (21) becomes

140 =5 110) + O F I [ [ @

x Im[e™™7®)p, (0 - at; k) 2@ B+0D 2.
(26)

Analogous to how the van Cittert—Zernike theorem is appli-
cable to source distances that are shorter than allowed by the
Fraunhofer approximation, Eq. (26) was derived using the more
general Fresnel propagations, yet most of the quadratic phase
terms have vanished. Only the quadratic phase term of Eq. (14)
remains, but its impact is negligible for astronomical sources, es-
pecially when Eq. (22) holds, and can be mitigated in the lab by
placing the detector at the best focus of the imaging system.

Equation (26) represents a complicated Fourier relationship.
Because the order of integration over source angle and
wavenumber can be interchanged for an incoherent source,
we will consider integration over source angle first; with this
assumption, (i) @ and B, and (ii) x and AL (or v and A7)
are revealed to be Fourier conjugate variables. In fact, the name

double-Fourier interferometry [9] comes from the idea that we
have two Fourier transform relationships, one spatial and one
spectral, contributing to each measurement.

To simplify Eq. (26) even further, temporarily assume that
both of the interferometer’s collecting apertures are perfectly
symmetric and identical, in which case

2110:6) = p,,(056) = p,,(65%), (27)

1,(0) = 1,(0), (28)

and

1540 = 1,0) F s A ” / 11 010 - @S, (@ )

< Im[eiAq;(K) e—i2m<(a-B+AL)]d2adK

= 1,0 + s / - / llpl,l(o-a; S, (@ )
x sin[2zk(a - B + AL) - Ap(x)]d*adx. (29)

Due to the assumption of perfect symmetry, the phase of
21, above has vanished. In practice, instrumental phases in-
cluding the phase of p, , and Ag(x) can be calibrated if they
are known. This simplified model of the measured intensity
shows that, if we take image measurements for many different
delay values at a single baseline, a fringe packet as a function of
AL exists for every image location . The position of the fringe
is dependent on both the source location and baseline, while
the width and shape of the fringe packet depend on both the
source spectral density at the corresponding source location and
A@(k). A simplified measurement model similar to the form
shown in Eq. (29) has been used to demonstrate how a high-
resolution hyperspectral image can be reconstructed from a set
of these interferometric measurements {[1], Eq. (12); [2],
Eq. (4)}; however, we will start our derivation of the “dirty”
(i.e., direct Fourier inversion) high-resolution hyperspectral
image directly from the more general Eq. (26).

3. MEASUREMENT SET AND SAMPLING

Before getting into the details of reconstructing a high-
resolution hyperspectral image, it is instructive to discuss the
set of interferometric measurements that are used to generate
the high-resolution image. Given a fixed baseline and delay
length, the interferometer captures a 2D panchromatic image
of the astronomical source having the resolution of the individ-
ual apertures (assumed to be same size). We assume the sam-
pling of the detector is matched to the resolution of a single
aperture so that the Nyquist sampling criteria is satisfied. It also
might be possible to sub-Nyquist sample the images and obtain
super-resolved images relative to the pixel pitch through a post-
processing dealiasing technique developed for Fizeau Fourier
transform imaging spectroscopy (FTIS) [10]; however, we will
continue to assume that all measured intensities are Nyquist
sampled according to the diameters of the input apertures.
For the sake of simplicity, all measurements will be assumed
to be completely discrete in the sense that all parts of the inter-
ferometer are stationary for each measurement with fixed
baseline and delay values. Keeping the baseline fixed, a set
of measurements is taken for various delay lengths resulting
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in one measurement cube, where two dimensions are the spatial
dimensions of the array detector and the third dimension is
delay length, AL, which can be monitored using laser metrol-
ogy [11]. Due to the Fourier relationship between AL and
wavenumber, k, sampling theory can be used to determine
the desired scan range and sampling of the delay line to match
the desired spectral resolution and range of the final recon-
structed image:
1 1

resolution: Ak, ~ AL AL " OAL (30)

max min max

N
L L

e A L= 5
2 “fmin T UAL

range: Koy & (31)
where V; is the number of Nyquist-sampled delay-line samples
from -AL,, to AL_,. The position of the fringe packet is
linearly related to image location; thus, in order to measure
the fringe for all field points, the delay line length is assumed
to extend equally in both directions about the zero delay posi-
tion, meaning AL ;. = -AL_ ... We will return to this idea
shortly in order to discuss the interferometer’s field-of-view
(FOV). Conversely, the range of recovered wavenumbers is
Kmax Decause only positive values of k are physical. In fact,
due to system transmissivity and detector limitations, the
interferometer’s bandpass is less than k., suggesting
0 < Kpin < Kmay knowledge of the bandpass can be exploited,
provided the measurements have an adequate signal-to-noise
ratio, thus allowing the delay line sampling to be relaxed as
for FTIS [12].

The angular resolution of a sparse-aperture interferometer is
related to the inverse of the largest spatial frequency probed by
the imaging interferometer, K, | B| yax- Using this idea, the res-
olution of an imaging interferometer is

My, = (6l Bly) ' = 2 (32)
max

Although this equation defines the best possible angular
(spatial) resolution of the interferometer, the overall quality
of the reconstructed image at this resolution also is related
to baseline sampling as well as the signal-to-noise ratio of each
measurement. We will briefly return to the idea of baseline
sampling in Section 4.D. It should be noted that images cap-
tured at different baseline orientations are rotated according to
the baseline orientation because we assume that, by design, the
entire interferometer, including all optical elements from the
input apertures to the detectors, is rotating about its line-of-
sight while the source orientation stays fixed (or equivalently
that the source is rotating while the interferometer orientation
stays fixed), and this rotation must be accounted for.

The full FOV of a double-Fourier interferometer could be
limited by various aspects of the system, depending on overall
system design, including the full FOV of each individual aper-
ture, the size of steering mirrors in both arms of interferometer,
the number of samples across the array detector, and the length
of the delay line. The dependency on AL, is due to the fact
that, in order to accurately reconstruct the spectra of off-axis
sources, the center of the fringe, whose position depends
on source location and baseline length, must be measured.
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Specifically, the argument of the sinusoid in Eq. (29) includes
the term (@ - B 4+ AL), from which the zero path difference
(ZPD), defined as the center of the fringe packet, is determined
to be

ALZPD = -a-B. (33)

If we assume A@(k) is independent of k in Eq. (29), then
the envelope of the fringe packet is symmetric about ALypp,
where the envelope is maximal. If we keep the assumption that

the fringe packets are symmetric, and assume that AZ,,,, and
| B|nax are fixed, then the FOV is limited by
-AL,, AL 2AL
FOV = |a|max - |a|min ~ = + = mlx'
1Blnax — [Blmax Bl
(34)

If Ap(k) is arbitrary, the fringe envelope is not necessarily
symmetric, so it is important that AL is large enough to
measure out t0 |ALzpp|ma = |0 - Bl at the least. In
this sense, Eq. (34) is a slightly overstated estimate for the full
FOV of an arbitrary wide-field double-Fourier interferometer
when AL, and |B|,,., are fixed.

‘max

4. DIRECT HYPERSPECTRAL IMAGE
SYNTHESIS

A. Preprocessing of Data

Now that the interferometric measurement set and spatial/
spectral resolution limits have been discussed, the algorithm
to reconstruct a high-resolution hyperspectral image can be in-
troduced. Let us assume that we have already preregistered all
images in the measurement set using a method akin to phase
referencing in optical stellar interferometry ([13], 2.2.2), which
has been introduced for double-Fourier interferometry by
Mariotti and Ridgway [9]. The image reconstruction approach
provided herein is based on processing the entire FOV at once,
as opposed to existing algorithms that have been demonstrated
on a pixel-by-pixel basis [14]. The first few steps involved in
reconstructing the “dirty” image cube are similar to reconstruct-
ing spectra in Fourier transform spectroscopy measurements.
Reconsider the result from Eq. (26) to be a 5D measurement
set where two dimensions correspond to image location 6,
two dimensions correspond to the baseline vector B, and
one dimension to the delay AL between arms of the interfer-
ometer. Including B and AL explicitly in the list of arguments,
we have

0 1
1,40, B:AL) = 11 (0) T |12 / / S, (@)
0 -1

«Im [eiAw(K) P12 (0 -a;x) ei27n<(a-B+AL):| dadx,
(35)

where we define

Iy @) =3 [1,(0) + 1,(0)

, 1 AL
- AL},:I:loo 2AL, /ALW 1546 B,ALAL - (36)
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which is independent of AL and B. The limit in Eq. (36) ap-
plied to the interference term in Eq. (35) approaches a value of
zero because the interference term is essentially the sum of
many sinusoids of varying amplitude and frequency, and the
integral of each sinusoid approaches zero when AL, — oo.
The validity of the approximation in Eq. (36), which allows
the estimation of /;,,(0) directly from the datacube for each
baseline, depends on the delay line range and sampling because
we want the fluctuations in the interference term to approach a
value of zero when averaging over all delay line positions for a
single baseline.

Assuming that measurements at all baselines have been
rotated and registered to one orientation, a bias-subtracted in-
terferogram can be generated by subtracting off the fringe bias
at each pixel:

It (0, B; AL)
= [3,4 (0) B; AL) - [bias (0)

00 1
= P / / S, (@)
0 -1

x Im[e22®) 9120 - K)e 2@ B+AD|Q2gdk.  (37)

The 7 superscript is meant to convey that the above array
consists of strictly real values.
B. Spectral Processing

Although 7 is real valued, it is derived from an underlying
analytic signal describing the spectral distribution of the source,
where only positive wavenumbers are physical. This suggests
that the imaginary values associated with the analytic signal
can be determined from the real values through a Hilbert trans-
form over the delay line variable, AL:

Ii (6, B; AL) = H[I} (6, B; AL)]

00 1
S / / S, )
0 -1

« Re[eiA(p(K)pLz (0 —a; K)e’iz”K(a'B+AL)]d2ad1<,

(38)
and we can define the complex analytic signal by

I44(0, B; AL) = I1 (0, B; AL) + il\ (0, B; AL)

0 1
=i [ [ 5120 -@ns @
x exp[iA@(k) - 2nk(a - B + AL)]d*adx.
(39)

Notice that, when the analytic signal is generated from the
measured interferogram, the result looks like the same Fourier
transform relationship as in Eq. (26). Consequently, the
spectrum of each spatial sample in the image of the source
for a given baseline can be recovered by taking the inverse
Fourier transform of 7y over AL:

Si(0, B;x)

ALy, ,
= / 1,,(0, B; AL)e?™ALdAL
_A

‘max

© ALy ., . 1
— :|ZZ|]/3|2/ (/ e—zZﬂK ALEZZHKALdAL> / pl)z(a_a;K_/)
0 -AL -1

‘max

xS, (a;x") expliAg(k) - 27k (- B+ AL)|d*adk

S 1
::I:z'|y3|2/ ZALmaxsinc[ZALmax(K—K')]/ P12(0-a;K")
0 -1

x Sy(a; k") A2 exp(-i27nk'a- B)d*adk’
<[ [
=+2AL,,.|73)? sinc(QA L, k) * {/ P12(0-a;x)
-1

x Sy(a;6) ™27 ® exp(-i2nka- B) dza}
=+2AL, .. |7;3)* sinc(2A L, ,.k)

;{[SS(0;K)exp(—iZﬂK0-B)]ipl)z(ﬂ;lc)em‘/’(")}, (40)
where the in-line asterisk % denotes a convolution in the k

dimension and % represents a 2D convolution over the dimen-
sions of @. The above result is now an array of low-spatial reso-
lution, spatially spectrally filtered hyperspectral images, where the
resolution in the spectral domain is limited by the sinc function of
width (2AL,,,.)!, and the spatial resolution is limited by the
width of p, ,, which is approximately (kD) " for individual pupils
contained within a circle of diameter D. Although at this point in
the image processing, Eq. (40) is a low-spatial-resolution hyper-
spectral image with spatial sampling related to (ke D)™, the fol-
lowing computations assume that we are first able to upsample
the spatial components of Eq. (40) to a finer spatial sampling
related to Aa, in Eq. (32), corresponding to an upsampling
factor of | B| . D". The image sampling has now been increased
but the spatial resolution of the images remains unchanged.

The linear phase term associated with the spectral density in
Eq. (40) is what will allow the collection of low-spatial-
resolution measurements to eventually become a single high-
spatial-resolution hyperspectral image because it relates the
baseline to the spatial frequencies of the source. We can see
this relationship between the interferometer baseline and the
spatial frequencies of the source spectral density by taking
the inverse Fourier transform from € to f, of Eq. (40):

§i(f6’ B;x) = /1 S:(0, B; k) exp(i270 - f,)d*0
1

1 co
— ALyl / / sinc2A L, (k - k)]
a1 Jo
< A[S.(0:K") expl(i27K'0 - B)|p, ,(0: ')
¥ D)} exp(i270 - f ) di'd0
1 o
= :I:z'ZALmaX|y3|2/ / sinc[2AL, . (k - k)]
1 Jo

x [S.(fy - k'B; K)p12(Fos k)20 dic!
= +i2AL, . |75]? sinc(2AL,, k)

¥[S,(F o - kBs K)o (F g3 <) 200)], (41)
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Spectral/Spatial-Frequency Cube

Measurement Cubes

Fig. 2. Illustration of the information content probed by the data-
cube associated with each baseline vector. Each datacube maps out a
truncated oblique cone in the spectral-spatial frequency domain whose
location depends on the particular value of the baseline vector.

where

s (k) = / ® pa@:0) exp(i210 - £,) %0 (42)

is the non-normalized SOTF of the system, and a tilde over a
variable indicates a continuous Fourier transform from 6 to f.
Equation (41) shows that the measurement cube for each base-
line probes a different range of spatial frequencies, centered
about £y = kB, of the source spectral density. The information
content of a measurement cube for each baseline can be visu-
alized as truncated oblique cones in a volume defined by f and
K, as seen in Fig. 2.

C. Image Processing and Effective Transfer Function

From Eq. (40), it is evident that there is another Fourier trans-
form relationship between & (or @) and kB, which will provide
a means of recovering a high-spatial-resolution hyperspectral
image where the spatial resolution for the largest wavenumber
is given by Eq. (32). This relationship, as well as the imaging
properties of the system, is best understood through the effec-
tive transfer function of the interferometer system. Taking an
inverse discrete Fourier transform (DFT) over the /Vy, baselines
and exploiting the Fourier transform relationship between @
and B, we obtain the “dirty” high-resolution hyperspectral
image:

N,
Sh(0;x) = Z S.(0, B,; k)&'2™0-B,

n=1
N, .
= +2AL, . |r5? {/ sinc[2AL . (k - k)]

1
< [ Si@inyp o0 -axer )
-1

x expli2n(k0 - k') - B,|d’adic’ } 43)

Substituting x0 - k'a = k' (0 - @) + (k-k")f, we can
rewrite Eq. (43) in the form of two convolutions:
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Ny,

Shr(@; k) = £i2AL,, |75 Z{/m sinc[2AL,,,.. (k - k)]
0

n=1

1
x exp[i2n(k - k")0 - B,] / S,(at; k") AP )
1

1200 - &K expli2nx' @ - ) - Bn]dzadx’}

Ny,
= +2AL, . |y5)? Z[sinc(2ALmaXK)

n=1
« exp(i270x0 - B,)J5{S.(0; ) %[p, (6; k)0
x exp(i27k@ - B,,)]}. (44)

The linear phase term associated with the sinc wavenumber
convolution kernel suggests that the delay line sampling for
each baseline and point in the FOV should be centered about
its associated ALypp. In practice this means that AZ,,,, must be
large enough to capture £|ALzpp|may as mentioned near the
end of Section 3; fortunately, the AL, needed to obtain the
desired wavenumber resolution is typically large enough to sat-
isfy this condition when compared with the largest baseline
length and FOV that would be considered for astronomical im-
aging interferometry. The other linear phase term associated
with the SPSF p, ,(6;«’) is instead related to both the spatial
frequency content associated with the baseline and the effective
transfer function of the interferometer.

In order to obtain the effective transfer function, we
compute the 2D spatial (angular) inverse Fourier transform
of Eq. (44) using @ and f as conjugate variables and employ
the convolution theorem:

B 1
S (i) = / ! SP(05x) exp(i270 - f o) d*0

1 Mo )
= :l:lZALmax 4 2/ / sing 2ALmax(K_K,
Il [ 2 ), sind J
xexpli2n(k - k)0 - B,]{S,(0; k)

201,602 exp(i27x0 - B,)]}
« exp(i270 - ) di' 0

— AL, lys )2 / " sinc2AL, (k- k)]
0

Ny,
x Z{Ss[fe + (k-«")B,; K']ﬁl’z(fg + kB,;x")dx’".

n=1
(45)
The effective OTF of a double-Fourier interferometer is the
summation of shifted SOTFs, where the shift, kB,,, is equal to
the product of the baseline and wavenumber. This is most easily
observed if we assume that the sinc convolution term in
Eq. (45) is narrow enough to be approximated by a delta func-

tion, resulting in the following effective transfer function:

Ny,
OTFe(Fys k) » Y f1o(Fy + KB, x). (46)
n=1

We will return to the consequences of the above equation in
Section 4.D to discuss imaging properties of the interferometer.
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We can now relate Eqs. (41)—(45) through

Ny,
Sh(fpi k) = Z Si(fg + kB, B,; ), (47)
n=1

which allows us to combine Egs. (41) and (45)—(47) to create a
new procedure for computing Eq. (44) from Eq. (40). We start
by computing gi(fg) B,;x), Eq. (41), for all baselines B,. We
then apply Eq. (47) by shifting all S;(f,, B,; k) by kB, before
summing the results. Finally, we obtain the ultimate “dirty”
high-resolution spectral image SM(@;x) by taking the 2D
Fourier transform of g{“(f 9; k) from f, to 6. This procedure
could possibly provide computational speed advantages if we
consider that we can combine spatial upsampling with the com-
putation of Eq. (41) instead of first upsampling Eq. (40) before
the multiplications and summation of Eq. (43).

Note that the spectral density of the object is real valued,
so its Fourier transform exhibits Hermitian symmetry,
Sh(<fy;k) = SP* (3 k), halving the number of spatial
frequencies that must be measured. This just means that base-
lines B, and -B,, provide redundant information.

If we replace the “dirty” high-resolution hyperspectral image
of Eq. (43) with a guess for the hyperspectral object being
measured, the procedure for obtaining the “dirty” hyperspectral
image can be reversed in order to simulate double-Fourier
interferometric measurements in either the form of Eq. (26)
or the bias-subtracted form of Eq. (37). Those simulations
can be incorporated into a nonlinear optimization algorithm
to recover the high-resolution hyperspectral image from a mea-
surement set, allowing for the inclusion of regularization met-
rics to enforce prior knowledge of the object being measured.
An inverse approach to image reconstruction has advantages
that would mitigate issues associated with instrumental effects
and inadequate sampling, which will be further discussed in
Section 4.D. Simulations, such as those generated by the
far-infrared interferometer instrument simulator [14], can be
made to include many different instrumental effects, including,
but not limited to, telescope pointing errors, background or
detector noise, and thermal effects. Generating simulated mea-
surements with instrumental effects, such as telescope pointing
errors, provides a means for understanding the impact of instru-
mental errors on the quality of the hyperspectral image
obtained after reconstruction [14].

D. Imaging Properties

The effective transfer function of the interferometer not only
provides insight into the image reconstruction procedure but
also into the system’s imaging properties, including the final
image quality at each sampled wavenumber. Notice that the
OTF in Eq. (46) is dependent on baseline sampling. This
dependency indicates that different baseline separations probe
different spatial frequencies in the source, and the effective
OTF is then the sum of shifted versions of the SOTFs. Figure 2
illustrates this idea by showing that the information content of
a measurement at a single baseline maps out a volume in the
spectral-spatial frequency domain, which is a truncated oblique
cone having a vertex at the (0,0;0) coordinate, and that each
baseline vector corresponds to different portions of the object’s
spectral-spatial frequencies. For this reason, baseline sampling is

chosen, time permitting, such that the volume describing the
object’s spectral-spatial frequencies is populated without gaps.
Furthermore, instead of simply summing components of the
OTF, one would choose to weight them to arrive at a uniformly
weighted effective transfer function. However, there are some
spatial frequencies to which we do not have access without ad-
ditional hardware.

Because it is physically impossible for the two apertures in a
double-Fourier interferometer to coincide (B, # 0), the effec-
tive OTF must necessarily vanish at and around the DC spatial
frequency, meaning that the lowest spatial frequencies are not
measured, depicted in Fig. 2 by the empty volume traced in
red. Without the low spatial frequency content, the recovered
high-resolution images at each wavenumber will be zero-mean.
However, conventional Fourier transform spectroscopy (FTS)
is a means of recovering some of the missing information [9].
This could be achieved with an additional beam splitter,
indicated by a thin line, and a mechanism to alter the interfer-
ometer configuration such that wide-field FTS is performed
with a single aperture, as shown in Fig. 3, in addition to
the double-Fourier measurements. If such increased system
complexity is not an option, then we must find a way to
estimate the low spatial frequencies that are not measured.
A simple solution to this problem is to use the fringe bias
from Eq. (36) to replace the low spatial frequencies. This is only
an estimate because the fringe bias is a panchromatic image of
the source, and this is equivalent to approximating the spectral
density to be independent of wavenumber: S (a, k) ~ yg(a).
A more appropriate assumption would be a gray-world approxi-
mation for the spectral density, Si(a, k) ~ y(x)g(@), which
can be used to recover a more accurate estimate for the low
spatial frequencies of the spectral image through the use of
reconstruction algorithms [5].

Aside from missing spatial frequencies at and around the
DC spatial frequency, there could be other missing spatial
frequencies if the angular or radial collection of baselines is in-
sufficient. Such sparsity in the spatial frequency domain will
cause artifacts in the image domain that can be mitigated
with regularization parameters, such as nonnegativity and
L1-minimization, within the image reconstruction procedure.
As mentioned above, the quality of the “dirty” image can be
improved by appropriately weighting the spatial frequency
content of S (f 5 ) provided that there are no gaps in spatial
frequency coverage. Another option, which is particularly

Sy(a,x)= <‘ES (& K)’2>

Fig. 3. Simplified diagram of a wide-field spatiospectral interferom-
eter an additional beam splitter and mirror to demonstrate that the
same system can be used for conventional Fourier transform imaging
spectroscopy.
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important in the presence of missing spatial frequencies, is to
use deconvolution techniques that have been developed for
imaging interferometry such as CLEAN [15] or maximum en-
tropy methods [16]. Some newer deconvolution methods are
discussed by Thiébaut and Young [17] and have been tested
in SPIE’s interferometric imaging beauty contest [18].

Also, the system’s effective OTF has a complicated geom-
etry, related to that for Fizeau Fourier transform imaging spec-
troscopy [4,5], where the measured spatial frequencies scale
with both baseline and wavelength, meaning that the spatial
frequency content of each baseline measurement is slightly dif-
ferent for all wavelengths in the hyperspectral image. The effect
of this Fourier geometry on image quality requires further in-
vestigation, but it is likely that similar image reconstruction and
regularization techniques will be useful to mitigate artifacts in
the resulting image.

5. CONCLUSION

A complete derivation of the measurement model for wide-field
spatiospectral interferometry based on Fresnel propagations
and a two-aperture interferometer has been presented. This
led to a generalization of the van Cittert—Zernike theorem that
relates the spectral density of an incoherent source to the irra-
diance measured by the interferometer. We discussed delay line
sampling in the context of desired spectral resolution as well as
the impact of the delay line scan range on the spatial FOV of
the interferometer. We also provided an estimate of the spatial
(angular) resolution of an imaging interferometer based on the
largest measured baseline length and wavenumber, but actual
image quality and resolution are also dependent on baseline
sampling and noise. A method for recovering a high-resolution
hyperspectral image from a noiseless measurement set was de-
rived. We made connections between baseline sampling and
spectral OTF (SOTF) coverage and how they are related to im-
aging properties of the system through the interferometer’s ef-
fective transfer function. Possible methods for overcoming the
issue of missing low spatial frequencies, as well mitigating ar-
tifacts due to irregular baseline sampling, were proposed based
on existing algorithms for imaging interferometry.

Future work will demonstrate the image reconstruction al-
gorithm presented herein on simulated data as well as investi-
gate the use of a regularized nonlinear optimization algorithm
to recover an improved high-resolution hyperspectral image.
We also intend to examine how lacking low spatial frequencies
affects image synthesis and attempt recovery of low spatial
frequencies without conventional wide-field FTS mea-
surements.

APPENDIX A: RELATION TO COHERENCE
THEORY

We begin by determining the intensities for each beam that
would be measured if a large array detector were placed just
before the beam splitter. The intensities of the individual beams
before the beam splitter are found by taking the squared mag-
nitude of Eq. (7) and applying Eq. (11), accounting for con-
tributions from all field angles and wavelengths:
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[ 1 2
11 (pup) = <’/} /1 E} pup (% 0 K)d*adic >

0 1
= InP / 1Ay (s 12 / E @0 ads,
(A1a)

) 1
Bog) =1 [ sl [ (E @) dads
0 -1
(A1b)
Without considering all field angles and wavelengths simul-
taneously, we would be implying assumptions about the coher-
ence properties of the source field. We can, however, change the
order of integration over time, angles, and wavenumber

without loss of generality. Using Egs. (7), (8), (11), and (A1),
the measured intensities after the beam splitter for fixed delay

At are
)

oo 1
]3(xpup) B <‘ [) /1 Ea’P“F’(xPuP' a; k) d*aedic

[ 1
= <‘ /0 /1 [rbsEl,pup(xpup) @; K)

!
= Rll(xpup) + T]2(xpup)

Y o 1 1
+2Re |:r?;5tbs A /} [1 /1 (ET}Pup (xpup, a; K)

x EZ,pup(xpup) a,; K,)>d2a,d2adK,dK:|

+tbsE2,pup (xpup’ a; K)]dzadK

= %[11 (xpup) + IZ(xpup)]

© [ 1 I
o {A ~/0 [1 [1 (ET pup (Fpupy & K)

% E pup (o @ K’))dza’dzadk’dx], (A2a)
and similarly,
iCug) = 11 ) + 1o

wim| [7 [ [ s

% B pup (Fpupr K'))dza’d2adk’dk], (A2b)

where the intensities from the output arms of the beam splitter,
I3 4, are implicitly functions of 7, 7,, and B. In the above equa-
tions, we applied the assumptions that R = 7" = 1/2 and that
the phase difference between 7, and #, is 7/2. We also assume
that the field is stationary in the wide sense, so that the inter-
ference term (£, E) pup) does not vary with integration start
time #,. Equations (A2a) and (A2b) can be combined into a
single equation for the pupil intensity:
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[3,4 (xpup) = %[[1 (xpup) + ]2 (xpup)]

) [ 1 1
wiml [7 [ [ E i
0 0 -1 J-1

x E pup (Xpupy &' K/))dza’dzadK/dKil. (A3)

In order to further simplify the above equation, special at-
tention must be paid to the integration of the cross term, which
gives rise to an interference pattern that varies with induced
time delay difference At = 7, - 7;. Assume that Az and B
are fixed during a single measurement; then (7, E5 ) is
a measure of the cross-spectral density, W1,(k), requiring that

([6], Section. 4.3.2)
(ET()Ey (k")) = Wip(k)6(k - ). (A4)
From the sifting property of the delta function, Eq. (A3)
simplifies to

Iy pg) = 5 1)) + ol

+ Im [ / WP (% K)dx], (A5)
0

where

11
Wllazp(xpup; K) = / /1 <ET’PUP (xpup, a; K)
12
x B pup (%pup @' K)>d2a’d2a (A6)

is a measure of cross-spectral density in the interferometer’s exit

pupil. Combining Eqs. (7) and (A6), we have
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We can simplify further by recalling, again, that the astro-
nomical source is assumed to be spatially incoherent, which is
mathematically expressed as

(E¥(a; k) E(a';k")) = W(a, a';x)6(k - k')
x oS(a; k)6(ax - ', k - k). (A8)
Similarly, the spectral density for an incoherent source obeys

(IE(a:6)|*) o oS, (a; ). (A9)

Using Egs. (A8) and (A9), we can further simplify Eqs. (A1)
and (A7), integrating over &’ when needed:

[ 1
Iy () = lrl? / LAy (5 )2 / S @ dads
(A10a)
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and
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Uyfl);p(xpuly K) = |}/4|2/ EZA¢(K)€7ZZHKCATAT(xpup3K)A2(xpup3K)
-1

x exp (—z’Zn'pruP ~B> Wi, (a; k) d*a,
z
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where
Wi (a; k) = S,(a; k)e 2B, (A12)
and
= o= A13
V4 yl c 7[1/21('2 ( )

Wi, (at; k) is the cross-spectral density of the field in the en-
trance pupil plane of the interferometer due to a point object
at a. Equation (A12) has a special functional form arising from
the far-field propagation of an incoherent source that shows the
cross-spectral purity of the field in the pupil plane. Namely, the
fields at each aperture have identical spectral densities, and
the combined field from both apertures has the same spectral
density as the individual fields ([6], Section 4.5.1; [8],
Section 5.3.2; [19]). Equation (A6) can only be related to the
mutual coherence function, I'(-B/2, B/2, At) = T'(B, At) =
I'1, (A7), in the pupil plane if A, A;, and A, are all indepen-
dent of wavenumber, including phase aberrations, which is an
idealized assumption that depends on characteristics of the
interferometer ([6], Section 4.3.2; [8], Section 5.2.5). In gen-
eral, the mutual coherence function and the cross-spectral den-
sity are related through the Wiener—Khintchine theorem ([6],
Section 4.3.2; [8], Section 3.4.2), which becomes apparent
after integration over all «:

FIZ(T) = Am le(y)efz?mﬂ'dy = c%w le(K)e—zQﬂK:rdK'
(A14)

We will now incorporate the preceding assumptions for the
time being for the sole purpose of making a clear connection
between the intensity in the exit pupil of the interferometer and
the mutual coherence function through application of the
Wiener—Khintchine theorem:
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1 cZ

where 'S (a; A7) is the mutual coherence in the entrance pupil
of the interferometer for each source angle and position in the
pupil. The above equation offers insight into the physical quan-
tities being probed by double-Fourier interferometry. In the
most general sense, this technique makes measurements of both
spatial and temporal coherence in the entrance pupil through
the mutual coherence function. This is ultimately a generaliza-
tion of the van Cittert—Zernike theorem, which exploits the
propagation of mutual intensity from an incoherent source; in-
stead, double-Fourier interferometry exploits the propagation
of the more general mutual coherence function. Although
we had assumed that Ag, A;, and A, were independent of
wavelength, we could have relaxed this assumption and the in-
tensity in the exit pupil of the interferometer would still be
related to the mutual coherence function in the interferometer’s
entrance pupil with additional convolution kernels that depend
on the path difference Az. The convolutions imparted by the
spectral variations in the complex-valued aperture functions can
be calibrated out of the measurements during post-processing if
they are measured or known a priori. Analogous to the van
Cittert—Zernike theorem, the intensity in the interferometer’s
exit pupil can also be related directly to the source spectral
density. For this purpose, we return to the more general case
where spectral variations exist and combine Egs. (A5), (Al1),
and (A12):

1
[3,4 (xpup) = E [[1 (xpup) + ]2 (xpup)]
1 S
+ |y4|21m{/ / "ZAW)AT(xpup: K) A (%pups K)
-1 Jo

X B .B
x exp [—z’27m< (AT + P2 4 ¢ )]

cZ c

x S.(et; K)deza}. (A16)

The linear phase term proportional to x,,, - B can be
dropped for astronomical distances as well as for meticulously
designed lab experiments, as long as Eq. (22) is satisfied. The
remaining phase terms proportional to kA7 and ke - B are the
necessary terms required for conventional FTS and Michelson
stellar interferometry, respectively. Conventional spatiospectral
interferometry, as discussed by Mariotti and Ridgway [[9],
Eq. (6)] for example, would stop here and place a large bucket
detector after the beam splitter. One would typically simplify
Eq. (A16) even more by making further idealizations (identical
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apertures and aberrations, etc.) about the system in order to
obtain better insight into how different source spectral densities
will be manifested in the measurements. Such a measurement
regime provides a limited FOV and has demanding baseline
sampling requirements in order to form a hyperspectral image
from the measurements. Instead, a wide FOV extension to
spatiospectral interferometry has been developed [1-3], as
described in Section 2.B.

Funding. NASA Space Technology Research Fellowship
(NNX14AL73H).
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