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ABSTRACT 

Image reconstruction algorithms for wide-field spatio-spectral interferometry require knowledge of registration 

parameters associated with low-resolution image measurements at various baseline orientations, such that the images can 

be registered to within the fine resolution of the final desired image. We have developed an image registration procedure 

that combines a nonlinear optimization algorithm with the sub-pixel precision of chirp z-transform resampling, 

particularly for rotation and translation, of bandlimited images with non-radially symmetric aberrations. We show the 

accuracy of this image registration technique on simulated images that have a complexity comparable to scenes observed 

experimentally with NASA’s wide-field imaging interferometry testbed. Registration to within a tenth of a pixel for 

translation and within three arcminutes for rotation is demonstrated at the largest simulated noise levels. 

Keywords: Image registration, resampling, chirp z-transform, nonlinear optimization, double-Fourier interferometry, 

spatio-spectral interferometry, WIIT 

 

1. INTRODUCTION 

Image registration techniques are required in many imaging applications from tracking changes in medical images to 

super-sampling of under-sampled images. For the latter, accurate registration is essential for overall performance. This is 

also the case for wide-field spatio-spectral, or double-Fourier, interferometric imaging, which is an emerging sparse-

aperture astronomical imaging technique that can be viewed as an extension of Fourier transform imaging spectroscopy. 

In such an interferometer, the beam from one of two physically separated collecting apertures undergoes a path delay 

prior to beam combination at a beamsplitter. Beam combination is followed by an imaging camera and array detector 

such that, if one of the beams from the two apertures were blocked, the result would be a panchromatic image of the 

source. The vector separation between the apertures is referred to as a baseline. For a single baseline length and 

orientation, images are taken for many different path delays, resulting in a single measurement cube. A spatio-spectral 

measurement set consists of many measurement cubes taken at various baselines. A measurement set can then be 

reduced to a single high-spatial-resolution, hyperspectral image using a synthesis algorithm, such as that developed by 

Lyon et al. [1, 2]. 

Although spatio-spectral image synthesis algorithms have been demonstrated on simulated data [1, 2], experimental 

effects create considerable challenges. The experimental realization that we are most concerned with is NASA’s Wide-

field Imaging Interferometry Testbed (WIIT), which was built for the advancement of spatio-spectral interferometry in 

preparation for future space-based observatories [3–13]. This state-of-the-art testbed resides in the well-controlled 

environment of the Advanced Interferometry and Metrology laboratory at Goddard Space Flight Center; however, 

despite the quality of the environment, the light source to WIIT, known as the calibrated hyperspectral image projector 

(CHIP) [14–16], generates heat that causes mild image motion between measurements. Even in an absolutely ideal 

environment free from image motion, the center of rotation would still need to be recovered in order to accurately 

synthesize the image measurements at various baseline angles. This is due to the fact that WIIT operates with a fixed 

baseline orientation, relying on rotation of the source to provide angular diversity.  

In this paper we discuss a very general approach to image registration for WIIT measurements. We will demonstrate 

the accuracy of the image registration process on simulated WIIT measurements for several baselines lengths and 

orientations. The center of rotation and image translations are degenerate parameters, so we will take the fast Fourier 

transform (FFT) convention for the DC pixel as the center of rotation. This is particularly useful because we implement 

image resampling with a chirp z-transform (CZT) algorithm, which itself is computed using multiple FFTs. The image 

registration algorithm as a whole, including the CZT algorithm and its incorporation into an image registration 

procedure, is included in Sec. 2.  Sec. 3 describes spatio-spectral interferometric measurements, including how to 
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preprocess the data prior to image registration. The results of image registration on simulated data are shown in Sec. 4, 

and some concluding remarks and future work are given in Sec. 5. 

2. IMAGE REGISTRATION VIA NONLINEAR OPTIMIZATION 

We first describe the CZT algorithm that we use to perform image resampling, including rotations and translations, as 

well as possible up-sampling or down-sampling. We will then discuss nonlinear optimization and how it facilitates 

image registration through the CZT algorithm. 

2.1 Chirp z-transform resampling 

CZT resampling is not a new idea, and has been applied to a variety of topics, including blind deconvolution, phase 

retrieval, and super-sampling [17, 18]. Not all implementations of the CZT algorithm are equivalent; for example, we 

have chosen to employ the 2D CZT rotation algorithm formulated by Myagotin and Vlasov [19] instead of successive 

1D CZT operations [17, 18]. We will derive the 2D CZT rotation algorithm here in a style similar to that of Myagotin 

and Vlasov [19]; although, the factorization that facilitates this 2D method was first published by Tong and Cox [20].  

Let mnG  be the discrete Fourier transform (DFT) of the image xyg  we want to rotate. Now consider the inverse DFT 

of mnG : 
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where we have assumed mnG  is a square array.   2 2m N n NG    is equivalent to performing an fftshift on mnG . 

Explicitly discretize the x- and y-dimensions:    , , xyx y r s  , where , 0,..., 1r s R  , and xy  is the pixel spacing 

and is assumed to be equal in both dimensions. If we rotate the discretized x- and y-coordinates about the point  0 0,x y  

by an angle  , the rotated coordinates become 

    0 0 0cos sinxy xyx r x s y x         , (2) 

    0 0 0sin cosxy xyy r x s y y         . (3) 

Replacing  ,x y  with  ,x y   in Eq. (1), we obtain  
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Using Eqs. (2) and (3), we can expand Eq. (4) to take the following form: 
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In order to take advantage of the CZT algorithm, we will need to write Eq. (5) in the form of a convolution; to do this, 

we adopt the expansion first published by Tong and Cox [20]: 
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Eq. (6) allows us to rewrite Eq. (5) in the form of a 2D CZT. After rearranging and grouping terms, Eq. (5) becomes 
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  2 2exp 2mnH i mn i n m    
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and 
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N
   


  .  (11) 

Although Eq. (7) appears as a regular convolution, it is important to point out that, the way the equation is written, the 

convolution kernel mnH , or equivalently the input array mnG , must have its axes swapped prior to performing the 

convolution. Fortunately, this can be solved using a simple transpose operation (as opposed to transpose-conjugate). 

A sub-pixel image shift prior to the rotation can be performed by adding another linear phase term to mnB , or 

directly to the input array mnG , which does not change the computational complexity of the CZT rotation algorithm. In 

addition to rotation and translation, this same algorithm is capable of changing the sampling rate in the output plane with 

the variable xy , which is possible because the desired sample spacing in the output plane is arbitrary. This means that 

with the addition of padding and cropping operations, this CZT algorithm can also simulate changes in the magnification 

of an optical system, where 1xy   increases the number of samples in the output array compared to the input array by 

a factor of xy . It should be noted that the arguments of the 2D CZT algorithm in Eq. (7) are subject to the same 

padding requirements as the 1D CZT algorithm as described by Rabiner et al. [21] and Baily and Swarztrauber [22]. For 

two dimensions, the padding considerations are described by Jurling and Fienup [23], who also describe how the 2D 

CZT can be performed with three FFTs and that a prudent choice of padding size can improve the performance of the 

algorithm. We also note that it is possible to incorporate various system transfer functions in the spatial frequency 

domain as part of the CZT algorithm, allowing simulations of system aberrations, pixel transfer functions, or 

atmospheric turbulence. 

Rotation via the CZT algorithm is equivalent to using 2D sinc interpolation to perform the shift, rotation and 

resampling but with lower computational complexity [17, 21, 22]. Due to the frequency-based nature of this method, it 

works best for bandlimited images in order to prevent the algorithm from inducing unwanted aliasing; however, this 

problem can be overcome by paying special attention to sampling and zero-padding throughout the computation. In total, 

the CZT rotation algorithm requires four FFTs, typically of a larger size than the original image to be rotated. 

Accordingly, the computation time for this rotation algorithm is much greater than for bilinear resampling, but CZT 

resampling provides more accurate rotations than the bilinear resampling method. We now turn our attention toward 

incorporating the CZT algorithm described in this section into an image registration algorithm through nonlinear 

optimization of the registration parameters. 
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2.2 Nonlinear optimization 

In this section we use nonlinear optimization to perform image registration, employing the rotation and translation 

algorithm from Sec. 2.1. Assume that we have a set of K measured images  ,kg r s  to be registered to a single reference 

image  ,f r s . Starting with K estimates for the image registration parameters, particularly rotation and translation, we 

apply the CZT resampling algorithm from Sec 2.1 K times so that we now have K rotated and shifted images 

 0, 0,
ˆ , ; , ,k k k kf r s x y , which we can compare to the measurements, where the hat denotes that the variable is an 

estimate for the measured image.  

Now that we have a forward model, optimization algorithms require that we have a scalar error metric to determine 

how well the simulated images predicted with the forward model compare to the measured images. We have chosen a 

gain and bias invariant normalized mean square error metric (NMSE) between the predicted images 

 0, 0,
ˆ , ; , ,k k k kf r s x y  and measured images  ,kg r s  to promote data consistency [24]: 
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where k  is the signal gain, k  is the signal bias, and  ,kw r s  is a weighting function that can be used to emphasize 

particular pixels or ignore dead pixels. We used the weighting functions to mask out the areas in  0, 0,
ˆ , ; , ,k k k kf r s x y  

where  ,f r s  did not contribute any information, often in the corners of the transformed images. Given a particular 

measurement and model image, the optimal gain and bias can be computed independently of other parameters, and they 

are helpful for mitigating detector-induced errors for experimental datasets. Because we are only concerned with image 

registration and need not optimize over pixel values directly, we did not incorporate any regularizing metrics with our 

data consistency metric. It is worth noting that it is possible to register the images jointly, as suggested by Eq. (12), or 

individually for each  ,kg r s . We chose to register the images jointly in order to avoid recalculating intermediate 

variables required for the CZT resampling algorithm from Sec. 2.1. 

Nonlinear optimization algorithms require one to supply a gradient of the error metric with respect to all optimization 

variables; in this case, we are optimizing over rotation angles and image translations. Instead of deriving analytic 

expressions for the gradients, we employed algorithmic differentiation, which is a formulaic method for computing 

analytic gradients in a step-by-step fashion where every computation in the forward model has a corresponding step in 

the gradient model. By breaking up the gradient computation into small pieces, it becomes much less daunting to 

compute analytic gradients for complicated forward models. The idea of algorithmic differentiation has recently been 

made more accessible for image reconstruction and phase retrieval by Jurling and Fienup [25]. We have followed their 

formulation of algorithmic differentiation in order to compute the required gradients. The nonlinear optimization 

algorithm we utilized in our simulations was the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with 

bounds (L-BFGS-B) from the SciPy package for the Python computing language, although we did not impose any 

bounds on the optimization variables for image registration. Various stopping criteria are allowed and are ultimately 

problem dependent. We chose to set a tolerance of 10–8 on the decrease in the value of the error metric between 

iterations, corresponding to about a 0.01% decrease in the error metric for the majority of cases presented in this paper. 

3. WIDE-FIELD SPATIO-SPECTRAL INTERFEROMETRIC SIMULATIONS 

This section describes the simulated dataset and how the data are preprocessed before applying the image registration 

algorithm. The intricacies of implementing the simulations are beyond the scope of this paper and will be the topic of a 

future paper. For a single vector baseline of the interferometer, many image measurements are taken while scanning the 

path delay between the arms of the interferometer, resulting in a single measurement cube. If we assume that the 

interferometer’s apertures are identical so that they have the same aberrations, a measurement cube can be represented 

by [2] 
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 1,1 ;p    is the point spread function (PSF) of either aperture function independently,  ;sS    is the spectral density 

of the source, B  is the vector baseline, L  is the optical path difference between the arms of the interferometer,   is the 

spectroscopy convention for wavenumber (the inverse of the wavelength),   is the direction cosine of the source 

position relative to the line-of-sight of the interferometer, and   is the angular position of the image pixels relative to the 

optical axis of the imaging system within the interferometer. An entire dataset, comprised of many measurement cubes, 

is generated by repeating the measurement process at various vector baselines.  

We preprocessed the measurement cubes by taking the average over the delay dimension, which is a method of 

approximating Eq. (14) from Eq. (13), and performed image registration using the result. Due to delay-line sampling, 

noise, and other detector effects, Eq. (14) cannot be recovered exactly but can be well approximated, resulting in 

averaged images that are very weakly dependent on B . In this sense, the images to be registered are not exactly the 

same but are derived from the same underlying high-spatial-resolution object. In fact, if the PSF is not radially 

symmetric, the images to be registered can be significantly different because rotation occurs prior to application of the 

PSF. The PSF in our simulations is similar to that observed in WIIT and does not have perfect rotational symmetry. The 

images in Eq. (13) and (14) are bandlimited by the diameters of the input apertures, and WIIT is designed to be at least 

Nyquist sampled according to the diameter of a single aperture. Details of WIIT’s optical parameters and source 

capabilities can be found in other publications [3–13]. A typical WIIT datacube contains between two and three 

thousand images, one for each of the sampled delay positions L, so the act of preprocessing reduces the standard 

deviation of the noise in the average of Eq. (13) by about a factor of 50. 

The underlying hyperspectral image that we used for simulations is similar to a Hubble deep-field image but was 

based on a model of the far infrared sky. After passing through the interferometer’s optical system, the image of the 

scene becomes blurred, due to the modest aperture size, so that it is difficult to discern the many galaxies from the 

diffuse background emission and light from nearby galaxies. We also injected point-like reference sources outside of the 

core of the deep-field scene that will eventually be useful for calibration. This scene was developed to probe the efficacy 

of spatio-spectral interferometry with WIIT, and is currently being used to take measurements with WIIT [26]. The 

simulated dataset we used consisted of one datacube that served as a reference image whose rotation and translations 

were known to be identically zero, while the rest of the dataset consisted of 10 datacubes whose translations were 

unknown and drawn from a uniform distribution that allowed a maximum image shift of 2.5 pixels in either dimension. 

The rotations of the 10 datacubes were assumed known to the nearest half a degree, where the noise added to the rotation 

angles were also drawn from a uniform distribution. Fig. 1(b) is the result of averaging Eq. (13) for the reference image 

in our simulations.  

 

Figure 1. Example of simulated WIIT data. (a) The fringes at a particular pixel of the datacube for four of the five noise 

realizations used in this paper, and (b) the average along the delay dimension, where the highlighted pixel in the lower left 

corner is the location of the fringes in (a).  
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We investigated how various noise models in the datacube measurements, Eq. (13), affect registration accuracy. The 

first noise model only takes into account the effect of detector quantization, which also limits the overall dynamic range. 

WIIT has a high-quality 16-bit CCD camera with unity gain. We assumed that the peak value of the entire dataset was 

40% of the 16-bit maximum, or 26,214 counts, for all results shown in this paper. This is also the value we use when 

referring to peak signal-to-noise (pSNR) values, which, for Poisson noise, is then 26,214 162 . In conjunction with 

Poisson noise and quantization noise, we added different levels of read noise, where the pSNRs for read noise were 100, 

10, and 1. In all, we tried 5 different noise combinations: quantization noise only, quantization noise and Poisson noise, 

and the combination of quantization noise, Poisson noise and read noise for the 3 different read noise levels. Fig. 1(a) 

shows the fringes of Eq. (13) as a function of L at a particular pixel for various noise levels, excluding the read noise 

case with a pSNR of 1 because it would make it more difficult to identify the fringe near the center of the plot. Five 

images from the dataset are displayed in Fig. 2 for the various noise levels. To show more dim background detail, all 

subsequent images have been stretched to the 0.3 power after setting negative values to zero. 

 

Figure 2. Five images from the dataset with different rotations and translations, stretched to the 0.3 power after setting 

negative values to zero. Images shown with increasing noise levels of (a) quantization only, (b) quantization and Poisson 

noise, and (c) through (d) have quantization noise, Poisson noise, and Gaussian read noise with pSNR values of 100, 10, and 

1, respectively. 

4. IMAGE REGISTRATION RESULTS 

The initial values of the registration parameters are important because nonlinear optimization routines can be prone to 

local minima issues that can prevent the algorithm from finding the global minimum. The rotations, as mentioned in Sec. 

3, were known a priori to the nearest half a degree. The initial translation values were assumed to be zero. Another 

source of error comes from noise in the reference image, which is assumed to come from the overall dataset, even 

though it is considered separate from the dataset for the purposes of this paper. In order to reduce the impact of noise in 

the reference image, we obtained a new estimate of the reference image after performing one run of the registration 

process by transforming the entire dataset to the same orientation as the original reference image and taking the average 

of the transformed images. This provided a new, less noisy estimate of the reference image with which we performed a 

second round of registration. The original reference image is shown in Fig. 3 for all of the various noise levels, and the 

updated reference images are displayed in Fig. 4. 
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Figure 3. Reference images, stretched to the 0.3 power after setting negative values to zero, for increasing noise levels of (a) 

quantization only, (b) quantization and Poisson noise, and (c) through (d) have quantization noise, Poisson noise, and 

Gaussian read noise with pSNR values of 100, 10, and 1, respectively. 

 
Figure 4. Reference images, with negative values set to zero and stretched to the 0.3 power, after they have been updated 

using the images from the registered dataset. 
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For quality assessment we computed both the mean absolute deviation ( MAD ) from the truth and the standard 

deviation ( StD ) from the truth: 
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where ˆ
k  is the estimate variable   in the kth image, and t  is the truth value of the variable. Tables 1 and 2 show the 

results for the two applications of the registration algorithm, where Table 2 values were obtained after computing a new 

estimate of the reference image by averaging over the dataset. The translation error is for both x and y translations 

together. 

Table 1. Results of image registration using the initial reference image for all of the noise levels, where the final error metric 

value is provided along with the mean absolute deviations and standard deviations for the translation and rotation 

parameters. 

 
Final NMSE Translation Errors (pixels) Rotation Errors (degrees) 

E  MAD  StD  MAD  StD  
 

Quantization Only 1.64e–03 8.60e–02 1.04e–01 6.67e–03 7.15e–03 

Quantization + Poisson 1.64e–03 8.60e–02 1.04e–01 6.55e–03 7.02e–03 

Quantization + Poisson + 

Read Noise (pSNR=100) 
1.65e–03 8.60e–02 1.05e–01 6.40e–03 6.94e–03 

Quantization + Poisson + 

Read Noise (pSNR=10) 
1.94e–03 8.54e–02 1.04e–01 4.15e–03 4.98e–03 

Quantization + Poisson + 

Read Noise (pSNR=1) 
3.28e–02 8.29e–02 9.73e–02 5.44e–02 6.78e–02 

 

Table 2. Results of image registration using the updated reference image for all of the noise levels, where the final error 

metric value is provided along with the mean absolute deviations and standard deviations for the translation and rotation 

parameters. 

 
Final NMSE Translation Errors (pixels) Rotation Errors (degrees) 

E  MAD  StD  MAD  StD  
 

Quantization Only 5.36e–04 8.34e–02 1.01e–01 2.24e–03 3.40e–03 

Quantization + Poisson 5.36e–04 8.34e–02 1.01e–01 2.20e–03 3.35e–03 

Quantization + Poisson + 

Read Noise (pSNR=100) 
5.38e–04 8.35e–02 1.02e–01 2.17e–03 3.20e–03 

Quantization + Poisson + 

Read Noise (pSNR=10) 
6.82e–04 8.29e–02 1.01e–01 2.31e–03 2.84e–03 

Quantization + Poisson + 

Read Noise (pSNR=1) 
1.50e–02 8.00e–02 9.37e–02 3.37e–02 4.34e–02 

 

Tables 1 and 2 reveal some interesting information about the registration technique. First, the translation registration 

results appear to be virtually unaffected by the noise models, and there is only a slight improvement after updating the 

reference image, resulting in registrations accurate to within a tenth of a pixel. The apparent drop in both the MAD and 
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StD for translation at the higher noise levels is insignificant because the standard deviations of the MAD calculations are 

about half the MAD values themselves. On the other hand, the rotation registration accuracy begins to degrade at the 

highest noise level, and there is typically a significant improvement in the registration accuracy after updating the 

reference image. Even at the highest noise level, we still managed to recover the rotation angles to within 3 arcminutes.  

In addition to simulating the WIIT optical system, we simulated a dataset where the optical system was assumed to 

be free of all aberrations except defocus. Although we will not be able to make measurements from an interferometer 

with such an ideal optical system, we can still learn from investigating an optical system with a radially symmetric PSF. 

For this idealized dataset, the registration accuracy for translation improved by as much as a factor of 50, while the 

accuracy of the rotation angle improved by a factor of 5. This suggests that the algorithm is impacted more by model 

mismatch, meaning that the images are not identical after rotating to the same orientation, than by noise. One can get an 

understanding of the model mismatch by looking at the NMSE values for the quantization-only case, which we found to 

be about two orders of magnitude smaller for the case of radially symmetric aberrations. We suspect that it might be 

possible to improve the registration accuracy by incorporating knowledge of the system’s aberrations without much 

additional computation because it is easy to include transfer functions into the CZT algorithm described in Sec. 2.1. 

5. CONCLUSION AND FUTURE WORK 

We have demonstrated the performance of an image registration algorithm for both rotation and translation using a CZT 

algorithm to perform resampling and nonlinear optimization to solve for the unknown registration parameters. Although 

this technique was developed for registering spatio-spectral interferometric images as a precursor to image synthesis, this 

technique is very general and could be a viable approach for many other imaging applications where rotation and 

translation between similar images is unknown. With careful consideration to image sampling, this procedure could also 

be applied to images that are under-sampled with respect to the Nyquist criterion for imaging, and in that case, can even 

be used to perform simultaneous super-resolution and image registration. The technique described in this paper could be 

improved by incorporating knowledge of the system aberrations, as suggested at the end of Sec. 4, which will be the 

focus of future work. 
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