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Phase-retrieval algorithms have been developed that handle a complicated optical system that requires
multiple Fresnellike transforms to propagate from one end of the system to the other including
the absorption by apertures in more than one plane and allowance for bad detector pixels. Gradient-
search algorithms and generalizations of the iterative-transform phase-retrieval algorithms are derived.
Analytic expressions for the gradient of an error metric, with respect to polynomial coefficients and with
respect to point-by-point phase descriptions, are given. The entire gradient can be computed with the
number of transforms required to propagate a wave front from one end of the optical system to the other
and back again, independent of the number of coefficients or phase points. This greatly speeds the
computation. The reconstruction of pupil amplitude is also given. A convergence proof of the
generalized iterative transform algorithm is given. These improved algorithms permit a more accurate
characterization of complicated optical systems from their point spread functions.

1. Introduction

Phase retrieval is the determination of the phase of a
complex-valued function from the magnitude of the
function by using some a priori information about
the function or its transform. The problem occurs
in several fields including wave-front sensing,' astro-
nomical imaging by interferometry,2 and x-ray crystal-
lography.3 We discuss the problem of retrieving the
phase of a wave front that has passed through a
complicated optical system.

The motivation for the study described here was
the desire to characterize accurately the Hubble
Space Telescope (HST), which soon after launch was
found to be severely aberrated. This characteriza-
tion is needed (1) to design correction optics to be
included in replacement instruments, (2) to align the
secondary mirror of the HST's Optical Telescope
Assembly, and (3) to form an analytic model of the
system's point spread function (PSF) that can be used
for image deblurring until the telescope is repaired.
Unfortunately the conventional forms of interferom-
etry and wave-front sensing that could be performed
if the telescope were readily accessible on earth
cannot be performed remotely in space. For this
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reason we rely on phase-retrieval algorithms that
determine the aberrations (phase errors) from the
PSF's measured with an onboard CCD detector array
and transmitted to earth. The PSF's are blurred
images of pointlike stars taken through narrow-band
spectral filters. These algorithms should also be
useful in the testing of general complicated optical
systems.

Phase retrieval for the HST consists of finding an
aberrated wave front (optical field), which, when
digitally propagated through the optical system, gives
rise to a wave front in the plane of the CCD array
detector whose intensity, the modeled PSF, matches
the measured PSF, the image of a star.

As is the case with most phase-retrieval problems,
the relationship between the optical field in the
entrance pupil and the optical field at the detector
plane of the HST can be fairly accurately modeled as a
Fourier (or Fresnel) transform. However, in the
Wide-Field/Planetary camera (WF/PC) mode of the
HST, the image formed by the main telescope, the
Optical Telescope Assembly (OTA), is reimaged onto a
CCD detector array by a relay telescope.45 The
WF/PC relay telescopes contain obscurations that
are not in a plane conjugate to the entrance pupil of
the OTA. Consequently, for the most accurate com-
putation of a modeled PSF from an estimate of the
aberrations and a model of the optical system, it is
necessary to propagate digitally an aberrated wave
front from the entrance pupil to the detector plane by
using multiple propagation transforms and by multi-
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plying by appropriate masks representing the obscu-
rations in the planes where they occur. Such de-
tailed modeling is required to design correction optics
to be used to fix the telescope with the desired
accuracy. Plans are to accomplish this optical correc-
tion by replacing the present WF/PC relay optics
with new optics that would include correction optics
consisting of a mirror with aberrations that are
opposite to those of the OTA. A second reason for
such high accuracy is to compute analytically the
PSF's that could be used for image deconvolution,
which is sensitive to errors in the estimate of the PSF.
Phase retrieval is also important as an aid in the
alignment of the secondary mirror of the OTA.

Two popular phase-retrieval approaches for this
application are gradient-search algorithms6-8 and the
iterative transform algorithm.7-' 0 In Sections 2-4,
expanding on previous results, we derive generaliza-
tions of these algorithms including the effects of
multiple-plane propagation and of a weighting func-
tion that permits one to ignore bad CCD pixels. In
particular, in Section 2 analytic expressions for the
gradient of an error metric are given that allow for a
fast computation of the gradient that is used by a
gradient-search method. Reconstruction algorithms
for a variety of parameters, including amplitude as
well as phase, are derived. In Section 3 an alterna-
tive error metric is discussed. In Section 4 the
iterative transform algorithm is derived, a conver-
gence proof is given for the error reduction and
Gerchberg-Saxton versions of the algorithm, and the
necessity for combining algorithms is discussed.
Conclusions are drawn in Section 5. Results for the
HST are reserved for another paper.

2. Gradient-Search Phase-Retrieval Algorithms

Gradient-search techniques have been used in the
past for solving the phase-retrieval problem.6- As
described in Ref. 8 the first three steps of the iterative
transform algorithm accomplish quite efficiently most
of the work of computing the gradient. Here we
extend these results to include (1) multiple-plane
diffraction, (2) a weighting function, and (3) differen-
tiation with respect to a variety of parameters.
Previously Guozhen et al. " derived the case of multi-
ple-plane diffraction in a more limited circumstance.

Let I F(u) I be the magnitude of the complex optical
field at the detector array (which is estimated by
taking the square root of the measured intensity of an
image of a pointlike star taken through a narrow-
band spectral filter), where u is a two-dimensional
(2-D) coordinate in the detector plane. (Although
light leaving a star is incoherent, after it propagates
to the telescope it appears to have originated from a
point, and so it becomes spatially coherent, and after
it passes through a narrow-band filter it becomes
temporally coherent, which makes it fully coherent.)
In what follows, coordinates are given as the integer
pixel number within a digitized array in the com-
puter.

We wish to minimize a weighted error metric:

E = 2 W(u)[IG(u) I - IF(u) 1]2, (1)

where W(u) is a weighting function and I G(u) is the
magnitude of an optical wave front computed from a
model of the optical system including an estimate of
the phase errors. The summation is over all values
of u in the digitized array. W(u) is zero at the
locations of bad or saturated CCD pixels or where no
data were measured. It can also be set to zero at
pixels where the signal-to-noise ratio is poor. Sever-
al other error metrics could be used as well. Section
3 gives an example of another error metric and shows
that the error metric above has some desirable proper-
ties.

G(u), the wave front at the detector, is computed as
follows. Let an estimate of the aberrations in the
input plane (often the entrance pupil) of the optical
system be 0(x1), and let the pupil function (obscura-
tions) be represented in that plane by a transmittance
function m,(x,), where x1 is the 2-D spatial coordinate
in that plane. The aberrations can be caused either
by the optical system or by atmospheric turbulence
immediately in front of the optical system. Then the
optical wave front immediately after the input plane
is

g(xl) = Ul(xl) = mj(xj)exp[i0(x,)], (2)

where i = 11. We denote the wave front in the nth
plane by Un(xn), but for compactness of notation we
define Ul(x,) = g(xl) in the input plane and Ud(xd) =

G(u) in the plane of the detector. To propagate g(xl)
to the detector plane, first digitally propagate it from
the input plane to the first plane in which an obscura-
tion (or an additional aberration) occurs, multiply the
wave front by a transmittance function representing
the obscuration (or aberration), then propagate it to
the next obscuration, multiply it by the appropriate
transmittance function, and continue to propagate
and multiply until it reaches the dth plane, the
detector plane, where G(u) = Ud(xd) results. Any
one of the digital propagations between the planes of
obscurations is computed by using the paraxial digital
transform of the optical field:

1 N-1

Unll(Xnll) = exp(ianxnn+ 2)N Un(Xn)

x eXP(i nXn')exp(-i27XnXn+ /N)

= eXP(i-nXn~ l )c[Un(Xn)exp(inXn )b

where the discrete Fourier transform is given by

1 N-i
Y9Un(xn)] = N I Un(Xn)eXP(-i21rXnXnl/N).

NXn=0

(3)

(4)
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Here xxnl means the dot (inner) product of the 2-D
vector coordinates x, and x,+1. The coefficients °.n
and ,, and the relative scaling represented by the
spatial coordinates xn and x,,l are determined by the
ABCD method.12 The major computational burden
for one propagation is a single discrete Fourier trans-
form, which is computed by using the fast Fourier
transform (FFT) method. Note that the normaliz-
ing factor in front of the 2-D discrete Fourier trans-
form is 1/N, which makes it unitary (power conserv-
ing). This propagation is similar to a digital version
of the Fresnel transform 1 except that the quadratic
phase factors, a,, and ,,, differ from each other and
from the coefficient of the Fourier kernel. In some
cases it is necessary to propagate to another plane
prior to propagating to the next plane of interest so
that the array size for the FFT's can be kept small.
Representing the obscuration in the nth plane by
mn(xn) and letting the last (the dth) plane be u = Xd,

we calculate the optical field by the propagation

G(u) = P[g(x1)]

= exp(iad-lU2 ) K I mdl(Xd1)exp(id-lXd-12)
NXd-i1

x exp(-i27rxd-lu/N)exp(iad- 2 xdl1 2 )

1 2
x N md-2(xd-2)exp(i3d-2xd-2)

Xd-2

x exp(-i27rxd- 2xd l/N)exp(iad-3xd2 2 )

1 2
x .** exp(ialX 2

2 )
Xd-3

x 1 E g(x1)exp(-i2rrx1x2 /N)
Nxi

= exp(itd_1u 2) I exp(-i2TrXd-lu/N)
Nxd-i1

X Md-l(xd1) - exp(-i2xd-2xd 1/N)
Xd-2

X Md-2(xd-2) ... M 2 (X2 ) K

x A exp(-i2wx 1x2 /N)g(x 1)
xi

= exp(iadlU 2)g{Md_ 1(Xd-1)

x 9{Md- 2 (xd- 2) ... M 2(x 2) 9[g(x1)]} ... }, (5)

where

Mn(X.) = ep[i(p3. + a__,))X.2]m,(X.) (6)

is a generalized transmittance function that includes
the amplitude transmittance caused by obscurations

and the quadratic phase factors associated with the
propagations. We can also include within mn(x,) a
phase error associated with the plane x,. if we desire.
For simplicity we included the phase r3lx12 within
O(xi).

A. First Derivatives with Respect to Input-Plane
Parameters

One approach to minimizing the error metric E as a
function of unknown aberrations or system parame-
ters is to use a gradient-search algorithm. The
gradient of E is composed of the set of partial
derivatives of E with respect to each unknown param-
eter. We derive the partial derivative of E with
respect to a parameter p of the input plane in a way
that is similar to what we did in Ref. 8:

a= 2 W(u)[IG(u) -IF(u) l] a )

=I~ W(u) G*(u) - G*(u)j a ) + c.c.

= -i GW*(u) a + c.c.,
U a

(7)

where the asterisk denotes the complex conjugate,
c.c. denotes the complex conjugate of the term that
precedes it, and

Gw(u) = W(u)[IF(u)II G( I- G(u)1. (8)

For the case of a parameterp in the input plane, we
have, because of the linearity of the propagation P,

aG(u) a p[g(xl) = Pg(x) 
p a= [P [ x)] =~ ap j (9)

Inserting this into Eq. (7) yields

aE [ag(x1)]~= _ IGw*(u)P II+ .c.
ap [ ap] (10)

If the gradient is evaluated in this form, its computa-
tion would require a propagation (which requires d
FFT's) for each of the unknown parameters p.
Depending on the problem, there could be dozens of
parameters for a polynomial-coefficient parameteriza-
tion of the phase 0(x1) and tens of thousands of
parameters for a point-by-point map of 0(x1). This
evaluation would entail a quite demanding computa-
tional load. The required computations can be dras-
tically reduced by using analytic expressions for the
gradient, which we derive as follows. With the ex-
plicit form of the propagation and reversing the order
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of summation, we have

aE ~~~~~~1
- = - 2 GW*(u)exp(iadlu2) K
ap N

x E exp(-i2 Truxdl/N)Md-(xd 1)
Xd-1

1x E exp(-i2Txd-2xdl/N)
Xd-2

X Md-2(Xd- 2 )

x - 2 exp(-i2rrx1x2/N) + C.c.N ,I ~~~ap
ag(x1 )

X ap

1

X - I exp(- i27rxlX2 /N)M 2 (X2 ).. Md-2(Xd2)

1
xK jI exp(-i2 rxd2xd/N)Md(xd-)

Xd- 1

x N E~ exp( iSZ~/~x~idl2G*>

where we define an inverse propagation operator as

Pt[GW(u)] = .- l{M2 *(x2) * -l{Md2*(xd- 2 )

X 9 l{Md-l*(xdl)9_l[Gw(u).}}.. . (15)

Equation (12) constitutes propagating g(x1) to form
G(u), computing GW(u) from G(u), complex conjugat-
ing, propagating through the optical system back-
ward, and then projecting the result with g(x1)/ap.
This requires only 2d 2-D FFT's, independent of the
number of parameters, which makes this form compu-
tationally much less demanding than when finite
differences are employed to compute the gradient.
Equation (14) constitutes the same steps for comput-
ing G(u); then (without complex conjugating) we
propagate G(u) backward through the system by
using inverse Fourier transforms and complex-
conjugated phasors, complex conjugating, and project-
ing the result with g(x1)/ap. If we define the in-
verse propagated wave front in the xl plane to be

gW(xl) = P[GW(u)], (16)

we see that

P-[GW*(u)] = gw*(xl) = {Pt[Gw(u)]J*. (17)

Now we consider specific examples of parametersp.

+ c.c. (11)

Note that GW*(u) is proportional to G*(u), which
includes the phasor term exp(-iad- u2). This term
cancels the term exp(ictd_1u2) in the equation above;
thus without loss of generality we henceforth set
Otd- = 0. This equation can also be expressed as

aE- - ag(x1) -l[Gw*(u)] + c.c.

O = XI O( ±L) w*(u)JP
- X-[ ap (12)

where we define a backward propagation operation as

P-[GW*(u)] = {M2 (x2) *' *{Md-2(Xd-2)

x 5{Mdl(xd 1(9[Gw*(u)]}}... . (13)

Reversing the roles of the first term in Eq. (12) and its
complex conjugate, we can also write

aE _ ag(x1) *
ap [ ap * Pt[Gw(u)] + c.c.

= -2Re [ ap J Pt [GW(u)]

I ap (
-2 Re I [P1G111(u)JJ* (14)

1. Polynomial Phase Coefficients
Let the parameter p be a, the jth
polynomial expansion of (xl):

0(x1 ) = I ajZj(x1).
J=1

where Zj(xl) is the jth polynomial.
Eq. (2) with respect to aj yields

age 1) = g(x1)iZ3 (x1).

Inserting this into Eq. (14) yields

coefficient of a

(18)

Differentiating

(19)

ajE = -2 Re I ig(X1)zj(x 1)gw*(x1 )]
j 2 x -

= 2 Im[IX g(Xl)j(Xl)gW*(Xl)]- (20)

2. Point-by-Point Phase
Let the parameterp be the value of the phase 0(xl) at
the point xl = x. We have

ag(x) 
aO(x) =g(x)8(x, xi), (21)

where

B(X, X1) = lo
X1 = X,

otherwise,
(22)
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is the Kronecker 5 function. Inserting this into Eq.
(14) yields

o(x) =-2 Re ig(x)b(x, xl)gw*(xi)

= 2 Im[g(x)gw*(x)], (23)

where we now take the output of Pt to be in the xl = x
plane.

Note that this is a generalization of the gradients
computed in earlier works.8"11

3. Point-by-Point Magnitude
Let the parameter p be the value of the magnitude
ml(xl) at point x, = x. We have

ag(x,)
m(x()) = exp[iO(x)]8(x, xl). (24)

Inserting this into Eq. (14) yields

a(x) = 2 Re| exp[iO(x)]B(x, xl)gw*(xi)

= -2 Re{exp[i0(x)]gw*(x)}. (25)

4. Point-by-Point Complex Values
Let the parameter p be the value of the real or
imaginary part of g(xl) at point x, = x. Letting

g(Xl) = gR(Xl) + ig9(X1),

we have

ag(x,)
__= a(x, xi),

agR(x)

ag(x,)
VAXi) = iN(x, xl).

Inserting each of these into Eq. (14) yields

aE
agR(x) -2 Re[ 8(x, xl)gw*(xl)]

= -2 Re[gw*(x)] = -2 Re[gw(x)],

aE
Vg(x)

(29)

-2 Re[I i(x, x1)gW*(xi]
X1

= 2 Im[gw*(x)] = -2 Im[gw(x)]. (30)

These two partial derivatives can be combined by
using the following notation for a derivative with
respect to a complex number:

aE
ag(x)

aE
= gR(x)+ iaE+ i 1(x = -2gw(x), (31)

which reveals the nature of gw(x).
These forms of the gradient, which include both

weighting functions in the error metric and multiple-
plane propagation effects, are generalizations of the

results obtained earlier.8 Here gw(x) takes on the
role of g'(x) - g(x) in that earlier work.

These gradients can be used with any gradient-
search algorithm. For example, consider gradients
with respect to the real and imaginary values of g(xl)
when the steepest descent algorithm is used. Start-
ing with an estimate of the unknown parameters, we
would compute the gradient. Then we would per-
form a line search, computing E as a function of
g(x1; s), which depends on the step size s according to

dE
g(xl; S) = g(xl) - sag(xl)

= g(xl) + 2sgw(xl). (32)

The minimum of E as a function of s would be found
to arrive at a new estimate of the unknown parame-
ters. This process is iterated until no further
progress is made. The steepest descent is usually
the slowest-converging gradient-search algorithm;
conjugate gradient and others are much better.4 15

B. First Derivatives with Respect to Intermediate-Plane
Parameters

Let q be a parameter of m,,(xn). It could be an
unknown phase (aberration) or magnitude (transmit-
tance) parameter. Then we have, just like Eq. (7),

aE G(u)
= _q 1 Gw*(u) aq + c.c.,(26)

where Gw(u) is as defined in Eq. (8).
Eq. (5) with respect to q, we have

(27) atdl = 0)

aG(u) _
(28) aq X1

Nxd- 1

(33)

Differentiating
(recalling that

*. I exp(-i2TrXnxn-/N) aMn(Xn)

* * I exp(-i2rx1x2/N)g(x1).
Nxi

(34)

Inserting this into Eq. (33) and rearranging the order
of summation yield

aEam(x)
- =-IX Pl ,n[g(Xl)]Pd, n[Gw*(u)] + c.c.aq Xn aq d

am,,(x,
X aq 1 n[g(X1)]{P' n[Gw(u)] * + c.c.,

(35)

where

P1 n[9(X1)] = eXP(iXn-lXn 2)K

x E exp(-i2wxnxn1/N)Mn_1(xn-1)
Xn-1

*... exp(-i27rx1x 2 /N)g(x1),
7V

(36)
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1
P-'.[Gw*(u)] = exp(ip3x 2>..

x exp(-i2rxnx.+ 1 /N)M.+1(x.+1)
Xn+1

*.. jNIexp(-i2rxd_ .u/N)Gw*(u).

(37)

In the expressions above P1 -n[g(x 1)] constitutes prop-
agating g(xl) to the Xn plane [after multiplication by
the quadratic phasor but prior to multiplication by
mn(Xn)], and Pn[Gw*(u)] constitutes propagating
Gw*(u) backward to the Xn plane. In this case only
d + (d - n) = 2d - n FFT's are required since
P 1 -[g(x 1 )] is an intermediate result in the process of
computing G(u). The notation Pt n( ) refers to
inverse propagation (as described earlier) from plane
u to plane xn.

Consider a plane in which both magnitude and
phase uncertainties are present:

mn(xn) = I m.(xn)|exp[iOn(xn)] (38)

for 1 < n < d.
When parameter q is a polynomial phase coeffi-

cient, with

On(xn) = I bjZ 3(xn), (39)
j=1

then

am"(x' ) _
abj

aE = 2 Im mn(xjZ(xjPj jg(xj)]abj 2I~ X

x 1Pd -n[Gw(u)]* )- (41)

Similarly, when q is a point-by-point phase value,

amn(X) = imn(x)8(x, n), (42)

aE
0(x) = 2 Im(m.(x)Pln[g(xl)]{P'dn[G(u)]*), (43)

aE
am =(x)- 2 Re(exp[iO(x)]P j[g(xj)]

X pt Pdn[Gw(u)]}*), (45)

where the propagated wave fronts are evaluated at
X = X.

For the HST there was a poorly known translation
of obscurations arising from the secondary mirror
and spiders of the WF/PC. For this we can assume
that I mn(xn) I representing that obscuration is a bi-
nary function that is known except for its position.
Therefore we need to determine only the relative
position of a known mask. This can be done without
performing an iterative optimization by using the
gradient as defined above. When we inspect the
negative of the gradient, it becomes apparent where
the mask should be located. The obscurations of the
mask I mn(xn) I should be moved to the area of the
minima of the negative of the gradient. The same is
true for determining mi(xi). If the size (scale) of the
obscurations is uncertain, this might also be inferred
directly from the gradient.

With the gradients derived above a gradient-search
nonlinear optimization algorithm, such as the conju-
gate-gradient algorithm, can be used to minimize the
error metric and thereby estimate the unknown
phase errors and other parameters.

C. Second Derivatives with Respect to Input-Plane
Parameters
Methods employing second partial derivatives, such
as Newton-Raphson, generally converge with far
fewer iterations than gradient-search methods. An-
alytic expressions can be found for the second partial
derivatives in the same manner as the first partial
derivatives. When this is done for the case of J
polynomial coefficients, we find that the total number
of propagations required is proportional to J2. For a
small J this would be practical; but for a large J it is
more efficient to employ a greater number of itera-
tions of a gradient-search method than the fewer
number of iterations of a method using all the second
partial derivatives. Alternatively an efficient strat-
egy might be to use a method that employs only the
diagonal terms of the matrix of second partial deriva-
tives. Since for the case of point-by-point (phase,
magnitude, or complex) values there are typically
N 2 thousands of points, the inversion of an N 2 by
N 2 matrix would be a formidable task, and so nondiag-
onal second partial derivatives in this case would be of
limited interest.

where the propagated wave fronts are evaluated at
Xn = X.

When parameter q is the magnitude I mn(xn) I of the
transmittance in the Xn plane,

a|mn(x) = exp[iOn(xn)]8(x, Xn), (44)

3. Derivatives for a Second Error Metric

Several other error metrics, besides the squared
difference in magnitudes given in Eq. (1), may be
used. Consider, for example, the squared difference
in intensities (squared magnitudes) given by

E2 X W(u)[IG(u)l2 - IF(u)21]2. (46)
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The derivative with respect to a parameter p in the
input plane is

aE2 aGu
= 2 I W(u)[I G(u) 12 - IF(u) 12]G *(u) a + c.c.ap Ua

= 4 Re{ [lI G(u) 12 - IF(u) 12]G*(u)P[ ip')}

= 4 Re g(xI) {PtL[ G(u) 12G *(u)
'f 1 ap

- IF(u)12G*(u)]*), (47)

which is derived with steps that are similar to those
leadingto Eq. (14). The expressions for ag(xi)/ap for
various parameters p are given in Subsection 2.A.
The products of three fields, G(u)I 2G*(u) =
G(u)G *(u)G *(u) and similarly for I F(u) 12G *(u), would
require a sampling rate that is 3 times that which
would be required to propagate the one field G(u)
without aliasing. For many practical circumstances
this degree of oversampling would not be done, and
aliasing would occur. (This would be true for the
HST application.) Some aliasing would also occur in
the computation of aE/ap by Eq. (14), but we believe
that typically it would be considerably less. This is
one reason why we favor the error metric E given in
Eq. (1) over E2 given in Eq. (46). We also favor E
given in Eq. (1), because, for photon-limited measure-
ments, it can be shown that minimizing it is approxi-
mately the same as maximizing a log-likelihood metric;
i.e., it is close to a maximum-likelihood solution.

4. Iterative Propagation Algorithms

For the iterative transform algorithm (ITA) ap-
proaches, we begin by describing projection-onto-sets
types of algorithm, e.g., error reductions and Gerch-
berg-Saxton,9 and then move onto an input-output
type of algorithm to speed convergence and avoid
stagnation at local minima.8 In this case of multiple-
plane propagation the algorithm should be renamed
the iterative propagation algorithm (IPA). The error-
reduction version of the algorithm is derived as
follows.

A. Algorithm

In the u domain (detector plane) the ordinary projec-
tion operation (which makes the wave front consis-
tent with the measured data) is given by8

G'(u) = I F(u) I G(u)/ I G(u) . (48)

Since our error metric contains a weighting function
W(u), we must consider a weighted projection. With
a binary weighting function the projection operation

is given by

GP(u) = W(u) I(G(u) + [1- W(u)]G(u) (49a)
Iu IG(u) I

{W() [() IG(u)I ] 1+11

= W(u)G(u) G(u) I-1 + G(u)

= GW(u) + G(u), (49b)

where Gw(u) is the same function given by Eq. (8)
defined for the gradient-search algorithms. From
Eq. (49a) we see that GP(u) has a magnitude of IF(u) I
where W(u) = 1 and is equal to G(u) where W(u) = 0.
That is, where we have no confidence in the data
IF(u) , we leave the wave front unaltered. The
algorithm will retrieve the phase of F(u) where
W(u) = 1 and interpolate the wave front (retrieve
both magnitude and phase) where W(u) = 0. A
weighting function taking on any value between 0
and 1 could also be used in Eqs. (49a) and (49b),
although the concept of a projection (in a Hilbert
space) is less well defined in that case.

Suppose that in the x1 domain the magnitude is
replaced by the measured magnitude (i.e., Gerchberg-
Saxton or error reduction with a magnitude con-
straint) or the magnitude is set to zero outside the
known region of support (outside the pupil function)
(i.e., error reduction with a support constraint).
Then, for the case of propagation consisting of a
single Fourier transform, it has been shown8 that this
(error-reduction) algorithm converges in the weak
sense that the error metric cannot increase with
increasing iterations. This is a result of the algo-
rithm being a projection-onto-sets algorithm (noncon-
vex sets in this case). However, for the case of
multiple-plane propagation this is not true. Note
that Pt{P[g(x1)]} = g(x1) only for propagations that do
not involve obscurations. The lack of a convergence
proof results from the fact that light is absorbed at
the x, plane by obscurations I m,,(x,) I during the
forward propagation, and the corresponding light is
not regenerated during an inverse propagation.
When the inverse propagated wave front arrives at
the x1 plane, missing from it is the wave front from
the obscured region(s) that are necessary to make it
match the input wave front.

One solution to this problem of the missing wave
front is as follows. Let P1 _[g(x1)] denote the for-
ward propagation of the wave front g(x1) to the xn
plane and let P'-,,[GP(u)] represent the inverse prop-
agation of the wave front GP(u) to the x, plane.
During the forward propagation, save the wave fronts
P1 _[g(x1)] and then on the inverse propagation add
them back in. For example, if the last plane with an
obscuration is the nth, then, after inverse propagat-
ing to the Xn plane and multiplying by the mask
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Im,(x,) l, replace I m,(x,) IPt_ n[GP(u)] by

Pt +[GP(u)] = I m.(x.) IP1_.[GP(u)]

+ [1 - m.(x.)II]P 1 _.[g(x1 )], (50)

which restores the portion of the wave front absorbed
during the forward propagation. Then complete the
inverse propagation in this fashion to arrive at a wave
front, which we will call gP(xi), in the input plane.

The first three steps of the iteration would be the
propagation of g(x1) to G(u), projecting to form GP(u),
and inverse propagating, adding back the obscured
wave fronts to obtain gP(x1). This is mathematically
identical to a simpler form, which we now show.
Inserting Eqs. (49) into Eq. (50) yields, at the first
obscuration in the inverse propagation,

Pt yn+[GP(u)]

= I m.(x.) P_.n[Gw(u)] + I m.(x.) IPd .[G(u)]

+ [1 - M(XJ1P1 n[g(Xl)]

= I m.(x.) P1_.[Gw(u)] + P 1 _.[g(x1)], (51)

since

Im.(x.) IP'-.[G(u)] = I m.(x.) P1 _.[g(x1)] (52)

at that obscuration. Completing the inverse propa-
gation of this wave front back to the x1 plane, adding
back the obscured wave fronts as we go along, yields

gP(xl) = Pt[GW(u)] + g(x1 ) = gw(xl) + g(x1 ). (53)

That is, by inverse propagating Gw(u) (without
adding back obscured wave fronts) to obtain gw(xl),
and adding to itg(x1 ), we obtain the same result as the
more complicated procedure of inverse propagating
GP(u) when obscured wave fronts are added back.

The IPA consists of the following four steps (when
the simpler method of inverse propagation is used) for
the kth iteration:

(1) Propagate an input wave front gk(xl) to the
measurement plane: Gk(u) = P[gk(xl)] by using Eq.
(5).

(2) Compute Gkw(u) from Gk(u) by using Eq. (8).
(3) Inverse propagate Gkw(u) back to the input

plane (without adding back the obscured wave fronts)
giving gw(xl). Then compute gkP(xl) = gw(xl) +
gk(Xl)-

(4) Form the new input wave front gk+1(xl) from
g&P(x1 ) and gk(xl) by using any version of the ITA.8

B. Convergence Proof for Error-Reduction Version

A convergence proof for the error reduction and
Gerchberg-Saxton versions of the algorithm above is
as follows. At the kth iteration the u-domain error

metric is (for binary Wand binary I m, I)

EFk = I W(u)[IGk(u)I - IF(u) f2
U-E _____ I GkUkI u) u U~ ~~~ I Gk uI( I IF u)I 2

= X I-Gkw(U)12
= X I Gkw(u)1

2
. (54)

When it is inverse propagated back to the input plane,
Gw(u) will lose some energy as a result of the multipli-
cation by the masks I m,(x) 1, and thus we have

EFk = I I Gkw(U)12 = lgw(Xl)1
2 + C1,

U X1
(55)

where

d-1

C = IX I [1 - Imn(xn)] lPdn_.[Gkw(U)]12
n=2 xn

(56)

is the energy from Gkw(u) that is lost as a result of the
obscurations on inverse propagation to the input
plane. According to Eq. (53) the computed wave
front in the x1 domain is given by gkP(xl) = gkw(xl) +

gk(xl). For the error reduction and Gerchberg-
Saxton algorithms the new input wave front gk+l(xl)
is formed by projecting gkP(xl) onto the x-domain
constraint space (for example, by setting it to zero
outside the support constraint). Then

EFk = l gkw(Xl) 2 + C1
> ~~X1

I gkP(Xl) -gk(Xl) 12 + C
X1

2 X Ig*P(x1) - gk+1(xl)| + C1 Eok + C1,
X1

(57)

since bothgk(xl) andgk+1(xl) are within the x1-domain
constraint space and by definition gk+1(xl) is the wave
front in that constraint space closest to gkP(xl). Ek is
the x1-domain error metric. Since C1 2 0, EFk 2 Ek

Using g&P(x1 ) = gw(xi) + gk(x1 ) and propagating
[gk(xl) - gk+1(xl)] back to the u plane, we have

EFk 2 I lgkw(xl) + g(xi) - gk+I(xl) 12 + C
X1

= X I Gkw(u) + Gk(u) - Gk+l(u) 12 + C2, (58)

where

d-1
C 2 = I I [1 - I m(x.)I]IPln[gk(xl) - gk+ (Xl)]12

n=2 n

(59)

is the energy lost to obscurations in the propagation
of [gk(x1) - gk+1(xl)] through the system. To obtain
this result, we had to add the optical fields with
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energy C,, lost by inverse propagation of Gw(u) to
gw(xl), back to gw(xl) at each obscuration as it
forward propagated through the system in order to
arrive at Gw(u). This is made possible by the fact
that the field being added back in each plane is
nonzero only where I mn(xn) I = 0. Therefore we have

EFk 2 E I G(u) - Gk+l(u)1 2 + C2
U

2 I Gk+?(u) - Gk+l(u) 2 + C2
U

W(u)Gk+l(u) F 1(u) + C2

= E W(u)[LI Gk+l(u) I - IF(u) 12 + C2
U

= EF(k+1) + C2 2 EF(k+1), (60)

where we used the fact that since both GkP(u) and
GP 1(u) are within the u-domain constraint space, and
since by definition GP+1(u) is the wave front in the
constraint space closest to Gk+l(u), GP^ju) is closer to
Gk+l(u) than GkP(u) is. Since EFk 2 EF(k+l) we have
proved convergence of the error-reduction (Gerch-
berg-Saxton) algorithms in the usual weak sense that
the error metric is nonincreasing with the increasing
iteration number. This has now been shown to be
true in the case of multiple-plane propagation includ-
ing diffraction (absorption) and with a weighting
function for ignoring bad pixels.

The more advanced forms of the ITA's8 are ex-
pected to converge faster than the error-reduction
algorithm, which has the convergence proof discussed
above. For the case where ml(xl) is used in the
aperture plane as a support constraint, the fourth
step of the error-reduction algorithm would be

gk+l(xl) = ml(xl)gkP(xl), (61)

whereas for the hybrid input-output algorithm the
fourth step would be

gk+l(Xl) = ml(Xl)gkp(X1)

+ [1 - ml(Xl)][gk(Xl) - P~P(x 1)], (62)

where ,3 is a feedback parameter. 8 The fourth step
for the Gerchberg-Saxton algorithm, which uses
ml(xl) as a magnitude constraint, would be

gk+l(xl) = m gP(x 1 ) (63)

C. Comparison with Gradient Search

For the error-reduction algorithm with a support
constraint, inserting Eq. (53) into Eq. (61) yields

gk+l(xl) = ml(xl)[gkw(xl) + gk(Xl)]. (64)

Now compare this with the steepest-descent gradient
search for the parameters that are the real and

imaginary parts (or complex values) of the wave front
in the input plane. For a step size s = 1/2 in Eq.
(32), the steepest descent gives us

gk+l(Xl) = gk(xl) + 2(1/2)gkw(xj)

= gkw(x) + gk(xl) (65)

for an unconstrained gradient search. However, for
the gradient search over the complex values to be
effective, the wave front should be constrained to zero
outside the clear aperture. That is, a constrained
steepest-descent gradient search would be accom-
plished by

gk+l(Xl) = m1(X1)[gkw(X1) + gk(Xl)]- (66)

Since this is identical to Eq. (64) we see, exactly as
before,8 that the error-reduction version of the IPA is
identical to a steepest-descent gradient-search algo-
rithm with a particular step size.

As usual8 other gradient-search algorithms and the
hybrid input-output version of the ITA are expected
to converge much faster than the error-reduc-
tion/steepest-descent algorithms, even though for
the latter there is a convergence proof.

D. Combination of Algorithms

For the HST problem the aberration to be recon-
structed is dominated by spherical aberration, but it
also has small amounts of other polynomial-type
phase errors and some fine-scale phase errors associ-
ated with the microroughness of the mirror surfaces
leftby the polishingprocess. Consequently the phase
error can be described as the sum of several polynomi-
als (only the spherical aberration term of which is
large) plus a point-by-point phase map (with small
values only). In theory the IPA's can, with no help
from other algorithms, determine all the phase-error
terms. Indeed for image reconstruction applications
the ITA, despite some tendencies to stagnate,16 has
been demonstrated to converge to the solution from
random starting points. However, for the HST prob-
lem, we found that the IPA would stagnate on a
nonphysical aperture-plane wave front (a wave front
that goes through zeros in clear areas of the OTA
pupil) unless it was started near the true solution
with a smooth phase. Furthermore, the locations of
obscurations within the WF/PC (i.e., our support
constraints) were poorly known. Therefore for the
HST problem a combined approach was necessary.
The combined approach used on the HST data was as
follows: (1) Starting with an initial estimate of the
locations of the obscurations, we performed a Zernike
polynomial fit to obtain the low-order aberration
terms. (2) Using this estimate of the phase error, we
reestimated the position of the obscurations, as de-
scribed at the end of Subsection 2.B. (3) We re-
peated steps (1) and (2) until no further changes were
made (once or twice was adequate). At this point an
estimate of the polynomial phase errors was available.
(4) Starting with the polynomial phase-error esti-
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mate, we used the IPA to estimate the fine structure
in the phase error.

5. Conclusions

We have derived generalizations of both gradient-
search and iterative-transform phase-retrieval algo-
rithms that allow for multiple planes of diffraction
(vignetting or obscurations) within a complicated
optical system and for ignoring bad pixels when a
binary weighting function is used. A proof of conver-
gence (in a weak sense) for the error-reduction and
Gerchberg-Saxton algorithms, which employ multi-
ple-plane propagation, was given. An equivalence
was shown between the error-reduction algorithm
and a constrained steepest-descent gradient-search
algorithm with a particular step size. However,
other gradient-search methods and versions of the
IPA are recommended. The use of the derived ana-
lytic gradients, with respect to either the values of a
point-by-point phase map or the coefficients of a
polynomial expansion of the phase, can greatly speed
the computation compared with the finite-differences
computation of the gradient. Other versions of these
algorithms are also useful for reconstructing the
obscurations (pupil function) of an optical system.
A combination of algorithms may be required to
reconstruct polynomial-type phase errors, fine-scale
phase errors, and unknown pupil functions. These
generalized algorithms were motivated by the need to
characterize accurately the aberrations and align-
ment of the HST. Results for the given in Ref. 17.
They should also be useful for characterizing other
complicated optical systems from measured PSF's.

Portions of this work are presented in Refs. 18 and
19.
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