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We describe several results characterizing the Hubble Space Telescope from measured point spread
functions by using phase-retrieval algorithms. The Cramer-Rao lower bounds show that point spread
functions taken well out of focus result in smaller errors when aberrations are estimated and that, for
those images, photon noise is not a limiting factor. Reconstruction experiments with both simulated and
real data show that the calculation of wave-front propagation by the retrieval algorithms must be
performed with a multiple-plane propagation rather than a simple fast Fourier transform to ensure the
high accuracy required. Pupil reconstruction was performed and indicates a misalignment of the optical
axis of a camera relay telescope relative to the main telescope. After we accounted for measured
spherical aberration in the relay telescope, our estimate of the conic constant of the primary mirror of the
HST was - 1.0144.
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1. Introduction

Soon after the Hubble Space Telescope (HST) was
launched, researchers discovered that its optics were
seriously aberrated. Several groups mounted efforts
to characterize accurately the aberrations and align-
ment of the HST. This characterization is impor-
tant so that we can, first, implement a future optical
correction to the aberration; second, know how to
align the secondary mirror of the telescope to mini-
mize astigmatism and coma; and third, compute
analytically the point spread functions (PSF's) of the
system for optimum deblurring of the degraded im-
ages currently being collected by the telescope. The
latter is important because the PSF changes signifi-
cantly from one camera to the next and with the
position of the field of view, wavelength, and focus
setting.

This paper describes elements of a multifaceted
program that characterizes the HST performed in the
Optical and Infrared Science Laboratory of the Envi-
ronmental Research Institute of Michigan. Parallel
efforts by other groups are described elsewhere in this
feature issue of Applied Optics and in Refs. 1 and 2.

Most of the characterization approaches were de-
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rived from earlier phase-retrieval approaches that
have been in use for several years in the applications
of image reconstruction with astronomical. interferom-
etry3 4 and of wave-front sensing in electron microsco-
py5 -7 and optics.8 9

In this paper we begin with the more theoretical
and then proceed to the specifics of the HST. In
Section 2 we calculate Cramer-Rao (CR) lower bounds
on the error in estimating the coefficients of a polyno-
mial expansion of the phase-error (aberration) esti-
mate. This proves useful not only for determining
how accurate an estimate to expect but also for
selecting a focus setting for the telescope that yields a
PSF from which the most accurate estimate can be
made. In Section 3 we show the results of computer
simulating the HST and performing aberration esti-
mates from the simulated data. This also proves
useful for determining the accuracy that can be
expected and shows the potential sensitivity of the
estimate to imperfections in our model of the HST.
Included are the effects of multiple-plane (diffraction)
propagation and an imprecisely known spatial scale
and quadratic phase factor. This section ends with
the results of a blind test that was distributed to
several groups. Section 4 describes some of the
parameters of the HST that are important in the
determination of the aberrations by phase retrieval.
We calculate sampling requirements that limit the
utility of PSF's measured at wavelengths that are too
short. We use the ABCD matrix method'0 to deter-
mine the parameters of the propagation integrals
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needed to simulate the optical system. In Section 5
we give the results of processing images taken with
the HST. We reconstruct both the unknown phase
errors and the pupil function, which also differed
from the design. We describe the preliminary re-
sults in deconvolving the effects of telescope jitter,
which also blurs the images. We verify that the dust
artifacts in the images originate from particles on a
field flattener. In Section 7 we summarize our re-
sults and draw conclusions. Among our conclusions
is our estimation that the spherical aberration is
somewhat larger than that for which the correction in
the replacement cameras is being designed.

2. Lower Bound on Estimating Polynomial Coefficients

The CR bound is an information-theoretical lower
bound on the mean-squared error of an unbiased
estimate of an unknown parameter. The CR bound
for the retrieval of point-by-point phase maps has
been computed previously.9 " l Here we calculate the
CR bound on the mean-squared error of estimates of
the coefficients of a polynomial expansion of the
phase error. We begin by defining a model of the
system, derive the lower bound, compute the bound,
and draw conclusions.

A. System Model

In this section we employ a simplified model of the
HST. The wave front F(u) in the detector plane is
assumed to be the Fourier transform of the wave
front f(x) in the aperture (pupil) plane, where u and x
are each two-dimensional spatial coordinates. The
wave front in the pupil is given by

f(x) = m(x)exp[iO(x)], (2.1)

where m(x) is the binary pupil (aperture function) and
0(x) is the aberration function (phase errors). Here
the aberrations are assumed to be the sum of Zernike
polynomials:

0(x) = I aZj(x).
j=1

(2.2)

For the HST the commonly used phase polynomials
are modified Zernike polynomials orthonormal over
an annual aperture of inner radius that is 0.330 times
the outer radius. They are given in Table 17 in
Appendix A. The eleventh, polynomial Z1, is the (r4)
spherical aberration term, which is the aberration in
the HST of greatest interest; and the fourth, Z4, is the
(r2) focus term, which can be varied in the optical
system by moving the secondary mirror. We define
the unknown coefficients as the vector a _
[al, .. , aj] T, where [ ]T denotes the vector transpose.
The measured data D(u) are modeled as independent,
Poisson-distributed random variables with an ex-
pected value of

E[D(u)] = Ia(u). (2.3)

Here the intensity, which is given in units of the
average number of photons per detector, is

Ia(U) = cI(U)[Fa(u)Fa*(u) + IB(U)] + 2, (2.4)

where a(u) is a spatially varying scale factor that is
determined by the light level, detector efficiency,
nonuniform gain, etc. IB(U) corresponds to the back-
ground intensity, possibly because of the detector
dark current, preflash, or background light from the
sky, and 2 is the variance associated with the CCD
readout noise. The subscript a denotes that fa(x),
Fa(u), and Ia(u) are functions of the aberration coeffi-
cients a.

Since D(u), the number of photons detected at pixel
u, is a Poisson-distributed random variable with an
expected value of Ia(u), it has the probability distribu-
tion

Pr[D(u)] = [Ia(U)]D(U) exp[-Ia(u)]
nth%1 (2.5)

Furthermore D(u) and D(v) are assumed to be statisti-
cally independent for all u v. If we denote the
entire measurement data as {D(u)}UZu, where U is an
N x N array of pixels, then

Pr[{D(u)}] = II Pr[D(u)], (2.6)

where all products and summations are over u E U.
The log-likelihood of the measured data, as a function
of the unknown parameters a, is then

L(a) = ln Pr[tD(u)1.]

= E n Pr[D(u)]

= -I la(u) + 2 D(u)ln Ia(u) - Y n D(u)! .
U U U

(2.7)

Omitting terms that do not depend on a, we may
rewrite the log-likelihood as

L(a) = -Ia(u) + D(u)lnIa(u). (2.8)

B. Cramer-Rao Lower Bound on the Estimation Error
We denote A as an estimator of the unknown parame-
ter vector a. Since A depends on the measured data,
it is a random vector. Suppose that the expectation
of A is equal to the true parameter vector a. That is,
A is an unbiased estimator of a. Now denote the
error covariance matrix as

I = E{( - a)(A - a)T}. (2.9)
a

The CR inequality'2 states that a - f''(a) is a
nonnegative-definite matrix, where/(a) is the Fisher
information matrix defined as

/(a) = -E>O(a)}, (2.10)
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and f(a) is the observed Fisher information matrix:

[,1(a)jk d aL(a) (2.11)

An important consequence of the CR inequality is
that

(j- aj)2] [(a)]jj. (2.12)

Now the partial derivative of L with respect to a is

aL(a) _

aaj
U a aaI (u)

It then follows that[ _ ) a2 L(a)[f3-(a)]jk aa

a2Ia(u)

u aajaak

LD(u) 1]Ia(U)lj
[D(u)_ 1

Ia(U) l

al(u) ala(u) D(u)
I day aak [Ia(U)]2'

[(a)jk = -E{[[,(a)lJk}

Iala(U) ala(U) 1

u aaj aak Ia(U)'

where w
Since

ala(u)_
aaj

aFa(u) =
a

C. Numerical Results

In this section the lower bound on the estimation
error is evaluated numerically for some special cases.
For these situations (u) was constant over U and
IB(u) and 2 were zero. Two pupil functions were
used: aperture 1 shown in Fig. 1(a) and aperture 2
shown in Fig. 1(b). The array size is 256 x 256 with
aperture 1 having a diameter of 145 pixels and a
central obscuration diameter of 60 pixels and aper-
ture 2 having a diameter of 100 pixels and a central
obscuration diameter of 33 pixels. For the computa-
tions the value of a4 was permitted to vary while the
remaining coefficients were set to the following values:
a5 = 0.01, a6 = -0.01, al = 0.03, all = 0.30, and a7 =

a8 = a9 = a22 = 0.00. In this section the coefficients
are in units of radians rms of the wave-front error.
Shown in Tables 1 and 2 are the lower bounds on the
estimation squared error of each parameter for vari-
ous values of a4 and for the two different apertures.
The scale factor a was chosen so that on average Nma,
the largest number of photons in any pixel of each
PSF, was 1. To determine the bound for other
values of Nmna, the numbers in the table should be
divided by Nmn. The rms error is given by

(2.14)

e have used the fact that E{D(u)J = Ia().

[~aFa *(u) auU( aa. Fa(UaFa(u)
+ aa Fa*(U) 

i j: Zj(x)fa(x)exp(i2irux)

def fa] (2.17)

where ux is an inner product and 9u[ ] denotes the
discrete Fourier transform of its argument evaluated
at u, we have that

ala(U) -aj=U(UWi(-t[Zfa}Fa(U) + 9Yjjfa]Fa*(U))

oj = {E[(dj - aj)2 ]/Nmj1/ 2 . (2.20)

As can be seen from Tables 1 and 2, the lower
bounds on the estimation errors are significantly
lower for the situation in which images are formed
well out of focus (a4 = 3) than for situations in which
images are formed in focus (a4 = 0) or close to focus
(a4 = 1). Note that since the dynamic ranges of the
PSF's tend to decrease with increasing a4 l (which
are more out of focus), the total number of photons
tends to increase with a4 | for a fixed Nmzx.

Again it should be stressed that these numbers
represent lower bounds for unbiased estimates and in
fact may not represent the greatest lower bounds.
Hence for an unbiased estimator the actual perfor-
mance may be far worse than the lower bound,
whereas for a biased estimator the actual perfor-
mance could be better or worse.

The lower bounds were also computed for the
situation in which the focus parameter a4 is known.
These results are shown in Tables 3 and 4. As can be
seen from these tables the estimation of all may be

= -2a(u)Imt5[Zjfa]Fa*(u)},

[f(a)k = 4 I(u)

x Im{Su[Zjfa]Fa*(U)lIm{ Yj[Zfa]Fa*(u)1,

(2.19)

where Im{ } denotes the imaginary part of its argu-
ment.

(a) (b)

Fig. 1. Pupil functions used for the numeric computation of CR
lower bounds on aberration estimates: (a) aperture 1, (b) aperture
2.
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Table 1. Normalized Lower Bounds on E[(a, - a)
2

] for Aperture 1

j a4 = 0.0 a4 = 1.0 a4 = 3.0

4 96.460854 40.463634 1.017365
5 0.032564 0.021035 0.000830
6 0.047582 0.034603 0.000560
7 0.026248 0.011118 0.000346
8 0.029077 0.009690 0.000346
9 0.013022 0.018398 0.000415

10 0.013116 0.016309 0.000423
11 4.385449 1.764731 0.045521
22 0.019322 0.007839 0.000197

performed with much greater accuracy when a4 is
known.

As an example of how these tables might be used,
suppose that all the coefficients are unknown, as is
the case for the HST. This situation is addressed in
Tables 1 and 2. Suppose that the Nmax, the maxi-
mum number of detected photons in any pixel, is
16,000 and that no pixels are saturated. Then, when
Eq. (2.20) is used, for aperture 1 the lower bounds on
the rms error of all for various focus settings are as
follows: 0.0166 for a4 = 0.0, 0.0105 for a4 = 1.0 and
0.0017 for a4 = 3.0. From this we see that, for
well-exposed, far out-of-focus PSF's, the CR lower
bound allows for acceptably low estimation errors,
while the performance for PSF's that are close to
focus is marginal at best at this light level.

3. Computer Simulation Results

In this section we explore the accuracy with which
phase-error polynomial coefficients can be estimated
from HST PSF 's by means of the digital simulation of
data and reconstruction experiments. We first show
the importance of a multiple-plane diffraction model
for imaging with the planetary camera (PC) mode of
the wide-field/planetary camera (WF/PC) of the HST.
Then we demonstrate the effect of imperfectly known
system parameters. The section ends with the re-
sults of a blind test of our phase-retrieval algorithms.

A. Effect of Multiple-Plane Propagation

Figure 2 shows our model for the optical system for
these simulations. The simplified model replaces
mirrors with ideal thin lenses and eliminates several
elements and folding mirrors. The main telescope,
the optical telescope assembly (OTA), consisting of a
positive and a negative lens (in reality a concave

Table 2. Normalized Lower Bounds on E[(l - al)2] for Aperture 2

j a4 =0.0 a4 =1.0 a4=3.0

4 23.568291 43.709743 0.952042
5 0.024185 0.053788 0.000745
6 0.024064 0.048569 0.000090
7 0.013642 0.007164 0.000171
8 0.013959 0.006924 0.000174
9 0.006207 0.029878 0.000153

10 0.006186 0.030008 0.000157
11 0.979072 1.784631 0.039075
22 0.004710 0.008210 0.000181

Table 3. Normalized Lower Bounds on E[(i - aj)2] for Aperture 1 when
a4 is Known

j a4=0.0 a4=1.0 a4=3.0

4 Known Known Known
5 0.032412 0.020977 0.000829
6 0.047395 0.034598 0.000560
7 0.025872 0.010668 0.000345
8 0.028869 0.009541 0.000345
9 0.013019 0.018265 0.000414

10 0.013089 0.016304 0.000423
11 0.025298 0.010237 0.000368
22 0.000003 0.000004 0.000000

primary mirror and a convex secondary mirror),
forms an image of a star in plane x2. The image is
formed near the surface of a four-faceted mirror in
the shape of a pyramid, which divides the image plane
into four quadrants. The pyramid facets also have
optical power. A PC reimages each quadrant onto a
CCD array in plane X4 by a relay telescope, which is
also depicted by two lenses. Only one of the quad-
rants and relay telescopes is shown in the figure.

The aberrated wave front, U(xl) = m1(xj)exp[i0
(x1)], in the input plane of the OTA is spatially limited
by the transmittance function m1 (xl), which includes
the effect of the aperture diameter, the obscurations
of the secondary mirror and the spiders (struts)
holding it in place, and the three pads (bolts) on the
primary mirror that hold it in place. On its way
through the PC relay telescope, the wave front is
multiplied by the transmittance function m3 (x3), which
represents the central obscuration and spiders of the
relay telescope in plane X3.

The relationship between the wave fronts in planes
x1 and x2 is given by

U2(X2) = f Ul(xl)exp[iTr (Ax2 - 2xIx 2 + Dx 22)jdxI

1 isrD 2
= -A exp A X2

-i27r
X exp XB Xx 2 dx 11

and similarly for propagations between other pairs of
planes. In the above x and x2 are both two-

Table 4. Normalized Lower Bounds on E[(a - al)2] for Aperture 2 when
a4 is Known

j a4=0.0 a4 =1.0 a4 =3.0

4 Known Known Known
5 0.024147 0.053788 0.000745
6 0.024038 0.048569 0.000090
7 0.013642 0.007164 0.000171
8 0.013956 0.006924 0.000174
9 0.006207 0.029878 0.000153

10 0.006185 0.030008 0.000157
11 0.007644 0.007265 0.000318
12 0.000001 0.000006 0.000000
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Fig. 2. Simplified thin-lens model of the PC mode of the HST. Plane X3 contains the obscurations in the PC. A pair of imaginary thin

lenses is inserted justbefore and just after planeX3 to reduce the size of the FFT required for the digital propagation of a wave front through
the system.

dimensional coordinates, x1x2 is interpreted as a dot
(inner) product, and the integrals are over the inter-
val (-o, o) in each dimension. The coefficientsA, B,
and D are determined most conveniently by the
ABCD matrix method as described in Section 4. As
can be seen from the second line of the equation
above, this propagation can be performed with a
single Fourier transform with the coefficient of the
Fourier kernel being 1/( KB).

In the digital computer we approximate the propa-
gation given above by using the discrete Fourier
transform:

1 N-1
U2 (X2 ) = exp(it 1 X2

2) I Ul(x 1 )exp(i43x 1
2 )

xl=O

x exp(-i2'rrxlx2 /N)

= exp(iixlX 2
2 )S_{U 1(X1)exp(i$ 1x1

2 )}, (3.2)

where x1 and x2 are now redefined to be integer
sample (pixel) numbers for pixels separated by physi-
cal distances Ax1 and Ax2 for the two respective planes
(which are assumed to be the same in each of the two
dimensions). The N x N discrete Fourier transform
is computed by using the fast Fourier transform
(FFT) algorithm. Comparison of the discrete and
continuous transforms reveals the following relation-
ships:

1 AX1 AX2

N KB

KB
or Ax2 = Na '

ITDAX 2
2

°1 = XB

rrAAx 1
2

KB

and similarly for the other propagations.

(3.3)

(3.4)

(3.5)

The requirements on sampling are as follows. To
capture the OTA primary mirror, we need NAx1 2 2.4
m. To represent the OTA spiders, of 25.6-mm width,
we need Ax1 < 25.6 mm (assuming the gray-level
masks as described below). To capture the spiders of
0.834-mm width in the relay telescope, we need Ax3 <
0.834 mm. To match the CCD pixel spacing in the
PC, we need Ax4 = 0.015 mm. To capture the entire
PSF, we need NAx4 to exceed the sensible diameter of
the PSF. The quadratic phase factors determined
by the A and D parameters must not be aliased. The
difference in a quadratic phase from one pixel to the
next should not exceed rr radians:

[(N) 2 )2
(3.6)

and similarly f1(N - 1) < ir.
It is possible to accomplish the transformation

from plane x1 to plane X3 with a single FFT.
However, to satisfy the requirements above, we found
that N of - 2000 (2048 for an efficient FFT) would be
required. This would be computationally expensive.
By propagating from plane xl to plane x2 and then
propagating from plane x2 to plane X3, we can use
much smaller FFT's. Furthermore we kept a2(N - 1)
< r for the second propagation by keeping track of
the quadratic phase term (x2x3

2 analytically for the
second and third propagations. This is conceptually
identical to inserting a thin lens of focal length d just
before plane X3 and a thin lens of focal length -d just
after plane X3. This pair of imaginary lenses cancel
one another in terms of their effect on the optical
system but allow the use of FFT 's of smaller size in
the digital propagations.

We can use a binary mask to represent the obscura-
tions. However, for extremely fine features, such as
the spiders, two or more samples across a spider
would be necessary to represent it accurately. This
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would make the sampling requirements more demand-
ing. An alternative is to represent binary obscura-
tions with gray-level transmittance functions. Think
of each pixel as a square with the center at the sample
value. If there is no obscuration within the square
(it is all in the clear aperture), the transmittance of
the sample is 1.0, and if the square is totally obscured,
the transmittance of the sample is 0.0. For a par-
tially obscured square the transmittance of the sam-
ple is the fraction of the square that the clear
aperture covers. Transmittance functions m(xi)
made in this way should more accurately represent
the obscurations than binary masks using the same
sampling rate. Functions made in this fashion have
the appearance of finer resolution and avoid much of
the staircasing effects seen in binary representations.
With the computational tricks of using gray-level
transmittance functions, the additional propagation,
and the imaginary pair of lenses, we were able to use
FFT 's of size N = 512 and even 256 with confidence.

For the model of the HST that uses three propaga-
tions including the imaginary pair of lenses at the
plane of the PC obscurations (X3 ), most of the qua-
dratic phase coefficients, a-i and i, are negligibly
small, except for those in the first focal plane, in plane
x2. There the sum of all the quadratic phase terms is
2TrBQx22, where the quadratic coefficient is given by

BQ= (- XA2 +12) =Kf B1

1 A 2 3 ) Ax 2
2

fpy B 2 3 2K

where a1 , D12, and B12 are from the propagation from
plane xl to plane x2; 2, A23, and B23 are from the
propagation from plane x 2 to plane X3 ; and fpy is the
focal length of the pyramid in plane x2. The units of
BQ are waves per square pixel.

We explored the importance of the multiple-plane
propagation model over a simpler single-FFT model
of the optical system in a first set of simulation
experiments. The values of the system parameters,
as indicated in Fig. 2, for these simulations are given
in Table 5. (Later work in retrieving the aberrations
from HST data used updated parameters, as de-
scribed in Section 4.) For the purpose of wave-front

Table 5. Parameters of the HST (PC) for Simulations

Symbol Description Value (mm)

SI OTA input plane to primary Arbitrary
fA OTA primary focal length 5520.0
S2 OTA element separation 4906.071
f2 OTA secondary focal length -679.0
S3 OTA secondary to pyramid 6406.200
fpy Pyramid focal length 1534.2
d Pyramid to PC obscuration 895.35
S4 PC obscuration to primary 234.851
h3 PC primary focal length 249.840
S5 PC element separation 234.851
go PC secondary focal length -112.380
S6 PC secondary to detector 364.441

propagation the OTA secondary obscurations and the
primary mirror all can be considered to be in the same
plane, making the exact value of S1 unimportant.
In these simulations it was taken to be zero, whereas
in Section 4 it was taken to be 4.907 m. The values
of A, B, C, and D for the three propagations, com-
puted from the values in Table 5, are given in Table 6.
We performed the simulations using N = 256 and a
wavelength of A = 0.889 [lm. The sample spacings
and array widths for this set of simulations is given in
Table 7. The aberration coefficients for the focus
and spherical-aberration Zernike polynomials were
assumed to be a4 = -2.0 waves and all = -0.25
waves. Simulations were performed for two cases:
(1) where OTA and WE/PC obscurations were both in
their respective planes and (2) where all obscurations
were in a single plane. Case 1 represents the more
accurate, multiple-plane propagation simulation of
the HST, and case 2 is essentially the single-Fourier-
transform approximation that is used in the basic
phase-retrieval algorithm. Figures 3(a) and 3(b)
show, respectively, the OTA and PC obscurations
used for case 1, and Fig. 3(c) shows the composite
obscuration mask used for case 2. (Because of the
number of FFT 's involved, the OTA mask must be
rotated by 1800 for the multiple-plane propagation
compared with the single-plane propagation for one
to arrive at a PSF that is not rotated.) The field
intensity I U4(X4) 12 at the CCD camera after a plane
wave is propagated through the HST model for case 1
is shown in Fig. 4(a). This PSF, called PSFboth
(where the obscurations are in both planes), is diffi-
cultto distinguish visually from the PSF for case 2,
PSFOTA (where all obscurations are in the OTA
plane). However, the differences caused by multiple-
plane diffraction effects are evident in Fig. 4(b), which
shows the difference image (PSFboth - PSFOTA), where
each PSF was normalized to have a peak value of
unity prior to subtraction. The difference image has
a mean value of -0.0002 with a range of [-0.067,
0.073]. Another measure of the significance of mul-
tiple-plane diffraction effects is the absolute rms
error:

E= min
c I[PSFOTA]2

X4

= 0.085,

(3.8)

where the constant C compensates for image-scaling
differences. The 8.5% error observed is significant
enough to effect the phase-retrieval estimate of the
HST aberrations.

Table 6. ABCD Values for Simulations,

Propagation A B (mm) C (mm- 1 ) D

x > x 2 -1.3 x 10-8 57,600 -1.74 x 10-5 8.22544
X2 -*X3 1 895.35 -0.0011169 0.0
X3- 4 -3.096 x 10-5 1078.1 -0.0009276 2.27516

aThe pyramid is handled separately.
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Table 7. Sample Spacings and Array Widths for Simulations
(N = 256, X = 0.889 jim)

Spacing Axi (mm) Width NAxi (mm)

1 16.656 4263.9
2 0.01201 3.0743
3 0.25891 66.281
4 0.01446 3.7019

We quantified the significance of multiple-plane
diffraction further by performing phase retrieval with
single-plane propagation on the two different PSF's,
fitting Zernike coefficients through a22. The gradi-
ent search algorithms for retrieving the phase coeffi-
cients are described in Ref. 13. The algorithms
minimize the mean squared error:

E = E W(u)[ I G(u) I - IF(u) I ]2 , (3.9)

where IF(u) I is the square root of the measured PSF,
I G(u) is the magnitude of the model of the aberrated
wave front in the pupil digitally propagated to the
PSF plane (the CCD plane), and W(u) is a weighting
function (needed for the real data), which is zero
wherever there are bad pixels or wherever the signal-
to-noise ratio drops too low. When we report re-
sults, we give the normalized rms error

' V W(u)[ I G(u)l - IF(u) 1]2 1/2

err = W
l z W(u) F(u) 1 2

(3.10)

For PSFOTA the single-plane phase-retrieval algo-
rithm yielded the correct Zernike coefficients to within
0.001 waves rms, since the system model used in the
phase-retrieval algorithm matches that used to simu-
late the data. For the PSFboth the single-plane phase-
retrieval algorithm produced an estimate of -1.977

(a) (b)

(c)

Fig. 3. Transmittance functions for OTA and PC for simulations:
(a) OTA, (b) PC, (c) composite for the single-FFT model.

(b)
Fig. 4. (a) Simulated PSF. (b) The difference in the PSF's
computed using single-FFT and multiple-plane propagation mod-
els of HST.

waves for a4 (off by 0.023 wave), -0.2545 wave for all
(the magnitude of the spherical aberration was over-
estimated by 0.0045 wave), and up to 0.004 wave for
the other coefficients (which all had true values of 0).

This is not a large error, but the single-plane
phase-retrieval algorithm ultimately prevents us from
obtaining a more accurate estimate of the coefficients.
From Eq. (3.7) and Tables 6 and 7 the value of the
quadratic phase factor, which determines the amount
by which the OTA obscurations are out of focus at the
plane of the PC obscurations, is BQ = 0.00005, and
this is the value used for the experiments described
above. As discussed below this has approximately
the same magnitude but the opposite sign compared
with the true value for the HST, which was deter-
mined later, as described in Section 5. For this
reason an algorithm using a single-plane propagation
and a value of BQ with the correct (negative) sign
might be expected to underestimate the magnitude of
the spherical aberration for HST data.
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A. Incorrect Spatial Scale and Obscuration Position

The plate scale refers to the relationship between the
arcseconds of the angle in the sky and the number of
pixels of the CCD detector. It can be derived from
the ABCD matrix values describing the optical sys-
tem, but it can also be determined independently by
measuring the distances between the images of stars
of known separation. The plate scale also affects the
spatial scale in the pupil function that we model,
which is related to the spatial scale in the CCD plane
by equations of the form AX2 = B/(NAxl). The
correct scale factors were known in practice only
approximately, and they vary as a function of the
location of the PSF on the CCD chip in a way that was
not completely characterized at the time of this work.
Brewer14 later performed ray tracing to satisfy this
need, as described in Section 4. We determined the
sensitivity to the plate scale by simulating data using
one spatial scale factor and using an incorrect scale
factor in the retrieval algorithm. For these simula-
tions the phase-retrieval algorithm used multiple-
plane propagation, and the (incorrectly) assumed
scale factors were independently changed for the
OTA obscurations and the PC obscurations, or the
PC obscurations were translated to simulate an un-
known shift of the PC obscuration.

Selected results of these simulation experiments
are summarized as follows. If the scales of both sets
of obscurations were changed by up to ± 3%, the error
in all was up to 0.004 wave (assuming that the
quadratic phase BQ was correct). As will be seen
below, with the real data the sensitivity to the plate
scale was considerably greater. When a single param-
eter was changed, an error in all of 0.01 wave rms
(which would be of considerable concern) was caused
by (1) an OTA spatial scale error of +4% or (2) a PC
spatial scale error of ±6%. A PC shift of +2 pixels
caused an error in all of only ±0.002 wave. In all
the cases above the normalized rms error of the fit,
given by Eq. (3.10), was in the range of 0.09-0.12.
It is unlikely that spatial scale errors exceeding 1%
will occur when our best estimates of the actual
system parameters are used; therefore spatial scale
errors should not ultimately be a limiting factor in
estimating all. However, for determining the other
aberrations a spatial scale error of 1% could be
significant. In particular a retrieval where the scale
of the OTA is too small causes little change in all but
a large change in a22, which could be of concern. It
does not appear to be likely that shifts of the PC
obscurations will be the limiting factor in estimating
all either as long as we use our best estimates of the
actual shifts. However, for determining other aber-
rations, in particular asymmetric aberrations such as
coma, we expect a greater sensitivity to shifts in the
PC obscurations.

The results above are for the case of knowing a
priori the correct value of the quadratic phase factor
BQ used in the multiple-plane propagation. If BQ is
not known exactly, its value should be optimized
along with the plate scale and the aberration coeffi-

cients. For the simulations described above, the
value of BQ was 0.00005. In another set of simula-
tion experiments a range of values of the plate scale
was assumed during different applications of the
phase-retrieval algorithm, and multiple values of BQ
were used for each case to determine the value of BQ
that minimized the fitting error for each of the plate
scales. Then, with the optimum values of BQ for
each plate scale, the aberrations were reoptimized.
The results are given in Table 8. The values of the
estimated all are plotted in Fig. 5 as a function of the
plate scale for both cases: when the true value of BQ
was used and when the optimum value of BQ was
used. The estimated all varied much more for the
optimum value of BQ (which is optimum in the sense
that it minimizes the error metric for a given as-
sumed plate scale) than for the true value of BQ.
When the optimum value of BQ was used, the esti-
mated all decreased in magnitude as the value of the
plate scale was underestimated.

B. Blind-Test Results

J. Holtzman (Lowell Observatory, Flagstaff, Ariz.)
simulated PSF's with realistic amounts of noise and
aberrations for a variety of focus settings and distrib-
uted the data for blind tests through several phase-
retrieval groups.

We processed only the data with a spectral filter
corresponding to a wavelength of 889 nm, since at
only that wavelength was the Nyquist simulated data
Nyquist sampled for the optical fields. The data
were crudely filtered by zeroing out the data outside a
circle beyond which the signal-to-noise ratio appeared
(by eye) to decrease below unity. These results were
obtained early in our effort, before we had imple-
mented a weighting function in the phase-retrieval
algorithm. All reconstructions reported here used
N x N = 256 x 256 arrays for the FFT's. Limited
reconstructions with 512 x 512 arrays were also
performed, and those results differed little from the
256 x 256 case. The pupil function used was the one
circulated in late August 1990 but with the PC
secondary obscurations moved 2 pixels in both dimen-
sions (i.e., diagonally). This pupil shift was deter-
mined by the iterative transform algorithm.13 Our
results are summarized in Table 9, which shows
recovered Zernike coefficients aj for PSF's simulated
for five different (unknown) focus settings, desig-
natedA-E.

Table 8. Effect of the Plate Scale on Retrieved Zernike Coefficients with
Optimized Quadratic Coefficient BQ

Root-Mean-
Squared Optimum Value of
Error BQ a4 all a22 Scale s

0.119 0.000117 -2.435 -0.292 -0.0011 3% Too small
0.000 0.00005 -2.500 -0.300 -0.0020 Exact
0.064 0.000031 -2.527 -0.300 -0.0014 1% Too large
0.116 -0.000014 -2.566 -0.304 -0.0023 3% Too large
0.141 -0.000069 -2.568 -0.313 -0.0097 5% Too large
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63 64

Fig. 5. Estimated spherical aberration all as a function of as-
sumed spatial scale s for simulated data. The solid curve shows
the quadratic phase factor BQ optimized for the given spatial scale;
the dashed curve indicates when the true value of BQ is used.

From Table 9 we see that the only coefficients for
which the mean value is significantly greater than the
standard deviation among the results are (with their
mean values) a7 = -0.014, a8 = 0.005, and all =
- 0.227 (and a8 differs from 0 by only 2a, and thus our
confidence level in a8 was not high). All these values
agree well with the actual values given in the last
column, which were revealed to us at a later date.
Note that for the nominally in-focus data, given by
image C, the value of spherical aberration all is
farthest from the true value and is substantially
underestimated. This is consistent with the results
obtained with CR lower bounds and is one of the
reasons why we prefer PSF's that are far out of focus.

4. Parameters for the HST

In this section we discuss the specific parameters of
the HST that are important to the phase-retrieval
algorithms.

A. Sampling Requirement

To avoid aliasing, 15 for an aperture of diameter D, we
must sample the detected image intensities with an
angular sampling interval (as projected on the sky) Ps,

which satisfies

p, < /(2D), (4.1)

whereas for optical fields the sampling requirement is
milder:

p < A/D. (4.2)

The latter requirement is pertinent to the phase-
retrieval algorithms that we used, since we must
digitally propagate optical fields back and forth within
the system. Phase-retrieval algorithms that require
only a forward propagation through the system do
not have this restriction. Table 10 shows the as-
designed sample spacings (in arcseconds and in micro-
radians) of the detector arrays for the various cam-
eras in the HST and the shortest wavelengths for
which the optical intensity and optical field are
adequately sampled at the detector. For both the
wide-field camera (WFC) and the PC, the center
wavelength of the narrow-band spectral filter with
the longest wavelength is 889 nm. From Table 10
we see that even the optical field at this wavelength is
undersampled in the WFC. Consequently we did
not use any data from the WFC. There were suit-
able spectral filters for the faint-object camera (FOC).
However, the images from the FOC are quite noisy
compared with those from the WFC and PC since the
FOC is count-rate limited. For these reasons we
restricted our attention to PC images taken through
narrow-band filters with wavelengths above 500 nm,
which are the most suitable for characterizing the
aberrations of the HST.

When a single-FFT model of the optical system is
used, if we compute an FFT of the field in the detector
plane that has angular sampling interval p the
resulting field in the aperture plane has a physical
width of

Da = X/Ps8 (4.3)

Therefore, for an array in the computer of width N
pixels, the scale factor giving the number of pixels per
meter of the physical aperture is

S = N/Da = NPs/X, (4.4)

where Nps is the angular width (projected onto the
sky) of the array in the detector plane over which the

Table 9. Zernike Phase Coefficients Estimated in a Blind Test

j A B C D E s Mean Actual

4 -2.089 -1.038 0.004 1.051 2.104 N/A N/A various
5 0.002 0.003 -0.004 -0.002 0.001 0.002 0.000 0.001
6 -0.009 -0.004 0.009 -0.010 0.009 0.008 -0.001 0.007
7 -0.010 -0.013 -0.013 -0.015 -0.018 0.003 -0.014 -0.012
8 0.004 0.008 0.002 0.005 0.008 0.002 0.005 0.004
9 0.004 0 -0.001 0.001 0 0.002 0.001 0

10 0.005 -0.002 0 -0.001 0 0.002 0.001 0
11 -0.227 -0.225 -0.209 -0.235 -0.241 0.011 -0.227 -0.236
22 0 0 0.002 0.001 0 0.001 0.001 0

err 0.164 0.209 0.341 0.216 0.171

Table 10. Sample Spacings for HST Cameras and Wavelengths for
Nyquist Sampling

Ps X (nm)

Ps Ps For For
Camera (arcsec) (pLrad) Intensity Field

PC 0.043 0.2085 1000 500
WFC 0.100 0.4848 2333 1667
FOC f/48 0.044 0.2133 1023 512
FOC f/96 0.022 0.1067 512 256
FOC f/288 0.007 0.0339 163 081
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FFT is performed. The width Do in pixels of the
aperture of the OTA is given by (2.4 m) s. Do should
be large enough to model accurately the features of
the aperture function including the spiders and pads.
Since the Do is 100 times the width of a spider and
at least 1 or 2 pixels are needed to represent the width
of a spider, we prefer to have Do > 100 or 200 pixels.
Table 11 lists the values of s and Do for all the
cameras on the HST, for some of the wavelengths for
which there are narrow-band filters, and for N = 256.

B. ABCD Matrix Calculation of the Propagation Parameters

The most convenient way to determine the parame-
ters of the digital propagation of wave fronts through
the optical system is the ABCD matrix approach.'0
A paraxial description of any optical system that has
no obscurations or vignetting and that may contain
multiple elements including lenses, mirrors, and spac-
ings is given by a 2 x 2 matrix of four values, A, B, C,
and D, where

[A B
M= C D (4.5)

Each element of the system is also represented by a
2 x 2 matrix, and a system described by elements Ml,
M2, . , MN,, is given by the matrix product

M=Mn .* M2 , M1 - (4.6)

The propagation of a wave front through the system
is then given by Eq. (3.1). Note that only A, B, and D
(which together define C) are needed. One method
to determine the ABCD values for a system would be
to compute the matrix product given above, given the
parameters of the system that determine the matrix
for each element and spacing.

A second approach to determining the ABCD val-
ues is to use the results of a ray-tracing computer
program. A ray at the input plane of the system
with height (the distance from the optical axis) Yk and
slope Vk is transformed by the system to have height
Yk' and slope Vk' at an output plane:

|k [CD] ](7

Table 11. Scale Factors and Aperture Sizes (in Pixels) for Various HST
Cameras and Wavelengths, for N = 256,

Scale s Do
Camera X (nm) N (m/pixel) (pixel/m) (pixel)

PC 547 256 0.01025 97.58 234.2
PC 631 256 0.01182 84.59 203.0
PC 889 256 0.01666 60.04 144.1
FOCf/48 488 256 0.008937 111.9 2 6 8 b
FOC f/96 488 256 0.01787 55.97 134.3
FOCf/288 488 256 0.05623 17.78 42.7

aD0 and s are both doubled for N = 512.
bAliased.

or

yk' = Ayk + BVk,

Vk' = CYk + DVk-

(4.8a)

(4.8b)

If two different rays for k = 1 and 2 are traced
through the system, we obtain four such equations in
the four unknowns, A, B, C, and D, which have the
following solution:

M [ DJ B [B1 ' Y2' [1 Y2J-

Al =

or more explicitly

A Yl'V2 -Y2'V I

Y l V2 -Y2

B- YY2' -Y2 Y'
YlV2 -Y2

Vl'V2 -V2'V 

YlV2- Y2V1

D - - Vl'

YlV2 -Y2V1

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Values of the ray heights and the slopes for two
rays traced by Brewerl4 with a paraxial ray trace with
the PAGOS program are given in Table 12. In Ref. 14,
Yl, Vl, Y2, and v2 are denoted as 1, b, a, and a. Plane
x2 was taken to be Brewer's surface 18, which is in the
vicinity of the image plane at the pyramid, at the apex
of the pyramid, after interaction with the optical
power of the pyramid. The ABCD values that we
computed from these rays by using the equations
above are shown in Table 13. Included are the
values for the case of the optical system including the
imaginary pair of lenses immediately before and after
plane x3. These propagations are indicated by x2 -

X3' and X3' - X4. Note that the coefficient D for x2
X3 ' and A for X3 ' -> X4 , which are proportional to the
quadratic phase factors in the propagations, are
greatly reduced. The last row is for the entire HST
that would be used for a single-FFT propagation
through the system. The negative sign of B in this
latter case is indicative of a rotation of coordinates in
plane xl, which is necessary for the single-FFT propa-
gation relative to the multiple-plane propagation.

The key parameters desired from the system analy-
sis for use in our 3-FFT model of the HST OTA + PC
are (1) the spatial scale factors relating the four
planes of interest and (2) the total quadratic phase
factor in the plane x2.

Now we compare the plate scale that we deter-
mined by using the ABCD approach with that given
by differential ray tracing. When the reported pixel
size of 15.24 pLm (reported earlier as 15.0 jim) at the
PC CCD is used, according to this prescription, the
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Table 12. Ray Heights and Slopes from Paraxial Ray Tracinga

Surface Number, Name Yi (mm) Vl Y2 (mm) V2

(1) Entrance pupil xl 1200.0 0.0 0.0 0.00083333
(18) Pyramidx2 -0.2647205 -0.02080727 47.74375 -0.02486843
(22) PC obscurationX 3 -18.89312 -0.02080727 25.47945 -0.02486843
(32) CCDx 4 0.3202301 0.02168971 -59.35954 -0.8977646

aRef. 14.

plate scale at the CCD is given by

15.24 jim/pixel 1 arcsec

71,231.5 mm 40.2156 rad/pixel x 4.848 prad

= 0.04413 arcsec/pixel.

Brewer14 gives differential ray-tracing results for the
plate scale as a function of the position on the CCD.
Figure 6 shows our least-squares fit of his data points
to a quadratic surface:

plate scale (arcsec)

- 0.044193 - 0.000016567x - 0.000018200x2

+ 0.00001690y + 0.000006469xy

- 0.00001 8 3 15 y2 , (4.14)

where x and y are millimeters from the center of the
CCD chip. This quadratic fit has a maximum of
0.04420 arcsec at (x,y) = (-0.385, 0.393 mm). The
value of 0.04413 arcsec/pixel differs from the value of
0.04419 arcsec/pixel obtained at the center of the
CCD by Brewer's differential ray-tracing method by
only 0.14%, which would have a negligible effect on
propagation computations. (These compare with the
reported original design value of 0.0430 arcsec/pixel,
a difference that is quite significant.) The value of
0.04419 arcsec/pixel should be taken to be more
accurate since it was obtained by nonparaxial ray
tracing. Furthermore Brewer's plate scales are given
as a function of the position on the CCD chip, so that
they are preferred for the parameters of the propaga-
tion integrals, especially for the PSF's measured
away from the center of the CCD.

2.5

Fig. 6. Quadratic curve fit through the plate scale versus the CCD
position. The plate scale is in arc seconds per pixel, and the CCD
position is in millimeters. (The data points are from Ref. 14.)

For the PSF's near the center of the CCD, starting
with AX4 = 0.01524 mm and working backward, using
Eq. (3.3) and the values of B in Table 13, we obtain
the spatial scales shown in Table 14, which are
evaluated for the particular case of an FFT of length
N = 256 and X = 889 nm. The sample spacing Ax, =
16.23 mm in the input plane is the same whether one
or three FFT's is used for the propagation. Howev-
er, this equality depends on the choice of the locations
of the intermediate planes. For example, if plane x2
is taken to be Brewer's surface 20, which is just 20
mm beyond the apex of the pyramid (closer to the
point where the chief ray intersects the pyramid), the
multiple-plane propagation requires Ax1 = 16.04 mm,
a difference of 1.16%, which is significant. These
parameters were calculated after the retrieval experi-
ments reported in Section 5 were completed. Fortu-
nately we obtained some of our phase-retrieval re-
sults while using parameters that were close to these
parameters.

The other important parameter is the total qua-
dratic phase factor in the plane x2, which is given by
Eq. (3.7). However, the optical power of the pyramid
is already included in the matrix coefficient D for the
propagation xi -l x2, and so we have

D 12 Ax2
2

BQ = 2XB12

A2 3 AX2
2

+2XB 23
(4.15)

which, when the values in Tables 13 and 14 are used,
is 5.04 x 10-5 waves/pixel2. However, the negative
of this number is appropriate because of the sign
convention issue discussed next.

C. Sign Conventions for the Phase and Pupil Coordinates
For a period of our effort there was a discrepancy
between the sign of the optimum value of the qua-
dratic phase factor BQ used in the multiple-plane
diffraction algorithm and that predicted by an analy-
sis of the HST optical system design. We deter-
mined that this discrepancy was due to inconsistent
sign conventions when the phase of a wave front was
described. Two different sign conventions are com-
monly used for the phase of a wave front. The phase
of an expanding spherical wave front is given by

4(X, y, Z) = A (X2 + y2 + z 2)1/ 2

X 
(4.16)

in Goodman16 and in Born and Wolf'7 but is given by
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Table 13. ABCD Matrix Valuesa

Propagation A B (mm) C (mmi1) D

xi -x 2 -0.0002206 57,292.5 -1.73394 x 10-5 -29.8421
X2 -> X3 1.0 895.283 0.0 1.0
X2 X3' 1.0 895.283 -0.00111696 0.0
X3 -> X4 -1.24307 1,113.33 -0.0192194 16.4089

X 3 ' -*X4 -0.000474674 1,113.33 -0.000891212 16.4089

Xi -*X 4 0.000266858 -71,231.5 1.80748 x 10-5 -1077.32

aPropagations involving X3' include the imaginary pair of lenses
propagation xi x2.

the negative of this expression in Siegman.10 For
our analysis we adopted the former positive sign
convention. With this convention the phase of a
wave front in a given plane is greater at points where
the wave front has gone through a greater optical
path. Then the transforms are those given in Sec-
tion 3. We refer to this sign convention as the
positive convention and Siegman's as the negative
convention.

Our computer simulations use the positive sign
convention described above. Other groups character-
izing the HST use the negative convention, for which
the spherical aberration has a negative sign. To
obtain a spherical aberration with a negative sign, we
rotated the pupil function 1800 with respect to the
measured PSF. Therefore we in effect replaced the
aberrated pupil function f(x) by f*(-x). If the Fou-
rier transform of f(x) is F(u), the Fourier transform
of f*(-x) is F*(u). Since the measured data are
IF(u)12 = IF*(u)12, we can arrive at a consistent
solution with a negative spherical aberration despite
the use of the positive sign convention. This same
effect makes it necessary to negate the value of the
quadratic phase factor, BQ, which is discussed above,
in the computer software compared with the theory.

To interpret correctly the coefficients other than
a4, all, and a22 in the results given below, it is
necessary to establish the orientation of the coordi-
nates. The convention is as follows: the Zernike
polynomials we used for Planetary Camera 6 (PC-6)
are defined with the x coordinate in the -V2 direction
and the y coordinate in the +U 3 direction, where 2
and V3 are directions defined on the HST. This was

Table 14. Example Evaluation of Spatial Scale Factors for X = 889 nm
and N = 256

In terms In terms
Plane of AXprev of AX4 Axk (mm)

CCD X4 0.01524

PC obscuration X3 XB34 x4 0.2537
NAX4 NAx,

Pyramid x2 X23 B 23AX4 0.01226
NAX3 B3 4

OTA pupil xi XB12 XB12B3 4 16.23
NAX2 NB2 3AX4

OTA pupil xi XB14 16.23
(single-FFT case) NAX4

before and after the PC obscurations. The pyramid is included in

determined by comparing our reconstructed pupil
functions with the designed pupil functions.18 In
our software x is horizontal, left to right, and y is
vertical, top to bottom. Therefore to compare these
results with those reported by others using a different
convention, the appropriate translation of coefficients
is necessary. For multiple-plane propagation, which
requires three FFT's to propagate to the image plane,
we rotate the entrance pupil by 180° relative to its
orientation for the single-FFT propagation case.
(Thus the obscurations of the OTA are rotated;
however, the obscurations of the PC have the same
orientation for both cases.) This is necessary since
the first two FFT's serve to rotate the entrance pupil
by 1800. However, in our code we do not change the
Zernike coefficients to accommodate this effect.
Therefore when reporting our Zernike fitting results
from multiple-plane propagation, we negate the coef-
ficients of polynomials 2, 3, 7-10, and 16-21 to retain
the convention thatx = -v2 andy = +V3.

5. Results with HST Data

Considerable effort went into processing data from
the HST over a period of several months, during
which time the quality of both the data and the
phase-retrieval algorithms improved. Since the ear-
lier results are not judged to be as accurate as the
later results, we report here only some of the later
results from the Hubble Aberration Recovery Pro-
gram (HARP) 1A and 1B collections. In this section
we give the results of phase retrieval, of optimizing
over some unknown system parameters, and of pupil
reconstruction.

We used the retrieval algorithms described in Ref.
13. Given a description of the pupil function we
retrieved the aberrations by using first a gradient
search algorithm to estimate a smooth polynomial
approximation to the phase error and then an itera-
tive propagation algorithm to retrieve a detailed
point-by-point phase map.

However, the optical axis of the WF/PC was not
aligned as intended with the OTA, and this resulted
in a combined pupil function that was significantly
different from the design. Had there been no aberra-
tions, this misalignment would have had little effect
on the system performance; but it did have a substan-
tial effect on the attempt to characterize the telescope.
Given an estimate of the aberrations, we estimated
the pupil function by using an iterative propagation
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algorithm.13 This gave the first indication that the
optical axes were not aligned as designed. This fact
was later confirmed by studies of the variation of the
shape of the PSF across the field of view of the
WF/PC. The point in the field of view at which the
PSF was most symmetric was far from the center of
the CCD, where it should have been.

Because the pupil functions are needed to retrieve
the phase, and the phase is needed to reconstruct the
pupil functions, we estimated both by a boot-
strapping procedure. In a first step, with an initial
estimate of the pupil function, we retrieved a polyno-
mial phase estimate. Appendix A gives the modified
Zernike polynomials that we used. In a second step
with this estimate of the phase we reconstructed the
position of the PC obscurations to estimate its pupil
function. We then repreated these first two steps
until no further improvement was made. Usually
two sets of these first two steps were necessary.
With this improved estimate of the pupil function, we
could then use the iterative propagation algorithm to
estimate a point-by-point phase map by using the
polynomial approximation to the aberrations as the
initial estimate. The result of most concern was the
coefficient of the 11th Zernike polynomial, which is
the spherical aberration that would be corrected in
the cameras that would replace the existing cameras
in the HST. Initially the goal was to know all for the
HST to be accurate to within 0.01 lm rms of the
wave-front error. The relationship between all, the
coefficient of spherical aberration, and the conic
constant K on the primary mirror of the OTA that
would produce that aberration is

K = -1.0023 + 0.043841a1l. (5.1)

A difference in all of 0.01 im is equivalent to a
difference in K of 0.00044.

A. Aberration Estimation

The most effort was put into the image designated
HARPIA PC-6 F889N2P2, which was taken with

PC-6 through the narrow-band filter with a center
wavelength of 889 nm. It was the most useful of the
HARP1A images. It is well out of focus (focus
parameter despace = -260 jim), which is preferred
because, without a bright central spike, most of the
pixels of the PSF can have a large number of photons
without saturating the CCD, i.e., they have a rela-
tively large signal-to-noise ratio. Many other images
were available, but, being closer to focus, they were
much less suitable for phase retrieval. Our ap-
proach was to develop our algorithms while concen-
trating on a small number of the best images, in
which results we could have high confidence, rather
than devoting a large amount of effort to a larger
number of images of poor quality in which little
confidence could be placed.

For these data, by using the single-plane diffraction
algorithm, we arrived at a value of all = -0.28 jim
rms earlier in the effort. Then later, by using the
multiple-plane diffraction algorithm, we obtained
all = -0.295 jIm, a change of -0.015 jim. Still
later, not yet knowing the most accurate estimate of
the system parameters, we optimized the error metric
over the poorly known system parameters and found
the optimized parameters to be the plate scale =
0.0442 arcsec/pixel and the quadratic phase factor
BQ = -0.000054. Using these optimized parame-
ters, we arrived at all = -0.299,jm rms. Later still,
we found from Brewer's ray-tracing results that
these optimized parameters were close to the true
parameters. Therefore our best estimate of all from
the HARPlA imagery is all = -0.299 jim rms.
These results are summarized in Table 15. The first
column under P2 is for a single-plane propagation
algorithm (only the largest values for a12-a2l are
shown). Two values for the coefficients are given for
the multiple-plane propagation case: the first is for
fitting a2-a 1 l and a 2 2 , and the second is for fitting
a 2 -a 2 2 - (Only the value for a 16 is listed among a 12 -
a21 since the other values were negligibly small.)
Note that for this real data the magnitude of all

Table 15. Zernike Coefficients (Micrometer rms Wave-Front Error) for HARPlA images PC-6 F889N-P2 and PC-6 F889N Q2

New Parameter
j P2 Single P2 Multi (11) P2 Multi (22) P2 Multi (11) Q2 Single

4 -2.212 -2.227 -2.223 -2.306 0.73
5 -0.018 -0.003 0.006 -0.003 0.06
6 -0.025 0.025 0.026 0.031 -0.02
7 0.004 0.001 0.005 -0.001 0.01
8 0.017 0.010 0.009 0.013 0.06
9 -0.022 -0.020 -0.009 -0.020 -0.00

10 0.002 0.008 0.010 0.005 0.01
11 -0.280 -0.292 -0.295 -0.299 -0.281
12 0.008 (n/a) (n/a) 0.01
16 -0.009 (n/a) -0.004 (n/a) 0.01
20 0.006 (n/a) (n/a) 0.00
22 0.005 0.006 0.007 0.008 0.04

Conic K = -1.0146 -1.0151 -1.0152 -1.0154 -1.0146
Root-mean-squared

error = 0.1583 0.1352 0.1353 0.1428 0.2508
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increased when multiple-plane propagation was used,
whereas for the simulated data described in Section 3
the magnitude of all decreased with the multiple-
plane propagation algorithm. The values of a5-a1 0
changed substantially with the multiple-plane propa-
gation algorithm but stayed below 0.03 jim rms in
magnitude; a22 varied with the reconstruction, stay-
ing below 0.01 lm rms (which, however, could be
significant). The column labeled New Parameter
shows the values obtained when a larger value of the
plate scale (0.0442 arcsec/pixel) and a different value
of the quadratic phase coefficient BQ(-0.000054)
were used. These values represent what is now
thought to be a more accurate system model. Again,
all the values of the Zernike coefficients change
somewhat. Notably all increased in magnitude to
-0.299, corresponding to the conic constant on the
primar mirror of the OTA of -1.0154. The error
metric is somewhat larger than that obtained for the
old parameters since the pupil shift used in both cases
was that optimized for the old parameters. The
values other than a4 and all are considered to be
unreliable at this point, since they change so much
depending on the details of the retrieval algorithm for

a given data set. These differences show the impor-
tance of modeling the system as accurately as possi-
ble.

Also shown in the last column of Table 15 is an
example of the results for another image, PC-6
F889N-Q2, which was closer to focus and less reliable
(as seen from the value of 0.2508 for the rms error of
the fit). Since the results for PC-6 F889N P2 pro-
duce a fit that is so much better than the other
images, we tend to ignore the results from the other
HARP1A images.

There seems to be a trend toward larger magni-
tudes of all as the accuracy of the modeling increases.
This being the case we suspect that the average value
of all reported by all the groups working on phase-
retrieval underestimates the magnitude of the true
value.

Point-by-point phase maps have also been recon-
structed with the iterative propagation algorithm,
which shows the fine structure (sometimes referred
to as zones) in the mirror surfaces. However, the
reliability of these detailed phase maps has not yet
been established and are therefore not included here.

Figure 7 compares a PSF computed from a model of

Fig. 7. Measured image PC-6F889N-P2 from HARP1A and the images computed from it. Measured PSF (upper left), the PSF
deconvolved with the Ayers/Dainty algorithm (upper right), the PSF deconvolved with the Wiener filter by using jitter data (lower left), and
the PSF computed from the model by using a polynomial phase estimate (lower right).
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the aberrated system with the measured PSF. The
computed PSF is for the case of single-plane propaga-
tion and when only the polynomial approximation of
the phase error is used. As is discussed in Subsec-
tion 5.D, one of the largest factors that causes the
computed PSF to differ from the measured PSF is the
jitter in the pointing of the telescope, which smears
out the measured PSF.

B. Optimizing over System Parameters

Before knowing the correct system parameters (which
were later supplied by ray tracing performed by
Brewer as described in Section 4), we performed a
search over the plate scale and quadratic phase factor
that minimized the error metric. Since these two
variables were not included in our optimization soft-
ware, we optimized them in a brute force fashion by
selecting many different combinations of their values,
by optimizing for the Zernike coefficients for each
combination, and by selecting the combination that
yielded the smallest error metric. The optimization
would have to be redone for any other PSF in a
different location in the field of view or in a different
wavelength band. (Automatic optimization over
these parameters would be preferable.)

The first three columns of values in Table 16 show
the effect of the plate scale on the Zernike coefficients
obtained from image PC-6 F889N P2 over a wide
range of plate scales. As the plate scale increases
(more arcseconds per pixel in the image), the size of
the features in the modeled entrance pupil (pixels per
meter) increases, and the retrieved values of all tend
to increase in magnitude. The value of the quadratic

Table 16. Effect of the Plate Scale on Zernike Coefficients for Image
PC-6 F889NP2 (Micrometer rms Wave-Front Error)a

s (pixels/m)

With BQ = With BQ =

With BQ = -0.000068 -0.00005 -0.000054

58.00 60.04 62.00 62.00 61.74

Plate scale
(arcsec/ 41.54 43.00 44.40 44.40 44.20
pixel)

j = 4 -2.213 -2.227 -2.311 -2.320 -2.306
5 -0.028 -0.003 -0.001 -0.000 -0.003
6 -0.025 0.025 0.027 0.026 0.031
7 0.004 0.001 0.001 -0.001 -0.001
8 0.021 0.010 0.014 0.014 0.013
9 -0.017 -0.020 -0.023 -0.022 -0.020

10 0.005 0.008 0.002 0.003 0.005
11 -0.291 -0.292 -0.302 -0.299 -0.299
22 -0.001 0.006 0.007 0.008 0.008

Conic K = -1.0151 -1.0151 -1.0155 -1.0154 -1.0154
Root-mean-

squared
err = 0.1545 0.1442 0.1413 0.1415 0.1428

ausing multiple-plane propagation, fit coefficients 1-11,22, N =
256, PSF weighted by diameter-220 circle, PC obscuration shifted
by -4.25, -3.25 pixels.

phase factor BQ that was used in this case was
-0.000068, which was found to be optimum by trial
and error for a plate scale of 43 arcsec/per pixel.
Later ray-tracing results, described in Section 4,
predicted a value of BQ of -0.00005, for which the
results in the fourth column of values were obtained
for the larger plate scale. Note that a decrease in the
absolute value of BQ decreased all.

Figure 8 shows an example of optimizing the plate
scale (by the scale parameter s, which represents the
number of pixels per meter of the OTA entrance pupil
and is proportional to the plate scale). An entire
minimization was performed, each with the same
parameters except s, which was varied. The points
plotted in Fig. 8 represent the final rms error at the
end of each minimization. In this case the quadratic
phase factor for multiple-plane propagation was
BQ = -0.000054, which is close to the value pre-
dicted by the updated ray-trace model. The error
metric has two minima, one at s = 61.74, where it has
a value of 0.14278 and for which all = -0.299 jim
rms, and a second at s = 62.64, where it has a value of
0.14276 and forwhichall = -0.301pjm rms. Wedo
not understand why there would be a double-bottom
minimum. When performing many optimizations
with different values of BQ, with each of these two
values of s, we found that the optimum value of BQ is
-0.000059 for s = 61.74 and is -0.000075 for s =
62.64. The relationship between the plate scale and
s is given by s = p(N/X), where p, is the plate scale in
radians (the number of radians separating the pixels).
For p8 = 0.0442 arcsec = 0.214 rad, N = 256 pixels,
and X = 0.889 lm: s = 61.7 pixels/m. This value,
calculated from the now-known plate scale for the
center of the CCD, is in quite good agreement with
the first of the two minima that we found by minimiz-
ing the fitting error as a function of s. Furthermore
we also found later from the optical system design
that an appropriate value of BQ is -0.000051 (see
Section 4). Therefore both the values of the plate
scale and BQ predicted by ray tracing point to the first
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minimum as being the true value. The results in the
last column of Table 16 represent our estimate when
we used parameters that are close to the best system
parameters that we currently know. In this case
all = -0.299 jim rms, which is equivalent to a conic
constant of - 1.0154.

C. Pupil Reconstruction

Figure 9 shows an example of pupil reconstruction by
one iteration of the iterative transform algorithms
(ITA) for HARP1B image 33434. In this case the
modeled phase error was placed across only the
annular aperture of the OTA without any spiders,
pads, or PC obscurations. The resulting image shows
a clear indication of the location of all the obscura-
tions derived from the measured data: the pads and
spiders of the OTA and the spiders and central
obscuration of the PC. Based on this picture, we
then constructed the modeled obscurations (illus-
trated together in a single plane) shown in Fig. 10.

We also determined the shift of the PC obscura-
tions by trying different shifts and picking the one
that minimized the error metric. When this was
done for the PC-6F889NP2 image, the optimum
shift was found to be - 4.5 rows and - 3.25 columns in
pupil space when the array size was N = 256.
(Fractional-pixel shifts of an array can be computed
by Fourier transforming the array, multiplying by an
appropriate linear-phase complex exponential, and
inverse Fourier transforming). One pixel in this
case corresponds to 0.0167 m projected to the primary
mirror of the OTA. Therefore the corresponding
shift in that plane would be -0.075 m along -v 2 and
-0.054 m along +V3. This was thought to be a large
shift when we consider how close to the center of the
chip the image was located (at CCD pixel 531, 425).
This is an indication that the optics of PC-6 are not

Fig. 9. Pupil function reconstructed by one iteration of the
iterative transform algorithm.

Fig. 10. Model of the pupil function inferred from the recon-
structed pupil shown in Fig. 9.

aligned properly with the OTA, causing a pupil shift.
This was explored in more depth as described below.

The center of symmetry, i.e., the CCD pixel for
which the OTA and WF/PC central obscurations are
aligned with one another, was designed to be at pixel
400, 400. The method we used to determine the
actual center of symmetry (and thereby infer the
alignment of the WF/PC relative to the OTA) is as
follows. For each of several images an estimate of
the aberrations is put over the 0.33-obscured dough-
nut-shaped aperture of the OTA. Then one itera-
tion of the ITA is performed, the output of which is
darker where there are obscurations in the pupil
function. For the case of good-quality narrow-band
data, the pads, spiders, and WE/PC central obscura-
tion can be seen clearly, as shown in Fig. 9. We
measured the positions of the reconstructed PC spi-
ders to estimate the shift of the PC obscurations
relative to the OTA obscurations. This is done for
the images taken at different locations in the field of
view. Then we perform a least-squares fit of a linear
model of the WF/PC obscuration shift to the set of
estimated WE/PC obscurations. The least-squares
fit is performed for the collection of several images.
This yields one equation for the row of the WF/PC
shift as a function of (x, y) and another for the column
of the WF/PC shift as a function of (x, y). Lastly,
these two simultaneous equations are solved for the
value of (x, y) for which the row and column WF/PC
shift are both zero. This defines the center of symme-
try for any given WF/PC channel.

We performed the procedure described above for a
collection of seven images from the HARP1B series
on PC-6 at a 631-nm wavelength at despace = -90
jim. The result was that the center of symmetry
was estimated to be x = 254.5, y = 194.0 pixels.
When we recalculated the center of symmetry leaving
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out a couple of the images, it changed by 20 pixels.
The aberrations for each of the images were not
optimized individually, and so with greater care the
same procedure could yield an answer with greater
accuracy and confidence. Further improvements in
the estimates of the PC obscuration shifts could be
obtained with the gradient search algorithm de-
scribed in Ref. 13 by using the derivative with respect
to the point-by-point magnitude. Another improve-
ment would be to optimize the shift of a model of the
PC obscurations during the phase-retrieval algorithm.
Still another improvement would be first to decon-
volve the jitter from the images before estimating the
shift. Until these improvements are made, the cen-
ter of symmetry results reported by Roddier and
Roddier,19 who used our approach but performed it
more carefully, should be taken to be more accurate
than the center of symmetry reported above.

D. Effects of Jitter

We believe that jitter in the data from the HST is one
of the largest components of the lack of agreement
between our modeled PSF's and measured PSF's.
Lacking jitter-free, long-wavelength data we could
account for the jitter in the phase-retrieval algorithm,
as described below.

The effect of jitter can be seen in Fig. 7, which
compares a measured PSF (upper left) with a PSF
computed from our polynomial-phase model of the
aberrated wave front (lower right). The modeled
PSF has a fine-fringe structure that is smeared out in
the measured PSF. The modeled PSF does not
include the effects of the finite spectral bandwidth,
pixelation, or jitter. The spectral bandwidth of the
F889 filter is 0.57% (5.1 nm/889 nm according to the
WF/PC Instrument Handbook) and would not yield
this degree of blurring. Furthermore the finite spec-
tral bandwidth causes a blurring that is proportional
to the distance from the center of the PSF, which
would be negligible near the center of the PSF;
consequently the blurring of this PSF that can be
seen at its center cannot be a result of the spectral
bandwidth. We simulated the effect of pixelization
(integration over the area of the CCD pixel) in the
modeled PSF and found that it yielded a degree of
blurring that is much milder than that seen in the
measured PSF; therefore pixelization also cannot
explain the loss of the fine-detailed structure in the
measured PSF. The jitter, which is known to be of
the order of 0.1 arcsec in effective width, or 2 pixels
wide, does explain the differences. We model the
effect of jitter to be the convolution of the PSF with a
jitter spatial density function. The jitter causes a
much poorer fit of the model to the measured data
than would be the case if there were no jitter (14%
rms error being the best fit to date). It can be seen
from studies by Lyon et al.

2 0 that jitter could cause
errors in a1l in the range of 0.01 jim rms (which is the
entire error budget). At the very least the jitter
causes the level of uncertainty in our results to be
much higher than if there were no jitter.

Jitter can be accounted for by two routes. The
first is to correct the jitter in the measured data and
then operate on that jitter-corrected data with the
same phase-retrieval algorithms as before. The sec-
ond route is to incorporate a model for the jitter
directly within the phase-retrieval algorithm.

Any number of deconvolution algorithms can be
used to remove the jitter from the measured PSF if
the jitter density function is known. The fine-
guidance sensors provide a measure of the jitter from
which the jitter density function can be computed,
but the reliability of that data had not been estab-
lished. Alternatively we can use a blind deconvolu-
tion algorithm to estimate both the PSF and the jitter
density function. Figure 7 shows the original mea-
sured PSF (upper left), PC-6 F889N-P2, and the PSF
deconvolved both by the Ayers/Dainty algorithm 21 ,22

(upper right) and by the Wiener filtering using the
measured jitter data (lower left). The PSF's decon-
volved by using the Ayers/Dainty algorithm had
significantly greater contrast than those deconvolved
by using the measured jitter data. That is, the jitter
predicted by the Ayers/Dainty algorithm was signifi-
cantly greater than that given by the measured jitter
data. This is possible since the measured jitter data
are undersampled in time relative to some of the high
temporal frequencies of the jitter. The two ap-
proaches were also combined: the jitter data were
used as a starting estimate for the jitter in the
Ayers/Dainty algorithm, and then we performed the
Lucy algorithm23 by using the jitter function com-
puted by the Ayers/Dainty algorithm. We obtained
several different deconvolutions for a single PSF by
using these various techniques, all of which are in
good agreement with the measured PSF. This may
indicate a lack of uniqueness in deconvolving an
unknown or partially unknown jitter function from a
PSF for the amount of noise and undersampling
present in the data. At this point it is difficult to
judge which is the most believable deconvolution
result. The additional details in the deconvolved
PSF's look quite believable. Some of the fine fringes
seen in the simulated PSF (shown in the lower right
of Fig. 7), which were washed out in the measured
PSF (upper left), became visible in the jitter-decon-
volved PSF's (upper right and lower left). The arti-
facts from dust (presumably on the field flattener in
front of the CCD) became much sharper and more
visible, as can be seen in Fig. 7.

Phase retrieval with Zernike coefficients was per-
formed on various jitter-deconvolved versions of PC-
6F889N.P2 (from Wiener, Lucy, and Ayers/Dainty
deconvolutions). For all of them the all Zernike
coefficient obtained for the jitter-deconvolved PSF did
not change significantly from that of the original
PSF. More extensive simulation studies by Lyon, on
the other hand, showed significant changes in the
retrieved value of all when jitter was present.20 The
error in our fit of the modeled PSF to the measured
PSF was actually worse for the jitter-deconvolved
PSF's than it was for the original PSF. Possibly this
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is because the deconvolution enhances the noise as
well as the fine structure of the measured PSF. This
issue deserves further study.

The second route to accounting for jitter is to
include a model for the jitter directly within the
phase-retrieval algorithm. To that end we derived
analytic expressions for gradients of the phase-
retrieval error metric with jitter included in the
model of the data and for the partial derivative of the
error metric with respect to a shift in the WF/PC
obscurations. These are given in Appendix B.
These analytic gradients were implemented in soft-
ware within the phase-retrieval algorithm; however,
the effort was concluded before this software could be
debugged and exercised.

The circular artifacts seen in the PSF's in Fig. 17,
which are more pronounced in the deconvolved PSF's,
were reportedly a result of dust on a field flattener in
front of the CCD. In Appendix C we verify the
source of this artifact.

6. Inclusion of the Z2 2 Contribution to Spherical
Aberration

It has been argued that since Z22(r) has an r
4 term in

it, this contribution to r
4 should be added to the

spherical aberration Z,1 (r) for the purpose of determin-
ing what spherical aberration to correct. This should
not be done. The r4 term in Z22(r) is there merely to
make Z22(r) orthogonal to Z11(r) and does not repre-
sent the real spherical aberration that one would
want to correct. The r4 term in Z22(r) is there only to
balance the r6 term, and it should be included only if
the entire Z22(r) function were being corrected (which
is not the plan for the replacement of WF/PC). In
fact Z11(r) and Z22(r) are orthogonal over a 0.33-
obscured annular aperture, not over the actual aper-
ture; nevertheless they are close to orthogonal over
the actual aperture, and the coupling between them
should be small.

In addition, consider the following. A typical value
for the Z22(r) coefficient a 22 is 0.007 jim rms (see
Section 5). When we convert the r4 term in 0.007
Z22(r) to an equivalent coefficient, all of Z11(r) yields
-0.052 jim rms. If this value were added to an
estimate of all of -0.299 jim rms, the result would be
a total estimate of all of -0.351 im rms. This large
value of spherical aberration is inconsistent with all
the other analyses performed on the HST, giving
further evidence that the r4 component of Z22(r)
should not be added to our estimate of Z,,(r). Again
that term should be included only if the entire Z22(r)
were being corrected.

7. Conclusions

We applied several new algorithms' 3 to retrieving the
aberrations of the HST by using the blurred images of
stars taken by the telescope on orbit. We also recon-
structed pupil functions, which indicated an unex-
pected shift of the obscurations in PC-6 relative to
those in the OTA, which indicates a misalignment of
the optical axis of PC-6 relative to the OTA. Our

best estimate of the spherical aberration, as specified
by the coefficient of the 11th Zernike polynomial all
for the combined OTA and PC-6, is - 0.299 im rms of
the wave-front error, which would correspond to a
conic constant on the primary mirror of -1.0154.
This amount of spherical aberration is larger than
some of the earlier results obtained with the differ-
ence resulting from a more accurate system model,
including multiple-plane propagation, and a larger,
more accurate value of the plate scale. For us to
determine the aberrations of the primary mirror of
the OTA, an adjustment to this prescription is neces-
sary to compensate for the known spherical aberra-
tion in PC-6, which the Jet Propulsion Laboratory
reports to be equivalent to -0.0010 in the conic
constant of the OTA. With this correction the conic
constant of the primary mirror of the OTA is esti-
mated to be - 1.0144.

The error bars on our estimate are difficult to
determine since they depend on systematic errors,
such as poorly known parameters of the system,
rather than random errors whose standard deviation
can be derived. Cramer-Rao lower bounds show
that the far out-of-focus PSF's are far more suitable
for phase retrieval than the nominally in-focus PSF's.
We performed retrieval experiments to show the
expected errors caused by imprecise knowledge of the
plate scale, a quadratic phase factor, and translation
of obscurations in the PC. The jitter also limits the
accuracy of our estimate by an unknown amount.
We require further analyses to determine the actual
error bars. The accuracy of our results to date was
not sufficient to give us high confidence in the predic-
tions of the Zernike coefficients (astigmatism, coma,
etc.) other than the spherical aberration, of the
point-by-point phase maps or of the extent to which
there are aberrations in the secondary mirror of the
OTA. We believe that the degree of confidence can
be increased, and the error bars can be decreased, by
several additional refinements, including (1) a more
complete accounting for the effects of jitter, (2) an
improved estimation of pupil functions, and (3) an
automatic optimization over poorly known system
parameters.

Portions of this paper were presented in Refs. 24
and 25.

Appendix A: Modified Zernike Polynomials

The polynomials used to describe the aberrations are
the modified Zernike polynomials, orthonormal over
an annular aperture with an inner radius of 0.330
times the outer radius. They are given in Table 17,
which was adapted from Ref. 26 with corrections.
Here the two spatial coordinates, x and y, are given
explicitly (whereas in the body of this paper x was
taken to be a two-dimensional coordinate). The
radius r = (x2 + y2 )1/2 is normalized to unity at the
outer edge of the aperture.
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Table 17. Modified Zernike Polynomials

Normalization
j Factor Polynomial

2 1.8992573 x
3 1.8992573 y
4 3.8874443 (r2

- 0.554450)
5 2.3137662 (X2

- y2)
6 2.3137662 2xy
7 8.3345629 x(r 2 - 0.673796)
8 8.3345629 y(r 2 - 0.673796)
9 2.6701691 x(x2 - 3y2)

10 2.6701691 y(3X2
- y2 )

11 16.895979 (r4
- 1.108900r 2 + 0.241243)

12 12.033645 (X2 - y2 )(r2 - 0.750864)
13 12.033645 2xy(r2 - 0.750864)
14 2.9851527 (r4 - 8 2 y2 )
15 2.9851527 4xy(x2 - y2 )
16 36.321412 x(r4 - 1.230566r 2 + 0.323221)
17 36.321412 y(r4 - 1.230566r 2 + 0.323221)
18 16.372202 x(x2 - 3y2)(r2 - 0.800100)
19 16.372202 y(3X 2 - y2 )(r2 - 0.800100)
20 3.2700486 x(x4 - 10x2y2 + 5y4 )
21 3.2700486 y(5x4 - 1Ox2 y2 + y4 )
22 74.782446 (r6 - 1.663350r 4 + 0.803136r 2 - 0.104406)

and where c.c. denotes the complex conjugate of what
precedes it. Let

GJ(u') = G(u') z J(u - u ' )W() I F(u) I .

(B7)

When Eqs. (B6) and (B7) are inserted into Eq. (B5),
we have

aE
_p

a U(Xl) J*
ap (xl)1 (B8)

where

gJ(xl) = Pt[GJ(U)] (B9)

and Pt is the inverse propagation operator.1 3 For a
decomposition of the phase into Zernike polynomials
with coefficients aj, we have

aE- 2 Im[ z U1(xi)ZY(x1)gJ*(x1)] (B10)

and for a point-by-point phase map 0(xl) we have

Appendix B: Phase-Retrieval Gradient with Jitter and
Pupil Shifts

Expanding on the earlier multiple-plane analysis in
Ref. 13, we employ the propagation model

G(u) = P[U1(x1 )], (Bi)

where P[Ui(xl)] is a general propagation through a
complicated optical system with the multiple planes
of diffraction (obscurations), and we replace the error
metric

E = z W(u)[IG(u)I - IF(u)1]2 (B2)

aE
~~= 2 Im[U1(x1)gJ*(x1)]

a0(x,)
(B11)

and similarly for the other unknown parameters of
Ul(x,).

Next consider an unknown parameter q of the PC
obscuration transmittance m3(x3 ). We assume here
that there are no aberrations in plane X3. Then we
have, similar to the case in Ref. 13,

= _ GJ*(u) + C.c.
aq U a~~q

with one that includes a jitter density function J(

E = E W(u)[ I G(u) I j - IF(u) 1]2,

where

I G(u) IJ2 = I G(u) 12* J(u),

= _I Mq3) U3(x3){P 4 -3t[GJ(u)]1* + c.c., (B12)

(B3) where U3(x3) is the propagation of the wave front
U1(xl) to the X3 plane, and P4 -3 t is the inverse
propagation from plane X4 to X3.

First, let the parameter q be the transmittance
(B4) magnitude m3 (x3 ) at point X3. Then we have

* denotes convolution, and IF(u) 12 is a measured PSF
degraded by jitter. For our multiple-plane propaga-
tion model of the HST, u = X4.

We form the partial derivative of E with respect to a
parameterp in the input wave front:

aE
Op

where

aIG(u)Ij2

Op
(B5)

aE = 2 Re(U3(x3 ){P4 3t[GJ(u)]1*). (B13)
aM73 (X3) 

Next let the parameter q be the unknown shift x0 of
the PC mask m3(x3 - x0). Letting

m3(x 3 ) = z M3(u')exp(i 2rru'x 3 /N),
u'

(B14)

we have

I G(u)IJ2 = E J(u
Op U

- u')|G*(u')
aG(u')

dp
c.c.1 

(B6)

Om3(x3 - xo) = z (-i2Tru'/N)M3 (u')

x exp[i2rru'(x3 - Xo)/N],
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(B15)

(u):

I W(U) i -
U IG(u)lj



and, about x0 = 0, we have

OE
d= - E (-i2rru'/N)M3(u')
axo X3 U'

x exp(i2'Tru'x3 /N)U3 (x3 ){P 4 - 3 t[GJ(u)]1* + c.c.

= -2 Im( E s-[(2ru '/N)M3 (u')]
x3

x U3 (X3 ){P4 - 3 t[GJ(u)]}*) (B16)

Note that this requires three FFT's for G(u) to be
computed, four more FFT's (or two convolutions) for
GJ(u) to be computed, and two more FFT's (or one
convolution) for each of the two components of the
derivative of m3(x3) to be computed.

These analytic expressions for the derivatives of
the error metric allow for an efficient gradient search
algorithm that minimizes the error metric as a func-
tion of the unknown parameters, when we assume
that the jitter function is known.

Appendix C: Verification of Dust Artifacts

The dust artifacts sharpened during the jitter decon-
volution, as can be seen in Fig. 17. If the dust is on
the field flattener and moves along with the detector
array, it should not be blurred by the jitter. There-
fore it would seem that, by deblurring the entire
image for the jitter, we would cause the dust artifacts
to become more blurred. The fact that the dust
artifacts sharpened during jitter deconvolution was
contrary to our expectations and caused us to ques-
tion the hypothesis that the dust was located on the
first surface of the field lens. However, we con-
firmed the hypothesis that the dust is on the field
flattener, as described below. A possible explanation
of why the dust looks sharper after deblurring for
jitter is that the deblurring operation is a high-pass
filter that enhances all the edges in the image.

The axial location of the dust causing the artifacts
was determined as follows: Assuming an essentially
plane wave front at the plane of the dust (which is
accurate for the far out-of-focus PSF's) and assuming
that the dust acts as a pointlike scatterer, the ex-
pected intensity pattern caused by the dust is

I(x) = exp(i2rd/X) + a exp[i2i-r(r/X + c)] 12

= 2 + 2a cos[27r(r - d)/X + 2rc], (Cl)

where the dust is assumed to be at lateral location x =
0, d is the distance (which we wish to determine) from
the plane of the dust to the plane of the CCD, a is the
amplitude of the wave front scattered from the dust, c
is an unknown phase constant associated with scatter-
ing from the dust, and r = (d2 + x2)1/2 is the distance
from the dust to a given point x on the CCD. The
radii of successive peaks and nulls of the resultant
concentric-circular fringe patterns are given by

xm = {2dA[(m + no)/2 - c]}1/2 , (C2)

where n, an integer, is a reference fringe number.

We obtained this expression by setting the argument
of the cosine equal to 2rrno and using a Taylor series
expansion of r in terms of d and x. For two of the
dust artifacts in image PC-6F889NP2, we measured
three successive radii at a null, a peak, and a null to be
28.5, 55.4, and 75.9 jim. There could be a 20% error
in these numbers, because the data are given at a
spacing of 15.24 jim. Fitting the model for xm above
to these three values, we determined the three un-
knowns to be no = 0, c = 0.34 wave, and d = 2.7 mm.
For comparison, for diffractive propagation purposes,
the effective distance from the front surface of the
field flattener, at its thinnest point, to the CCD is 1.63
mm + 1.27 mm/1.378 = 2.5 mm, which is in good
agreement with the value of d determined from the
dust artifacts, considering the uncertainties in esti-
mating the locations of the peaks and nulls of the
fringe.
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