
Phase retrieval algorithms: a comparison

J. R. Fienup

Iterative algorithms for phase retrieval from intensity data are compared to gradient search methods. Both
the problem of phase retrieval from two intensity measurements (in electron microscopy or wave front sens-
ing) and the problem of phase retrieval from a single intensity measurement plus a non-negativity constraint
(in astronomy) are considered, with emphasis on the latter. It is shown that both the error-reduction algo-
rithm for the problem of a single intensity measurement and the Gerchberg-Saxton algorithm for the prob-
lem of two intensity measurements converge. The error-reduction algorithm is also shown to be closely re-
lated to the steepest-descent method. Other algorithms, including the input-output algorithm and the con-
jugate-gradient method, are shown to converge in practice much faster than the error-reduction algorithm.
Examples are shown.

1. Introduction
In electron microscopy, wave front sensing, astrono-

my, crystallography, and in other fields one often wishes
to recover phase, although only intensity measurements
are made. One is usually interested in determining an
object, f(x), which is related to its Fourier transform,
F(u), by

F(u) = JF(u)I exp[i4'(u)] = S[f(x)]

= f(x) exp(-i27ru -x)dx, (1)

where x is an M-dimensional spatial coordinate, and u
is an M-dimensional spatial frequency coordinate. For
the majority of interesting problems M = 2. In practice
one deals with sampled data in the computer, where for
the 2-D case, assuming square arrays, u = (l,u 2 ) and
x = (,,x 2), where u, u2, x, and x2 = 0,1,2, .. ,N- 1.
Then one uses the discrete Fourier transform (DFT)

N-1
F(u) = E f(x) exp(-i2ru x/N) (2)

x=0

and its inverse
N-1

f (x) = N-2 Ej F(u) exp(i27ru xIN), (3)
U=0

which are, of course, computed using the fast Fourier
transform (FFT) method.

For the problem of recovering phase from two in-
tensity measurements, as in electron microscopy and
in wave front sensing,

f(x) = f(x)I exp[iti(x)] (4)

is complex valued, and one wishes to recover +f(u) or
equivalently recover 1(x) from measurements of both
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IF(u) I and lf(x) . For the problem of recovering phase
from a single intensity measurement, as in image re-
covery from speckle interferometry data in astronomy
and from structure factors in crystallography, one
wishes to recover (u) or equivalently recover f(x) given
a measurement of I F(u) I and the constraint that f (x)
be real and non-negative,

f(x) 0. (5)

A particularly successful approach to solving these
problems is the use of the Gerchberg-Saxton algo-
rithm",2 and related algorithms.3 -7 Reference 7 lists a
large number of different problems which have been
solved by these algorithms. These algorithms involve
iterative Fourier transformation back and forth between
the object and Fourier domains and application of the
measured data or known constraints in each domain.

In what follows a generalized Gerchberg-Saxton al-
gorithm, referred to as the error-reduction algorithm,
and its convergence properties are reviewed (Sec. II),
and it is shown to be equivalent to the steepest-descent
gradient search method (Sec. III). Alternative gradient
search methods (Sec. IV) and iterative Fourier trans-
form algorithms (Sec. V) are described and are shown
to converge much faster than the error-reduction al-
gorithm for the problem of a single intensity measure-
ment (Sec. VI). Some practical considerations are
discussed in Sec. VII. A typical reconstruction exper-
iment is shown in Sec. VIII, and the major conclusions
are summarized in Sec. IX.

II. Error-Reduction Algorithm
The Gerchberg-Saxton algorithm was originally in-

vented in connection with the problem of reconstructing
phase from two intensity measurements 1' 2 (and for
synthesizing phase codes given intensity constraints in
each of two domains8 9). The algorithm consists of the
following four simple steps: (1) Fourier transform an
estimate of the object; (2) replace the modulus of the
resulting computed Fourier transform with the mea-
sured Fourier modulus to form an estimate of the Fou-
rier transform; (3) inverse Fourier transform the esti-
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Fig. 1. Block diagram of the error-reduction (Gerchberg-Saxton)
algorithm.

mate of the Fourier transform; and (4) replace the
modulus of the resulting computed image with the
measured object modulus to form a new estimate of the
object. In equations this is, for the kth iteration,

Gk(u) = IGk(u)I exp[ikM(u)] = [gA(x)], (6)

GQ(u) = IF(u)l exp[iok(u)], (7)

g'(x) = lg'(x)l exp[i0'(x)] = 51-[GQ(u)], (8)

gk+1(x) = f(x)I exp[ik+1(x)I = If(x)l exp[iO(x)], (9)

where gk, ok, G', and k k are estimates of f, a, F, and Ak,
respectively. Here and throughout this paper functions
represented by uppercase letters are the Fourier
transforms of the functions represented by the corre-
sponding lowercase letters.

As depicted in Fig. 1 the Gerchberg-Saxton algorithm
is easily generalized to a large class of problems.6' 7 The
generalized Gerchberg-Saxton algorithm can be used
for any problem in which partial constraints (in the form
of measured data or information known a priori) are
known in each of two domains, usually the object (or
image) and Fourier domains. One simply transforms
back and forth between the two domains, satisfying the
constraints in one before returning to the other. This
generalization of the Gerchberg-Saxton algorithm will
be referred to as the error-reduction algorithm since, as
will be shown below, the error decreases at each itera-
tion.

For the most general problem the error-reduction
algorithm consists of the following four steps: (1)
Fourier transform g (x), an estimate of f(x); (2) make
the minimum changes in Gk (M), the resulting computed
Fourier transform, which allow it to satisfy the Fou-
rier-domain constraints to form G'k (u), an estimate of
F(u); (3) inverse Fourier transform G (u); and (4) make
the minimum changes in gk (x), the resulting computed
image, which allow it to satisfy the object-domain con-
straints to form gk+1(x), a new estimate of the object.
In particular, for the problem of a single intensity
measurement (as in astronomy) the first three steps are
identical to the first three steps of the Gerchberg-Saxton
algorithm, Eqs. (6)-(8), and the fourth step is given
by

gk+:1(x) = {k(X). x7, (10)

wOi X c hv
where -y is the set of points at which g k(x) violates the

object-domain constraints, i.e., wherever gk(x) is neg-
ative or (optionally) where it exceeds the known diam-
eter of the object. The diameter of the object can be
computed since it is just half of the diameter of the au-
tocorrelation function, which is the inverse Fourier
transform of the squared Fourier modulus. (However,
in two dimensions the exact support of the object cannot
in general be determined uniquely from the support of
its autocorrelation, 1 0 and so the diameter constraint
cannot be applied very tightly.)

The iterations continue until the computed Fourier
transform satisfies the Fourier-domain constraints or
the computed image satisfies the object-domain con-
straints; then one has found a solution, a Fourier
transform pair that satisfies all the constraints in both
domains. The convergence of the algorithm can be
monitored by computing the squared error. In the
Fourier domain the squared error is the sum of the
squares of the amounts by which Gk (M), the computed
Fourier transform, violates the Fourier-domain con-
straints. Since GQ(u) was formed from Gk(u) by
making the minimum changes to satisfy the Fourier-
domain constraints, the squared error can be expressed
as

Bk = E2= N- 2
E Gk(u) -u)2 (11)

which, for both problems being considered, can be ex-
pressed as

Bk = = N-
2

E [JGk(u)J - IF(u)] 2 .

In this section the symbol E k is used to distinguish it
from the object-domain error Ek described below. For
economy of notation in the section of this paper dealing
with the gradient methods, the symbol Bk is used in-
stead of E k. The symbol B (with the subscript k de-
leted) is given by Eq. (11) with G and G' replacing Gk
and G, respectively.

Similarly, for the error-reduction algorithm the
squared error in the object domain can be expressed
as

Ok = E gk+l(X) -gk(X)12,
x

(13)

which for the problem of two intensity measurements
can be expressed as

E = E [If(X)| - gk(X)J]2 (14)

and for the problem of a single intensity measurement
can be expressed as

E~k = _ [gh(X)]2,
Xey

(15)

where y is defined as in Eq. (10). The asymmetry in the
use of the N- 2 factor above was chosen because of the
similar asymmetry in the definition of the discrete
Fourier transform in Eqs. (2) and (3). When the
squared error is zero, a solution has been found.

In the following the error-reduction algorithm is
shown to converge, and this convergence property holds
for all the applications of the error-reduction algorithm
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(not just the problems of recovering phase from single
or two intensity measurements).

For the general problem, at the kth iteration the
squared error in the Fourier domain is given by Eq. (11).
By Parseval's theorem'1

Ek =N - 2 Gk(u)-Gk(u)12

=E gk(x)-gk(x)12 . (16)

Now compare this with Eq. (13), the error in the object
domain. Both gk (x) and gk+l(x) by definition satisfy
the object-domain constraints. Also at any point x, by
definition gk+l(x) is the nearest value to gk(x) that
satisfies the object-domain constraints. Therefore, at
all points x

lgk+l(X) -g( )| < 19k W - 9a(X) 1, (17)

and, therefore, from Eqs. (13) and (16)

EO < EFk-

Similarly, by Parseval's theorem

E2 = E lgk+1(X) -gk(X)
2

= N-2 E Gk+1(u) - k(x)12 .

Since both G(u) and G'+J(u) satisfy
domain constraints, and at any point u,
Gk+1(u), is the nearest value to Gk+l(u)
the Fourier-domain constraints, then

(18)

the Four
by definii
that satis

IGk+1(u) - Gk+l(u) Gk+1(u) - k(u)1.

Therefore, from Eqs. (11) and (19),

EF,k+l < Ek,

and combining this with Eq. (18) gives the desired
sult

EF'k+1 < E0k S< EFk.

error once again starts to decrease until it reaches a third
plateau at the level of 0.003, at which point the decrease
in the error is negligible.

The occurrences of plateaus during which conver-
gence is extremely slow seem to occur, more often than
not, for both applications,' 9"2 and in the past it has
been observed that, with persistence, one can go beyond
the plateau region and again make rapid progress
toward a solution."1 2 However, as shown in the ex-
ample of Fig. 2 for the problem of a single intensity
measurement, the number of iterations required for
convergence of the error-reduction algorithm can be
extremely large, making that algorithm unsatisfactory
for that application. Fortunately, as will be shown in
later sections, other related algorithms converge much
faster, reconstructing a recognizable image in twenty
or thirty iterations and completing the reconstruction
in under one-hundred iterations, which takes <2 min
on a Floating Point System AP-120B array processor
for array sizes of 128 X 128.

Ill. Steepest-Descent Method
An alternative approach to solving the phase-retrieval

problems is to employ one of the gradient search
methods. In this section it is shown that one such

(19) method, the steepest-descent method, is closely related
to the error-reduction algorithm for the problem of re-

rier- constructing phase from a single intensity measure-
tion ment. The relationship between the steepest-descent
;fies method and the Gerchberg-Saxton algorithm is also

discussed.
An example of how a gradient search method would

(20) be used for this problem follows. One can define B =
EF, the squared error in the Fourier domain given by
Eq. (12), as the error metric which one seeks to minimize

I re-

(22)

That is, the error can only decrease (or stay the same)
at each iteration.

In practice, the error-reduction algorithm usually
decreases the error rapidly for the first few iterations
but much more slowly for later iterations.1 2912 The
speed of convergence also depends on the type of con-
straints imposed. Convergence seems to be reasonably
fast for the problem of two intensity measurements but
painfully slow for the problem of a single intensity
measurement. Figure 2 shows an example of the error
as a function of the number of iterations of the error-
reduction algorithm for the problem of a single intensity
measurement. Shown is the normalized rms error, i.e.,
the square root of EFk divided by 2; JF(u) 2. Both the
error and the iteration number are shown on logarithmic
scales. The error decreases rapidly during the first
thirty iterations but then reaches a plateau at a level of
0.16, decreasing very slowly. After seventy iterations
the error again starts to decrease until it reaches a sec-
ond plateau at the level of 0.02, at which point the error
decreases extremely slowly. After 2000 iterations the

ITERATION k
10 102 103

Fig. 2. RMS error vs the number of iterations for the problem of
phase retrieval from a single intensity measurement using the error-

reduction algorithm.
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by varying a set of parameters. Here the N2 values of
g(x), the estimate of f(x), are treated as N2 independent
parameters. Starting at a given point, gk (x), in the
N2-dimensional parameter space, one would reduce the
error by computing the partial derivatives of B with
respect to each of the points g(x) (N 2 partial deriva-
tives) forming the gradient and then move from g (x)
in a direction opposite that of the gradient to a new
point gk(x). One would then form a new estimate,
gk+,(x), from g^(x) by forcing the object-domain con-
straints to be satisfied. This would be done iteratively
until a minimum (it is to be hoped a global minimum)
is found. That is, one minimizes the error, B, as a
function of the N2 parameters, g(x), subject to the
object-domain constraints.

Ordinarily the computation of the N2 partial deriv-
atives would be a very lengthy task since each evaluation
of B involves an N X N discrete Fourier transform.
However, for the problems considered here the com-
putation can be greatly reduced as described below.

First, consider the problem of a single intensity
measurement. The partial derivative of B with respect
to a value at a given point, g(x), [if g(x) is assumed to be
real since f(x) is real], using Eq. (12), is

aB aIG(u)I
agBd =2N-2E [IG(u)I-F(u)I I l (23)

'ag(x) U ag(x)

Later the notation gBk will be used to denote gB
evaluated atg(x) = gk(X). Since

=(9) Z_ E g(y) exp[-i2iru y/N],
ag x g 

= exp[-i2ru x/N], (24)
then

IG(u) a[G(u)12]1/ 2
1 aIG(u)12

dg(x) d9g(x) 21G(u)I g(x)
G(u) exp[i27ru x/N] + G*(u) exp[-i27ru x/N ]. (25)

2IG(u)l

Therefore, Eq. (23) becomes

dgB = N- 2 F [G(u) - F(u)IG(u)/IG(u)] exp[i27ru * x/N]
, ~~U

+ N- 2
y [G*(u) - F(u)IG*(u)/1G(u)J]
U

X exp[-i27ru x/N]. (26)

Using Eqs. (6) and (7) to define G'(u) as

G'(u) = F(u)IG(u)/IG(u)J, (27)

and noting that Eq. (26) is in the form of a discrete
Fourier transform, it can be reduced to

dgB = 2[g(x) - g'(x)], (28)

where g'(x) is defined by Eq. (8), and the fact that g(x)
and g'(x) are real valued has been used. [Note that
since g'(y)/Og(x) 0, it is not true that Eq. (28) follows
immediately from Eq. (16).] From Eq. (28) it is evident
that the entire gradient, consisting of the N 2 partial
derivatives, can be computed very simply by Fourier
transforming g(x), applying Eq. (27), inverse Fourier
transforming to arrive at g'(x), subtracting g'(x) from

g(x), and multiplying by a constant. In fact, the com-
putation of g'(x) is identical to the first three steps of
the error-reduction algorithm.

The optimum step size to take in the direction of the
gradient can be determined by forming a first-order
Taylor series expansion of B as a function of g(x) about
the point gk (x),

B Bk + Z agBk g(x) -g,,(x)]. (29)

This first-order expansion of B is equal to zero at g(x)
= g (x) given by

g(x) -gk(X) = - BkodgBk
F (gBk )

2 (30)

which can be easily verified by inserting Eq. (30) into
Eq. (29). Since by Eqs. (28) and (16)

Z£ (agBk )2
= 4 Z [gk (y) -g' (y)]2 = 4Bk,,

Y Y

Eq. (30) becomes

g(x) -g,(x = -('/4 )agB = '/2)[g(x) -gk(x)J.

(31)

(32)

However, since B is quadratic in g(x), the linear ap-
proximation above can be expected to predict a step size
half as large as the optimum. 2 Therefore, one should
use the double-length step,

g(x) -gk(x) = [(x) -gk(x)J

or

(33)

In fact, since G (u) I = IF(u) , moving to g(x) reduces
the error, Eq. (12), to exactly zero. As a final step in one
iteration the new estimate should be made to satisfy the
object-domain constraints, which is accomplished by
using Eq. (10).

Comparing this new estimate with that of the error-
reduction algorithm described in Sec. II, it is seen that
they are identical. That is, the error-reduction iterative
Fourier transform algorithm can be looked on as a rapid
method of implementing a double-length step steep-
est-descent method.

Although the steepest-descent method is identical to
the error-reduction algorithm for the problem of a single
intensity measurement, the connection is not so close
for the problem of two intensity measurements as ex-
plored in the Appendix. In that case the error is min-
imized with respect to the phase estimate (x), and the
derivative of the error does move one in a direction ap-
proximately toward the Gerchberg-Saxton phase, 0'(x),
of Eq. (9). However, according to Eq. (A4), the direc-
tion is somewhat different from that of the
Gerchberg-Saxton algorithm; and the step size, ac-
cording to Eqs. (A12) and (A16), is considerably larger
than that of the Gerchberg-Saxton algorithm. Exper-
imental results using the steepest-descent method for
the problem of two intensity measurements are shown
in Ref. 2.
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The relationship between a gradient search method
and the error-reduction algorithm for a problem in
digital filter design is discussed in Ref. 13.

IV. Other Gradient Search Methods
As shown in Sec. III for the phase problem of a single

intensity measurement the steepest-descent method is
equivalent to the error-reduction algorithm. And as
described in Sec. II, although there is a convergence
proof for the error-reduction algorithm, in practice it
converges very slowly for the problem of a single in-
tensity measurement. Slow convergence of the steep-
est-descent (also known as the optimum-gradient)
method has also been observed for other applications
as well.14 In this section some other gradient search
methods are briefly described, and in Sec. VI it will be
shown that in practice they converge much faster than
the steepest-descent method for this problem.

Recall from Eq. (30) that the steepest-descent
method moves from the point g (x) in parameter space
to the point

gk(x) = g(x) - hk,9gBk, (34)

where hk, the step size, is a positive constant, and the
gradient is given by Eq. (28). For many applications
one would search along the direction of -agBk, evalu-
ating B repeatedly until the value of hk that minimizes
B is found; then from that point one would recompute
the gradient and go off in a new direction. For this
application, however, since an N X N Fourier transform
is required to evaluate B and only one more Fourier
transform is required to recompute the gradient, one
may as well recompute the gradient at each step. After
each step of this or the other gradient methods de-
scribed later one must then satisfy the object-domain
constraints to form the new estimate as was done in Eq.
(10),

gk+i(x) = {gk(x) x, (35)
lO Xey,

where set y is defined as in Eq. (10). In Sec. III the
optimum double-length step value of hk was shown to
be unity, for which the steepest-descent method is
equivalent to the error-reduction algorithm. In fact,
hk = 1 leads to a point g (x) = g'k(x) at which B = 0.
This is not a solution, however, unless g (x) satisfies the
object domain constraints. With this in mind, other
values of hk are better in practice as will be shown in
Sec. VI.

A useful block diagram representation of this and
other gradient methods is shown in Fig. 3, which em-
phasizes the similarity of gradient methods to the
error-reduction algorithm. The first three steps of the
error-reduction algorithm, resulting in the computation
of g'(x), do most of the work of computing the gradient.
The final step of satisfying the object-domain con-
straints is common to gradient methods and the error-
reduction algorithm. Therefore, one can think of the
error-reduction algorithm as a special case of a more
general class of gradient methods. For the error-re-
duction algorithm (or the double-length step steepest-
descent method) it just happens that g (x) = g (x).

9 * 1;l W G

SATISFY SATISFY
FUNCTION FOURIER

CONSTRAINTS CONSTRAINTS

| GRADIENT aG
STEP

Fig. 3. Block diagram for the gradient-search methods using the
method of Fourier transforms to compute the gradient.

A gradient search method superior to the steepest-
descent method is the conjugate-gradient method. For
that method Eq. (34) is replaced by' 4

(36)gk(x) = gk(x) + hkD,(x),

where the direction Dk (x) is given by
Da(x) = - (112)agBk

+ [z (0gB)2/y (gB,,_)2] Dk_,(x),

which, using Eqs. (28) and (31), can be written as

Dk(x) = gk(x) - g,,(x) + (Bk/Bk-1)Dk-1 (x), (38)

where one would start the first iteration with D1(x) =
gi(x) - g1 (x). After using Eq. (36) one would employ
Eq. (35) to form the new estimate as indicated in Fig.
3.

Numerous variations on these gradient methods are
possible. For example, one could argue that from one
iteration to the next the solution is going in the following
direction:

(39)

Since the step in that direction may be too small, a
better point to go to would be

g;(x) = g*(x) + hk [4W -g 4-1W] (40)

where the parameter hk controls the step size. In Eq.
(40) one jumps from the point gk(x) rather than from
gk (X) since presumably g (x) is closer to the solution
than g (x). After using Eq. (40) one would employ Eq.
(35) to form the new estimate.

A method that does not seem as practical for this
problem is that of (damped) least squares (or Newton-
Raphson). 1 6 Since each iteration of a least-squares
method involves the inversion of an N2 by N 2 matrix,
a large number of iterations of one of the gradient
methods or of one of the iterative Fourier transform
methods described in Sec. V could be performed in the
same time it takes to do a single iteration of least
squares. Furthermore, as has been discussed above, one
can readily find a point ga (x) = ga (x) at which the error
B is equal to zero, and so a more sophisticated (and more
difficult) method, such as least squares, of finding such
a point is not warranted.

The problem here is that one is constantly running
into the object-domain constraints on g(x). An ap-
proach that would be superior to the ones considered
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here would be one that minimizes the Fourier-domain
error while inherently satisfying the object-domain
constraints, or one that minimizes an error metric that
combines the Fourier- and object-domain constraints.
An example of the former is the use of a gradient search
method for the problem of two intensity measurements;
by searching over 0(x) one automatically satisfies the
object-domain constraints that they have a given
modulus If(x) 1. Something along these lines would be
very useful for the problem of a single intensity mea-
surement; clearly, more could be done in this area.

V. Input-Output Algorithm
A solution to the problem of the slow convergence of

the error-reduction algorithm has been the input-out-
put algorithm, which has proved to converge faster for
both the problem of two intensity measurements 6 17 and
the problem of a single intensity measurement. 4 5 The
input-output algorithm differs from the error-reduction
algorithm only in the object-domain operation. The
first three operations-Fourier transforming g(x),
satisfying the Fourier-domain constraints, and inverse
Fourier transforming the result-are the same for both
algorithms. If grouped together as indicated in Fig. 4,
those three operations can be thought of as a nonlinear
system having an input g(x) and an output g'(x). The
useful property of this system is that its output is always
an image having a Fourier transform that satisfies the
Fourier-domain constraints. Therefore, if the output
also satisfies the object-domain constraints, it is a so-
lution to the problem. Unlike the error-reduction al-
gorithm and the gradient methods, the input g(x) no
longer must be thought of as the current best estimate
of the object; instead, it can be thought of as the driving
function for the next output, g'(x). The inputg(x) does
not necessarily satisfy the object-domain constraints.
This viewpoint allows one a great deal of flexibility and
inventiveness in selecting the next input, and allows for
the invention of algorithms that converge more rapidly
to a solution. The input-output algorithm, then, is
actually a class of algorithms as will be described
below.

As described elsewhere,6 7 17 it has been found that
a small change of the input results in a change of the

INPUT

OUTPUT 9-

Fig. 4. Block diagram of the system for the input-output concept.

output in the same general direction as the change of the
input. More precisely, for a small change of the input
the expected value of the corresponding change of the
output is a constant a times the change of the input.
Since additional nonlinear terms also appear in the
output, the change of the output due to a particular
change of the input cannot be predicted exactly.
Nevertheless, by appropriate changes of the input, the
output can be pushed in the general direction desired.
If a change Ag(x) is desired in the output, a logical
choice of the change of the input to achieve that change
of the output would be f3Ag(x), where : is a constant
ideally equal to -1.

For the problem of phase retrieval from a single in-
tensity measurement the desired change of the output
is

Agk(x) = °, XS-Y,
1k-4)> xC'y,

(41)

where y is the set of points at which g', (x) violates the
object-domain constraints. That is, where the con-
straints are satisfied, one does not require a change of
the output; but where the constraints are violated, the
desired change of the output, in order to have it satisfy
the object-domain constraints, is one that drives it to
a value of zero (and, therefore, the desired change is the
negative of the output at those points). Therefore, a
logical choice for the next input is

gk+1(X) = gk (x) + A$gk (X)

= gk(x), X,'

gk (X) - 03g(x), Xeno.
(42)

We will refer to the use of Eq. (42) as the basic input-
output algorithm.

An interesting property of the nonlinear system
(consisting of the set of three steps mentioned above)
is that if an output g' is used as an input, its output will
be itself. Since the Fourier transform of g' already
satisfies the Fourier-domain constraints, g' is unaffected
as it goes through the system. Therefore, irrespective
of what input actually resulted in the output g', the
output g' can be considered to have resulted from itself
as an input. From this point of view another logical
choice for the next input is

gk+l(X) = g4(x) + 3Agk(x)

Jgkx)- x4-,
XeY.

(43)

We will refer to the use of Eq. (43) as the output-output
algorithm.

Note that if 13 = 1 in Eq. (43), the output-output al-
gorithm reduces to the error-reduction algorithm of Eq.
(10). Since the optimum value of 1 is usually not unity,
the error-reduction algorithm can be looked on as a
suboptimal version of a more general approach.

Still another method of choosing the next input which
was investigated is a combination of the upper line of
Eq. (43) with the lower line of Eq. (42):

- gk(x), X7
gk+l(X) = gk(-X)g' (X), Xc', (44)
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We will refer to the use of Eq. (44) as the hybrid
input-output algorithm. The hybrid input-output
algorithm is an attempt to avoid a stagnation problem
that tends to occur with the output-output algorithm.
The output-output algorithm often works itself into a
situation in which the output on successive iterations
does not change despite being far from a solution. For
the hybrid input-output algorithm, on the other hand,
if at a given value of x the output remains negative for
more than one iteration, the corresponding point in the
input continues to grow larger and larger until eventu-
ally that output value must go non-negative.

For the input-output algorithms the error EF is
usually meaningless since the input g (X) is no longer
an estimate of the object. Then the meaningful error
is the object-domain error E0 given by Eq. (15).

For the problem of phase retrieval from two intensity
measurements the desired change of the output takes
a different form, and it is described elsewhere6717 in the
context of a computer holography synthesis problem
involving intensity constraints in each of the two do-
mains.
VI. Experimental Comparison of Phase-Retrieval
Algorithms

In this section the gradient search and input-output
algorithms are compared for the problem of phase re-
trieval from a single intensity measurement by using
them all on the same Fourier modulus data and with the
same starting input. For each approach several dif-
ferent values of the algorithm parameter (h or 1) were
tried. The principal problem with the error-reduction
algorithm is that it tends to stagnate after a few itera-
tions. For this reason the starting point for the itera-
tions was chosen to be a partially reconstructed image
on which the error-reduction algorithm was making slow
progress. Figure 5 shows a plot of E0, the rms error, vs
the number of iterations beyond this starting point
using the error-reduction algorithm. Starting at
0.071275, Eo decreased slowly but steadily to 0.067470
after ten iterations and to 0.063373 after nineteen it-
erations. In this paper, all values of E 0 are normalized
by dividing by the square root of z [g'(x)]2 , the total
image energy. The object for the experiment described
in this section is a digitized photograph of a satellite in
a field of view of 128 X 128 pixels, and its Fourier
modulus is noise-free.

The algorithms were compared by performing ten
iterations of each algorithm, followed by nine iterations
of the error-reduction algorithm (a total of nineteen
iterations) using the same starting input for each.
During the first ten iterations the value of the algorithm
parameter 1 or h was held constant. The reason that
each algorithm was followed by nine iterations of the
error-reduction algorithm is as follows. In many cases
it has been observed that definite progress (i.e., im-
proved visual quality of the output image) is being made
with an input-output algorithm even though E0 de-
creases very little or even increases with each iteration.
The relationship between E0 and the visual image
quality is not fully understood, although, of course, one
would expect a high degree of correlation between the
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two. For those cases for which the visual quality im-
proves while E0 does not it was found that, if one then
performs a few (say five or ten) iterations of the error-
reduction algorithm, the visual quality of the output
image changes very little, but E0 decreases rapidly until
it becomes more consistent with the visual image
quality. Therefore, to gauge the true progress of an
input-output algorithm using the value of E0, a few it-
erations of the error-reduction algorithm are performed
after the iterations of the input-output algorithm. For
this reason, for all cases the ten iterations of the algo-
rithm being tested were followed by nine iterations of
the error-reduction algorithm in order to make a fair
comparison.

Plots of E0 after the set of nineteen iterations de-
scribed above (ten iterations followed by nine iterations
of the error-reduction algorithm) are shown in Fig. 6 as
a function of the algorithm parameter for the various
algorithms. Note that both the steepest-descent
method with h = 1.0 and the output-output algorithm
with 1 = 1.0 are equivalent to the error-reduction al-
gorithm at E0 = 0.063373, both circled in Fig. 6.
Comparing these plots it is seen that the algorithm
which most reduced the error after the set of nineteen
iterations is the hybrid input-output algorithm with a
value of 1 equal to about unity.

For each algorithm the use of a small algorithm pa-
rameter (13 or h) leads to a steady but slow decline of E0.
Increasing the value of the parameter increases the
speed at which E 0 decreases until one reaches a point
where the parameter is too large and the algorithm be-
comes unstable. The instability of the algorithm for
larger values of the algorithm parameter makes possible
more than one local minimum in the plots of E0 vs the
algorithm parameter.

For all the algorithms, keeping h or 1 fixed for all it-
erations is not the best possible strategy, particularly
for the gradient methods. At the point at which the
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error-reduction algorithm is converging slowly the
gradient is small, and one must then use a large value
of h to make rapid progress. However, after using a
large value of h for a few iterations, one moves to a point
where the gradient is much larger. Then one should use
a smaller value of h to avoid algorithm instability. If
a method for adaptively choosing h at each iteration was
devised, one would expect the gradient methods to
perform considerably better than the results shown here
using a fixed value of h.

Examples of an alternative to using a fixed value of
h and 13 are shown in Fig. 7. For the first ten iterations
of each algorithm the indicated value of h or 13 was used
for iterations k = 1, 3, 5, 7, and 9, and the error-reduc-
tion algorithm (h = 1 for the steepest-descent and
conjugate-gradient) was used for iterations k = 2, 4, 6,
8, and 10. The iterations using the error-reduction al-
gorithm help to stabilize the algorithm by moving
toward a point where the gradient is smaller. Com-
paring Figs. 6 and 7, it is seen that with this alternative
strategy the optimum value of each algorithm param-
eter is considerably larger than the optimum value when
the parameter is kept constant. At the optimum value
of the algorithm parameter the alternative strategy gave
better results (a lower value of E0 at the end of the se-
quence of nineteen iterations) than those shown in Fig.
6 for the basic input-output and for the output-output
algorithms; the two strategies were comparable for the
steepest-descent method; and for the hybrid input-
output algorithm the alternative strategy gave poorer
results than those shown in Fig. 6.

Curve E in Fig. 7 shows the result with the algorithm
of Eq. (40) using the alternative strategy described
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Fig. 6. RMS error after a fixed number of iterations vs the algorithm
parameter. Curve A: steepest-descent method (0); B: conju-
gate-gradient method (); C: basic input-output algorithm (A); D:
output-output algorithm (A); E: hybrid input-output algorithm ().
The result using the error-reduction algorithm is indicated by a large

circle.
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Fig. 7. RMS error after a fixed number of iterations (using the al-
ternative strategy) vs the algorithm parameter. Curve A: steep-
est-descent method (0); B: basic input-output algorithm (); C:
output-output algorithm (); D: hybrid input-output algorithm

(A); E: the algorithm of Eq. (40) ().

above. This and numerous other variations on these
algorithms can be used with varying degrees of suc-
cess.

The results shown in Figs. 6 and 7 were for a partic-
ular set of Fourier modulus data for a particular stage
of reconstruction and for a particular number of itera-
tions, and the results in other circumstances could be
significantly different. At the optimum values of the
algorithm parameter in each case the algorithm pa-
rameter was large enough to make the algorithm
somewhat unstable, and so substantially different re-
sults could be obtained if relatively small changes in
starting point, algorithm parameter, or number of it-
erations were made. In general, slower but steadier
progress is made if an algorithm parameter is used that
is somewhat smaller than the optimum according to
Figs. 6 and 7. These results do serve to show trends that
can be expected to apply in a wider range of circum-
stances. Further development is needed to determine
the best approach for the general case. As of this
writing the most successful strategy has been to alter-
nate between several (10-30) iterations of the hybrid
input-output algorithm and a few (5-10) iterations of
the error-reduction algorithm.

Figure 8 shows E0 vs the number of iterations past the
starting point for the hybrid input-output algorithm
with 1 = 1 (curve B) and for the error-reduction algo-
rithm (curve A, repeated from Fig. 5). Curve BI shows
the results for the set of nineteen iterations described
above (ten iterations of the hybrid input-output algo-
rithm followed by nine iterations of the error-reduction
algorithm). Curve B2 shows the results of twenty it-
erations of the hybrid input-output algorithm followed
by a few iterations of the error-reduction algorithm.
The instability of the hybrid input-output algorithm
is seen in curve B, in which E0 increases from 0.071275
to 0.137707 during the first four iterations. By the end
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algorithm (curve A), and for the hybrid input-output algorithm (curve

B-see text).

of ten iterations E decreases to 0.091176, still worse
than the starting point, although the appearance of the
image is improved from the starting point. At the
eleventh iteration of curve B 1, the first iteration of the
error-reduction algorithm, E0 drops sharply to a value
of 0.047244, although the appearance of the output
image changes little from that of the tenth iteration. If
after the tenth iteration the hybrid input-output iter-
ations are continued for ten more iterations (curve B2),
E0 continues to decrease to well below the level of E0 for
the error-reduction algorithm alone (curve A). Similar
to the case of B1, after the twentieth iteration of the
hybrid input-output algorithm (curve B2), when a few
iterations of the error-reduction algorithm were per-
formed, again E0 fell rapidly to a level consistent with
the improved image quality that was present. This is
the characteristic of the input-output algorithms that
mandated the use of a few iterations of the error-re-
duction algorithm to make a fair comparison. For the
input-output algorithms the image quality is often
better than what one would infer from the value of
Eo.

VIl. Diameter Constraint, Starting Input, and Stripes
A side issue pertinent to all algorithms is how one

defines the diameter of the object for the purpose of
applying the diameter constraint in the object domain.
For the problem of phase retrieval from a single inten-
sity measurement the object is usually of finite extent
and on a dark (zero value) background. Bounds on the
support of the object (the set of points over which the
object is nonzero) can then be determined from the
support of the autocorrelation, which, being the inverse
Fourier transform of the square of the Fourier modulus,
can be computed from the given data. As shown in Ref.
10, for extended objects the support of the autocorre-
lation usually does not uniquely define the support of
the object. Nevertheless, reasonably tight bounds can
be made on the support of the object. Locator sets'0
can be defined that contain all possible solutions. One
can, therefore, define a region (a mask) outside of which

the output image is constrained to be zero. That is, the
set y defined in Eq. (10) includes all points outside the
mask for which ga(x) s 0. One need not use this in-
formation for the algorithm to converge, but it is de-
sirable to do so since using this additional information
speeds up the convergence of the algorithm.

A problem often occurs with the diameter constraint
even though the mask region is correctly defined. If the
partially reconstructed image g(x) is not centered in
the mask region, in applying the diameter constraint
one might inadvertently be trying to chop off (truncate)
one part of the object, which usually results in stagna-
tion of the algorithm. For this reason it is usually ad-
vantageous to define the mask as being somewhat larger
than the extent of the object.

We have found a good strategy for choosing the mask:
For the first several iterations, define a smaller mask
which very tightly constrains the object. This helps to
speed up the convergence of the algorithm initially, but
slows it down for later iterations when the problem
mentioned above becomes more significant. Then, for
later iterations use a larger mask which ensures that
none of the solution is being truncated by the mask.
Logical choices for masks are any of the locator
sets. 0

Faster convergence can be expected if the starting
input g,(x) is closer to the solution. A good starting
input is formed as follows. Compute the autocorrela-
tion function and then demagnify it by a factor of 2
(save only every other pixel in both dimensions). Then
threshold the demagnified autocorrelation at a value
which is a small fraction of its peak, setting it equal to
zero wherever it is below the threshold value. Finally,
replace each value above the threshold with a sample
of a random variable uniformly distributed between
zero and unity. The result is a random (unbiased)
starting input having approximately the same size and
shape as the original object.

A curious phenomenon often occurs for the problem
of phase retrieval from a single-intensity measurement.
The phase-retrieval algorithm often stagnates at a local
minimum characterized by a pattern of stripes across
the image.18 19 In most cases the stripes are barely
noticeable and are of low contrast, superimposed on an
otherwise excellent reconstructed image. In some cases
the stripes are of high enough contrast to be objection-
able, although they still permit the object to be recog-
nized. The cause of this phenomenon is not well un-
derstood, but it is thought that it is an algorithm con-
vergence problem rather than a uniqueness problem' 9

(it is at a local, not a global, minimum of Eo). A method
of avoiding this phenomenon is presently being sought,
although it fortunately is not much of a problem in most
cases.

Vill. Image Reconstruction Example
An example of a computer experiment using the it-

erative reconstruction algorithm for the problem of
phase retrieval from a single intensity measurement is
shown in Fig. 9. In this example a realistic stimulation
was performed to arrive at the kind of noisy Fourier
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modulus data that would be provided by stellar speckle
interferometry, 20 including the effects of atmospheric
turbulence and photon noise.18

An undegraded object, a digitized photograph of a
satellite shown in Fig. 9(a), was convolved with 156
different point spread functions to produce 156 differ-
ent blurred images. Each point spread function rep-
resented a different realization of the effects of the
turbulent atmosphere. The blurred images were then
subjected to a Poisson noise process to simulate the
effects of photon noise. For this example there were
-300,000 photons/degraded image (or of the order of
100 photons/pixel over the extent of the object), which
is realistic for objects of this type when imaged through
a telescope of 1.2-m diam. Two of the resulting 156
degraded images are shown in Figs. 9(b) and 9(c). The
degraded images were then processed by Labeyrie's20

method as modified by Goodman and Belsher.2 ' The
estimate of the modulus of the Fourier transform of the
object is given by' 8

M 1/2

Ip(u)I = W(u) = (45)

E ISm(U)12

M=M+l

where Im (u) is the Fourier transform of the mth de-
graded image, Np is the total number of photons de-
tected (it is subtracted to compensate for a certain noise
bias term that arises in the power spectrum due to
photon noise 2l), S () is the Fourier transform of the
mth point spread function (to provide compensation for
the MTF of the speckle interferometry process), and the
weighting factor W(u) is the MTF due to the telescope

Fig. 9. Image reconstruction experiments. (a) Undegraded object;
(b), (c) examples of degraded images simulated to include the effects
of atmospheric turbulence and photon noise; (d) Fourier modulus
estimate computed from the degraded images; (e) image reconstructed

using the iterative algorithm.
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Fig. 10. RMS error vs the number of iterations.

aperture. In practice the denominator of this expres-
sion would be obtained by making measurements on a
reference star through an atmosphere having the same
statistics as that which blurred the images or by using
a model of the effects of atmospheric turbulence. W(u)
was included to restore the natural MTF due to the
telescope aperture which was removed by the denomi-
nator of the equation above. Figure 9(d) shows the
resulting Fourier modulus estimate.

The object was reconstructed (or equivalently, the
Fourier phase was retrieved) using the hybrid input-
output algorithm alternately with the error-reduction
algorithm. The result, shown in Fig. 9(e), agrees very
well with the original object shown in Fig. 9(a), despite
the noise present in the Fourier modulus data. Good
reconstructed images were also obtained when only
one-tenth as many photons were assumed to be avail-
able.' 8

Figure 10 shows E0 vs the number of iterations for
this reconstruction. The starting input used was the
randomized demagnified autocorrelation described in
Sec. VII, using a threshold value of 0.004 times the peak
of the autocorrelation. For the first ten iterations the
error-reduction algorithm was used, and the mask de-
fining the diameter constraint was chosen to be the re-
gion over which the autocorrelation function, spatially
demagnified by a factor of 2, exceeded 0.004 of its
maximum value (providing a fairly tight diameter
constraint). For iterations 11-20 the error-reduction
algorithm was used, and the mask for these and the re-
maining iterations was chosen to be a square of length
64 pixels, which is larger than the actual object extent
of -60 X 40 pixels (imbedded in an array of 128 X 128
pixels). The error decreased suddenly at the tenth it-
eration since some positive-valued points that were
inside the second mask but outside the first mask were
no longer counted as contributing to E. By the
twentieth iteration the error-reduction algorithm was
converging very slowly. For iterations 21-60 the hybrid
input-output algorithm, with equal to one, was used.
At first E0 increased sharply (although the output image
appeared no worse than at iteration 20) but then de-
creased fairly rapidly until stagnating at E0 o 0.05 at
about iteration 55. For iterations 61-70 the error-
reduction algorithm was used, for which E0 dropped
suddenly from 0.05 to 0.02, although the visual ap-
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pearance of the reconstructed image remained the same
as for iteration number 60.

This final value of Eo is comparable to 0.03, the nor-
malized rms error of the Fourier modulus estimate it-
self.18 It is impossible to reduce E0 to zero since the
noise in the Fourier modulus estimate results in an in-
consistency of the non-negativity constraint and the
Fourier modulus estimate. This inconsistency can be
seen from the fact that the autocorrelation estimate
computed from the Fourier modulus estimate has areas
of negative value.

Reconstruction experiments do not always proceed
as smoothly as the one described above. When stag-
nation occurs before E0 is reduced to a level consistent
with the error in the Fourier modulus data, often the
best strategy is to restart the algorithm using a different
set of random numbers as the initial input. One must
also be careful in the way one chooses the mask as dis-
cussed in Sec. VII. Finally, it is always advisable to
reconstruct the image two or three times from the same
Fourier modulus data using different starting inputs
each time. If the same image is reconstructed each
time, one would have confidence that the solution is
unique.

IX. Comments and Conclusions
For the problem of phase retrieval from a single-in-

tensity measurement it has been shown that the error-
reduction algorithm (the Gerchberg-Saxton algorithm
applied to this problem) is equivalent to the steepest-
descent method with a double-length step. Further-
more, it was shown that the error-reduction algorithm
converges in the sense that the error monotonically
decreases. However, in practice the error-reduction
algorithm converges very slowly; several other algo-
rithms converge much faster, including other gradient
search algorithms which utilize the method of Fourier
transforms for rapidly computing the gradient of the
error and the input-output family of iterative Fourier
transform algorithms. Of the algorithms investigated
so far, the hybrid input-output algorithm has converged
the fastest. Nevertheless, the gradient-search algo-
rithms also converge reasonably fast, and they deserve
further development. The performance of any given
algorithm can vary depending on the stage of recon-
struction and on what is being reconstructed. Although
a practical phase-retrieval algorithm is in hand, there
is still an element of trial and error involved.

For the problem of phase retrieval from two intensity
measurements, the steepest-descent method and the
Gerchberg-Saxton algorithm were compared and were
found to share some similarities. When manipulating
just the object's phase, the object-domain constraint,
that the object's modulus equals the measured modulus,
is automatically satisfied. Therefore, the gradient-
search methods seem inherently better suited to the
problem of two intensity measurements than to the
problem of a single intensity measurement.

Not considered here has been the question of the
uniqueness of solutions to either of the two phase-re-
trieval problems. There has been considerable con-

troversy surrounding this question, both for the prob-
lem of two intensity measurements222 ' 23 and for the
problem of a single intensity measurement.24-2 8 For
the latter problem, the experimental reconstruction
results shown here and elsewhere45 10 9 suggest that for
complicated 2-D objects the solution is usually unique
in practice, even when the Fourier modulus data are
corrupted by a considerable amount of noise.19

This research was supported by the Air Force Office
of Scientific Research under contract F49620-80-C-
0006.

Appendix
In this Appendix the relationship between the

steepest-descent method for the problem of two in-
tensity measurements and the Gerchberg-Saxton al-
gorithm is explored.

For the problem of two intensity measurements, the
error B is minimized with respect to the phase estimates
0(x). The partial derivative of B with respect to the
value of a given phase 0(x) is

OB alG(u)I
a0B= =2N-2 E [IG(u)l-IF(u)] 00(x)

Since
OG(u) 0

00(x) = a 0() E f(y)I exp[i0(y)] exp[-i27ru y/N]
= ilf(x)l exp[i0(x)] exp[-i27ru * x/NJ
= ig(x) exp[-i2iru * x/N],

then
a|G(u)l G(u)(-i)g*(x) exp[i2ru * x/N] +c.c.

00(x) 21G(u)l

(Al)

(A2)

(A3)

where c.c. indicates the complex conjugate of what
precedes it. Using Eq. (27), Eq. (Al) becomes2

09B = ig*(x)[g'(x) -g(x)] + c.c.

= ig*(x)g'(x) + c.c. = -2 Im[g*(x)g'(x)]

= -21f(x)I Ig'(x)Isin[0'(x) - 0(x)],

where 0'(x) is the phase of g'(x). Therefore, the gra-
dient can be easily computed using two Fourier trans-
forms (the first three steps of the Gerchberg-Saxton
algorithm) plus evaluating Eq. (A4). Analogous to the
linear approximation of Eq. (29) is

B Bk + Y 3oBk[0(x) - Ok(X)I, (A5)

where OoBk is 60B evaluated at 0(x) = Ok(X), the phase
of gk (x). This linear expansion of B is equal to zero
for

O( ) o ( ) Bkl)OBk
E ,ok) 

(A6)

which can be easily verified by inserting Eq. (A6) into
Eq. (AS). By Eq. (A4),

Fi (aoBk) 2 = 4 Z If(y)121g(y) 2

X sin 2[0(y) - k(Y)],

and so Eq. (A6) becomes

(A7)

(A4)
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(X) - Ok(x) = - kf(x)g(x)I sin0'(x) - Ok(x)I
2 E f(y)12 1g(y)12 sin2 [,(y) - k(Y)]

(A8)

Now consider the situation after several iterations have
been performed and the error is decreasing slowly.
Then for most values of x,

sin[0 x)- Ok(X)I 0ok(X) - Ok(X)-

That is, when the Gerchberg-Saxton algorithm is con-
verging slowly, the steepest-descent method indicates
that a much larger step size be used. Note that if one
uses the double-length step steepest-descent method,
the factor of 1/2 in Eqs. (A8), (A12), and (A16) is replaced
by unity.

(A9)

Then from Eq. (A8) it is seen that 6(x) - (x), which
is the change of Ok (x) indicated by the steepest-descent
method, is approximately proportional to 6'k(x) - Ok (x).
Recall from Eq. (9) that 'k(x) is the new phase that
would be given by the Gerchberg-Saxton algorithm.
Thus, for the problem of two intensity measurements
the steepest-descent method gives a new phase that is
going in the same general direction as the Gerchberg-
Saxton algorithm but uses a different step size. For the
steepest-descent method the direction differs somewhat
from 6'k(x) - k (x) due to the weighting factor
If(x)gk(x) , which varies with x.

To obtain some notion of the step size for the steep-
est-descent method, continue to consider the situation
where the error is decreasing slowly and Eq. (A9)
applies. Then, using Eq. (16) one can approximate

Bk = E | If(x)l exp[iOk(x) - Ig'(x)l expliO,(x)1I2

x

= E 11f(X)12 + g'(X)12 - 2f(x)g(x)l CoS[0k() - Ok(X)]}

Z [If(X)l - lgk(X)1]2 + f(x)g(x)l
x x

X sin 2 [0'(x) - Ok(x)]. (A10)

To further simplify things, consider the special case for
which f (X) = fa, a constant independent of x. Fur-
thermore, if B is small, for most values of x,

I f(x)I - igk(x)ii I If(x)I. (All)

Under these circumstances, inserting Eqs. (A9) and
(A10) into (A8) yields

0(x-^x W 2-k + W [0(X) (X)], (A12)

where

Bk= [lf(X) - gk(X)]2, (A13)
x

k= j jg'(x)[0(x)-Ok(x)12 (A14)

are the respective radial and tangential components of
the error Bk B + Bk. The radial component Br is
the object-domain squared error of the modulus of
lg (x) I and is equal to E2 according to Eq. (14). When
the error is decreasing slowly,

Bk Bk -Bk= -E <<E =B. (A15)

Therefore, under these circumstances the coefficient
of Eq. (A12),

+ Bk 1
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