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A. Tai, 1. Cindrich, J. R. Fienup, and C. C. Aleksoff

The concept of a programmable multipurpose computation module for residue arithmetic is introduced. A
possible design for the module is also presented. The application of the computation module in mathemati-
cal computation, coding, decoding, and scaling is demonstrated. Very high throughput rate is achieved by
the use of parallel computation structures and pipelining of sequential operations.

Introduction

For some time, we have witnessed the competition
between electronic digital computers and optical analog
computers in several areas. The possibility of bringing
the virtues of both types of computer together in the
form of an optical numerical computer is intriguing.
The potential advantages of an optical numerical
computer have been discussed by Huang et al. 1 These
include the inherent parallelism of optical systems, the
possibility of wavelength multiplexing, and the short
propagation time of optical signals. Many of these
advantages cannot be fully realized at the present stage
of hardware technology. Nevertheless, the potential
of an optical numerical computer is significant, and it
warrants a continuing design concept development that
is not entirely constrained by the presently available
hardware technology.

Residue arithmetic has been considered by computer
engineers for many years as a means of achieving high-
speed parallel processing.2-5 It was not until recently,
however, that the idea of implementing residue arith-
metic optically was brought into vogue. 16-8 The basic
concept of residue arithmetic and some of the possible
implementation techniques have been discussed by
Huang et al.1 and others.6-8 In this paper, we shall
present the concept of a programmable multipurpose
computation module and its possible design. The
motivation is that generally it is more economical to
mass produce a single type of device that can be pro-
grammed to perform various required functions than
to produce different types of devices for different
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functions. The computation module will be used as the
basic building block to implement various functions in
an optical numerical computing system such as encod-
ing, decoding, and scaling, along with all the basic
arithmetic operations.

A residue number can be represented by spatial po-
sition, phase or polarization angle. Being cyclic phe-
nomena, phase and polarization are natural choices for
residue representations. However, using phase or po-
larization would entail the use of analog devices for the
representation of discrete values. In order to avoid the
high probability of error such representation can cause,
a cyclic device with multistable states would be neces-
sary. Collins et al. 7 have successfully demonstrated a
feedback technique using liquid crystal modulators that
produces two stable states. The concept can be ex-
tended to more than two states, but the problem of ex-
tending to many stable states for large moduli is severe.
Another feedback technique was demonstrated recently
by Okada and Takizawa 9 using LiNbO3 as the nonlinear
modulator. The technique can be utilized to produce
several stable states, but the strong hysteresis charac-
teristic may be a drawback in some applications.
Furthermore, while cyclic devices can perform the ad-
dition operation very conveniently, implementing fixed
transformations and multiplication is more complicated
than with the use of spatial maps. On the other hand,
the use of phase or polarization representation may
allow greater packing density than the spatial repre-
sentation. At least for the near future, the spatial
representation using programmable spatial maps for
computation will likely be the more readily achievable
implementation approach.

The concept of residue arithmetic is described in
various literature.1- 4 Here we will only review some
basic concepts and the notations employed in this
paper. A residue number system is based on N rela-
tively prime integers m, m2,..., my called moduli. A
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Fig. 1. (a) Directional coupler waveguide switch (not to scale); (b)
schematic representation.

number X can be represented in this residue number
system as rmi r2, . ., rmN. The residue rmi can also
be written as X I mij and it is the remainder of the X/mi
division operation. For example, with X = 24 and mi
= 5, the residue for modulus 5 would be r5 = 1241 5 = 4.
The number of integers that can be represented
uniquely by the residue number system is

N
M= l mi.

The residue representation is cyclic over the range M.
That is, the representations are the same for integers
K, K + M, K + 2M, etc. Ordinarily, only positive
numbers are represented by the residue number system.
However, negative numbers can also be represented by
letting numbers 0 to M/2 - 1 represent positive integers
and M/2 to M - 1 represent negative integers such that
M/2 -M/2 and M - 1 -1. We may add that a
similar method of implicitly representing the sign of a
number is used in the conventional two's complement
binary system.

Implementation with Waveguide Switches

To demonstrate the design concept, we have chosen
the use of directional coupler waveguide switches for the
implementation of the computation module. The di-
rectional coupler is one of the better developed inte-
grated optical devices, and it allows flexibility in optical
circuit design.10-12 We shall briefly describe the optical
coupler waveguide switch and then proceed to formulate
its use in a basic addition operator, which will be ex-
tended into a programmable multipurpose computation
module. We should emphasize that there are other
components that would be good candidates for the im-
plementation of a numerical optical computer, and the
waveguide coupler is but one of the more interesting
possibilities at present.

A direction coupler is schematically shown in Fig. 1.
Two waveguides are placed physically close to each
other such that in the absence of an applied electric
field, the waveguides are synchronous. That is, a light
wave propagating in one waveguide will be coupled to
the adjacent one producing a switch in light path.10-12

When an appropriate voltage VT is applied to the
electrode, the synchronism between the waveguides is
broken and the light propagation will remain in the
waveguide originally excited as illustrated in Fig. 1 (a).
For simplicity, the coupler waveguide -switch from here
on will be represented as shown in Fig. 1(b).

Module Subunits

The heart of the programmable computation module
is an adder. Addition in residue arithmetic is essen-
tially a shifting operation. The input light beam is
shifted by K positions for the operation +K as illus-
trated in Fig. 2 for modulus 5. One possible imple-
mentation of a modulo 5 adder is shown in Fig. 3. With
this design, the electrode voltages of all the coupler
waveguide switches are initially set at VT. The light
wave injected into the input of the adder will therefore
propagate inside the same waveguide through the adder.
To program the device for the +2 operation, for exam-
ple, the electrode voltage of the corresponding row of
couplers is changed to 0. Thus, when the light propa-
gation reaches that particular set of coupler waveguide
switches, the light wave will be coupled into the adjacent
waveguide, changing the optical path. The electrode
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Fig. 2. Modulo 5 addition.
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Fig. 3. Implementation of Modulo 5 adder (not to scale).
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Fig. 6. (a) Transform table for Modulus 5 (b = 2); (b) Modulo 5
multiplication using the homomorphic approach.

voltages are maintained at constant levels of VT or 0 by
connecting the electrodes to a set of S-R flip-flops. The
adder can be programmed by sending an electric pulse
to the S input of the appropriate flip-flop, triggering it
to change state. Alternatively, we could let the initial
electrode voltage of all the couplers be 0 and program
the adder by changing the electrode voltage of a par-
ticular row of coupler switches to VT. The alternate
design of a modulo 5 adder is shown in Fig. 4. However,
we generally find that it is easier to trace the light path
with the former design, and to make the devices easier
to study, we shall make use of the former design in this
paper. We shall also use the term on to describe the
state where coupling occurs at the coupler switch and
term off for the state where the light propagation will
remain in the same waveguide.

Subtraction can be performed with the use of the
additive inverse. The additive inverse -K 1mj of a
residue number K is defined such that

IK + -K|jmi mi .
There is a fixed one-to-one correspondence between

a residue number and its additive inverse. The additive
inverse transformation can therefore be implemented
by a fixed map. And by adding this transformation
map to an adder, one can convert it into a subtractor as
shown in Fig. 5 for modulus 5.

Multiplication can be implemented directly by using
mi maps for the operations of XO, X1, X2, . . ., X(i -
1). Alternatively, one can make use of a homomorphic
approach where a modulo mi multiplication is converted
into a modulo mi - 1 additive operation. A logbK-like
forward transform is first performed on the operands.
A modulo m - 1 addition is then performed, and the
sum is inverse transformed by a bK-like transform to
obtain the product of the two original numbers. The
transform table for modulus 5 is shown in Fig. 6(a), and
the process is illustrated schematically in Fig. 6(b).
Although the logb K-like transformation for the value
0 is not defined, it is known that if either the multiplier
or the multiplicand is 0, the product is 0. A modulo 5
multiplier is shown in Fig. 7 using this homomorphic
approach. We note that for a modulo 5 multiplication,
a modulo 4 addition is performed. Thus, in order to
convert a modulo 5 adder into a modulo 5 multiplier, the
modulo 5 adder should be designed in such a way that
it can be easily converted into a modulo 4 adder. This

0 1

S 0

S -2
R

S x4R

Fig. 7. Implementation of a Modulo 5 multiplier.
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can be achieved with the design shown in Fig. 8. While
the concept can be applied to an adder of any modulus,
we should note that this homomorphic approach can be
used only if the modulus is prime.

Mod 5 Convertible to Mod 4 Adder
C = 0 Mod S Adder
C =I Mod 4 Adder.

Fig. 8. Modulo 5 adder convertible to Modulo 4 adder.

Fig. 9. Interconnection of Modulo 5 computation modules.
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One feature of this design is that the input, output,
and programming controls are all represented spatially
in the same way. This allows the interconnection of
these devices for sequential operations. The outputs
of one module can be connected directly to the inputs
of the next module or it can be used to program the map
of the next adder as illustrated in Fig. 9. An electrical
pulse is sent, to the first multiplier to program it to
perform X XiX mj, where mi is the modulus. A light pulse
is then injected into the adder at the spatial position
corresponding to Y mY . The exit position of the light
beam would correspond to [X X Yj mi. A fast avalanche
photodiode is connected to each output waveguide.
The exiting light pulse will be detected by the photo-
diode, generating an electric pulse. The electric pulse
in turn triggers the corresponding flip-flop of the next
adder, setting it for the +.X X Ylmi operation. An-
other light pulse is then injected into the input of the
second adder at the position corresponding to I Z Mi.
The position where the light pulse exits will represent
the sum of X X Y+ Zmi.

Programmable Multipurpose Computation Module

With the subunits described above, we can proceed
to describe the multipurpose programmable computa-
tion module. The module will contain four distinct
parts as shown in Fig. 10. Each of these subunits can
be turned on and off individually, allowing the different
combinations of the subunits to perform various com-
putation operations. However, it is more complicated
than simply stacking all the subunits together. Special
attention must be paid to the case of +0 and XO by
noting that X + 0 = X, X-0 = 0, 0-Y = 0, and X-1 = X.
Furthermore, the modulus mi adder must be modified
to perform modulo mi - 1 addition, and the I -K Imi
additive inverse transform must be converted into a
-K Imi - transform when the module is programmed

to perform multiplication and division. A possible
design of the programmable multipurpose computation
module is shown in Fig. 11.

The multipurpose computation module can be pro-
grammed to perform +, -, X, and - arithmetic opera-

1t

*0t

Fig. 10. Conceptual design of programmable multipurpose com- Fig. 11.
putation module.
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Implementation of programmable multipurpose compu-
tation module.
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tions with simple binary controls. For example, to
perform modulo 5 addition, the subunits for log2K-like
transform, additive inverse transform, and 2-like
transform are all turned off. That is, a light pulse in-
jected into any of the mi input ports will propagate
undeviated along the same waveguide through these

subunits. With these units off, the module would be
essentially the simple adder shown earlier in Fig. 3. To
perform subtraction, the additive inverse transform
I -K mi unit is turned on, changing the light path ac-
cording to the transform map shown in Fig. 6. We note
that while operating in the addition and subtraction

y
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Fig. 12. Programming of computation module for: (a) addition; (b) subtraction; (c) multiplication with electrode leads rerouted; (d) multi-
plication with alternate arrangement; and (e) division.
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Fig. 13. Evaluation of polynomial with a single map.

modes with the log2K-like transform unit off, an input
to the *0 control has no effect on the light path. The
position of the exit beam would therefore be the same
as that of the input beam, performing in effect the +0
operation. The programming of the computation
module for addition and subtraction operations is il-
lustrated in Figs. 12(a) and 12(b).

In programming the computation module for multi-
plication, there are two possible approaches. The
module can be connected as a multiplier by rerouting
the electrode leads to perform the log2K-like transform
on the multiplier value (X). The 2Klike transform
unit is turned on to inverse transform the sum as illus-
trated in Fig. 12(c). With the second approach, both
the multiplier (X) and the multiplicand (Y) values are
transformed by computation modules, as illustrated in
Fig. 12(d). This approach has two advantages. First,
the connection of the electrode leads do not have to be
changed, allowing the module to be switched back to
addition mode when desired. Second, it provides more
flexibility in performing division. Observe that the
extra coupler switch at the left lower corner in Fig. 11
is necessary for the module to be programmed in this
mode. The coupler is turned on together with the
log2K-like transform unit at the top. It keeps the
transformed 0 output of the multiplier from setting the
*0 control of the second module. If the value of the
multiplier X is 0, the *0 control of the second module
is turned on, and the x0 operation is performed. If the
multiplier is 1, its log2 K-like transform is 0. The extra

coupler terminates the signal, and the second module
performs a +0 operation by letting the light to exit at
the same position as it entered. This bypass would be
equivalent to performing an XI operation.

Before we illustrate how the module can be pro-

grammed for division, some comments on the division
operation in residue arithmetic are in order. Division
can be performed using the same homomorphic ap-
proach, converting a modulo mi division into a modulo

mi-1 subtraction. However, this can be done only if

the quotient is an integer (i.e., no remainder). There
are methods that can be employed for general divi-
sion,2 13 but they all require cumbersome sequential
procedures. Furthermore, they provide only a round-
off result since fractions cannot be represented in the
residue number system. For this reason, residue
arithmetic is generally applied to problems that do not
require division operation such as those often encoun-
tered in signal processing. Nevertheless, it would be
useful to be able to perform division even if it is limited

to the remainder zero case. One operation that requires

such a division operation is scaling. In order to keep the
values within the range of the residue number system,
it may be necessary to periodically scale the values down
by a factor of K. We shall show later that scaling can
be achieved by division if K is a value of one of the
moduli or the product of two or more moduli. The
programming of the computation module for the divi-
sion operation is illustrated in Fig. 12(e). An

I-KJmi_1

additive inverse transform is required for the divisor
after the log2K-like transform. A

|-KIn,

transform can be changed into a

I-KJmi-1

transform by shifting down the values of the I -K I
transform by 1. Referring back to the module design
shown in Fig. 11, the down shifting is performed by the
set of three switches at the fourth row. They are turned
on together with the log2 K-transform unit.

Mathematic Computation

To demonstrate how the computation modules can
be interconnected to perform various mathematical
calculations, we first apply them to the evaluation of
polynomials. As discussed by Huang et al.,' a poly-
nomial may be evaluated using a single map. For ex-
ample, the modulo 5 map for the computation of X3 +
4X2 + 3X + 2 is shown in Fig. 13. However, to generate
that map, one would require the help of some external
intelligence. The routings of the mi possible inputs
have to be computed beforehand. This implementation
is therefore not easily programmable. An alternative
is to utilize a set of fixed maps for Xn, X n-1, . . ., 2
functions in conjunction with the computation modules
as shown in Fig. 14. To program the modules for the
computation of X3 + 4X2 + 3X + 2, for example, the
coefficients 1, 4, and 3 are entered into the multipliers.
Light pulses are injected into the inputs of the multi-
pliers at the ports corresponding to the value of input
X. The adders would be set by the output of the mul-
tipliers for +(X3), +(4X2 ), and +(3X) operations.
Another light pulse is then entered into the first adder
at input port 2, and the position where the light pulse
exits would correspond to the value of X3 + 4X2 + 3X
+2.
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The computation time would be equal to the time
needed to set the adder module plus the propagation
time through four modules., The propagation time
through a single module of 0.5-in. (1.27-cm) size would
be about 40 psec. The set time of the module is the sum
of the detection delay of the photodiode, the switching
delay of the flip-flop, and the switching time of the
waveguide coupler. It is possible to achieve a set time
under 1.5 nsec for the computation module. 5 -8 "10 We
may further assume that an additional 1.5 nsec is re-
quired for the light pulse to pass through the module
and to reset the flip-flops. If the coefficients remain
unchanged, the throughput rate would be about 1/(3.12
nsec) = 320 MHz. Due to parallelism of the arrange-
ment, the computation time is approximately the same
for polynomials of any order.

One important application of the numerical optical
computer is the multiplication of matrices. It can be
extended to a number of transform operations such as
DFT, Hadamard transform, etc. We shall examine the
general case of matrix multiplication, [A]MXN[B]NXP
= [C]Mxp. The coefficients of the fixed master matrix
[B]Nxp are stored in the modules as multipliers as
shown in Fig. 15. The values of the matrix [A]MXN pass
through the multipliers row by row setting the corre-
sponding row of adders. Light pulses are entered into
the first adder of each row, providing in parallel the
values of the first row of [Clj] at the output. The flip-
flops are then reset, ready for the entries of the next row
of [A]MXN. The total computation time is equal to M
set-reset times of the module, and the number of com-
putation modules required is 2NP. For example, to
multiply two 10 X 10 matrices, the computation time
would be about 3(10 + 0.04N) nsec if we assume a

module set-reset time of 3 nsec and the use of 200
computation modules for each modulus. When N is
small, the propagation delay will be negligible as com-
pared with the set-reset time of the module. If N is
large, however, the throughput rate would be signifi-
cantly reduced by the propagation delay. Moreover,
the optical loss through so many modules would be too
high for the output to be detected unambiguously.
Both of these problems can be alleviated with the use
of pipelining. Instead of propagating a light pulse di-
rectly through all N modules, the summation can be
partitioned into 2 parts where k is an integer. The
concept of pipelining will be discussed later in better
details when the implementation of residue to mixed
radix conversion is presented. We may also note that
the number of modules can be reduced to 2N at the
expense of computation speed by sequentially com-
puting each value of [Ci1j.

Encoding
Before computation can be performed with the

modules, the input must be encoded into its equivalent
residue number in the appropriate spatial representa-
tion. The simplest approach may be to convert the
analog input into an intermediate binary form with the
use of a conventional A to D converter or the integrated
optics implementation scheme introduced by Taylor.14
The binary input can then be converted into residue
numbers in the spatial form with the arrangement
shown in Fig. 16. We note that for modulus 5,

20 = 1,21 =2,22 = 4,23 = 3,
24= 1, 25 = 2,26 = 4, 27 = 3.

For example,
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Fig. 15. Matrix multiplication.

Fig. 16. Encoding into residue number system.
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58=1 1 1 0 1 0,
15815 = 11X (25) + 1 X (24) + 1X (23) + 0X (22) +1 X (21)

+ 0 X (20)Is

=llX2+Xl+lX3+oX4+lX2+oX115

= 12 + 1 + 3 + 215 3.

Since all the modules can be set in parallel, the time
required for encoding is equal to one set time plus the
propagation time through all the modules.

Decoding

Decoding a residue number is a more complicated
operation than encoding. The most popular approach
is to convert the residue number into the mixed radix
system.2 The reason is that the conversion procedure

aI a2 a3 a a5

X = aI. a2(2).a 3(2 -3
)-a 4(2 -3 '5).a 5 (2'3. 5 .7)

Fig. 19. Pipelined residue to mixed radix conversion.

can be performed with the same type of hardware used
for the basic residue arithmetic computations. The
algorithm is shown schematically in Fig. 17 for moduli
2,3,5,7, 11. 11/KI mi represents the multiplicative in-
verse where IK X 1/K m i1 = 1. The drawback is that
the procedure requires N -1 sequential steps where Nis the number of moduli used. Since encoding and
computation can be performed at a throughput rate of1/(one set-reset time of a module), this sequential de-
coding procedure would seemingly be a bottleneck for
the entire process. Fortunately, the conversion pro-
cedure can be pipelined. To pipeline the operation, it
is necessary to delay synchronously the coefficients
obtained earlier in the procedure such that all the
coefficients would advance through the decoding pro-
cedure at the same rate. This necessary delay can be
accomplished by setting an adder for +K, where K is the
number to be stored temporarily. The number is re-
called by sending a light pulse into the input port cor-
responding to 0. Alternatively, it can be achieved with
the use of the simple data register module shown in Fig.
18. We also note that the multiplying factors /mi i
are fixed, and they can be implemented by fixed maps.
The design of a pipelined residue-to-mixed radix con-
verter is illustrated schematically in Fig. 19. The input
residue numbers are first stored in the data register
modules (represented by boxes with bold lines). At the
same time, the computation modules are set by r2 for
the -aI operation. Light pulses are then injected into
the data registers to recall the residue numbers. The
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light pulses propagate through the computation mod-
ules performing -a 1 operation and then through the
fixed maps for Xl1/21mj' The output is stored in the
next set of data register modules, and the next compu-
tation modules are set for the -a2 operation. Simul-
taneously, the second entry of the residue numbers are
entered into the first set of data registers, ready for the
first step of computation. The timing sequences of the
input, the data recall light pulses, and the output are
shown in Fig. 20. We see that no part of the converter
sits idle at any time, and the conversion is performed at
a constant throughput rate of 1/(one set-reset time) of
a computation module. The pipelining concept can be
applied to any sequential computation procedure. The
encoding, computation, and decoding can therefore be
performed at the same throughput rate. Assuming
once again that the set-reset time of a computation
module is 3 nsec, a numerical optical computer with a

system throughput rate of over 300 MHz would be

possible. We have also been able to apply this design
concept for the computation of F.F.T., correlation and
convolution, all with essentially the same throughput
rate.

Residue to mixed radix conversion is a very important
procedure in residue arithmetic. Besides decoding the
output, the conversion is used for other important op-
erations2 such as sign detection, magnitude comparison,
and overflow detection. Pipelining the procedure is
therefore an important concept in an optical numerical
computer using residue arithmetic. The original resi-
due number may be stored in a cascade of data registers,
while it is being converted into the mixed radix form for

condition check. The residue number is moved down
at the same rate as the conversion process, and the
computation is continued after the checking is com-
pleted. Alternatively, after the residue numbers are
converted into their mixed radix equivalent for sign

detection or overflow detection, they can be converted
back into the residue form for further computation.
The inverse conversion (mixed radix to residue) can be
achieved very easily and once again in one set time of
the computation module.

Let us take the case where the moduli are 2, 3, 5, 7.
The residue representation can be written as x =
(ri,r3,r5,r7) and the mixed radix representation as x =
[al,a 2 ,a3 ,a4] = a1 (1) + a 2 (1 X 2) + a3(1 X 2 X 3) + a 4 (1

X 2 X 3 X 5). For example, to calculate the residue for

modulo 3,

r3= Ia I3 + a21213 + a31613 + a413OI313.

Since 13013 = 1613 = 0, the expression can be simplified
to r3 = Ia 113 + a2 121313. The implementation is il-
lustrated in Fig. 21.

Scaling

Overflow is a much more serious problem in residue
arithmetic than in conventional arithmetic which uti-
lizes a weighted number system. Not only is the residue
for each individual modulus cyclic, the residue number
system is also cyclic over its range M. The same rep-
resentation is repeated for integers K, K + M, K + 2M,
etc. Overflow detection is not automatic as with
weighted number systems, and it is generally wise to
avoid situations where overflow may occur.1 6 For some
computations, this would require a periodic down-
scaling of the residue numbers. To do this, division
operations would be necessary. As pointed out earlier,
general division cannot be carried out easily, and scaling
by an arbitrary factor would not be practical. One can,
however, scale a residue number by a factor equal to the
value of one of the moduli or a product of two or more
moduli. For example, for a system with moduli 2,3,5,
7, we want to scale down a number X = 191 = [1, 2, 1, 2]
by a factor of 7. Since the divisor 7 is also a modulus,
the corresponding residue I X 17 = 2 would be equal to
the remainder when the number X is divided by 7.
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Fig. 21. Mixed radix to residue inverse conversion.

Therefore, X - I X 17 is always exactly divisible by 7, and
the homomorphic approach can be applied for the di-
vision operation. However, for modulus 7, the divisor
is equal to 0, and division by 0 is not defined. The
general approach is to proceed with the division while
ignoring modulus 7. The residue of the quotient for
modulus 7 is then obtained using the extension of base
procedure.2 It is essentially a residue to mixed radix
conversion. The pipelined extension of base operation
is shown schematically in Fig. 22. The entire scaling
operation can be pipelined to maintain the throughput
rate of 1/one set-reset time of a computation module.

Comments
The light sources to be used with the computation

module are likely to be semiconductor pulse-modulated
laser diodes, which are integrated with the module.
This combined use of optical and electrical signals can

be expected to continue as the numerical optical com-
puter techniques evolve. It is therefore important to
optimize the system designs with regard to the opti-
cal-electrical interfaces due to its impact on the com-
puter speed and fabrication complexity.

There is a very useful feature in the use of computa-
tion modules for residue arithmetic that is shared by
other implementations of the mapping approach. The
operand and the operator are combined in a single
representation. For example, to perform addition be-
tween an input value and a stored value with a con-
ventional computer, the stored value has to be recalled
from storage and entered with the input value into a
fixed operator (adder). Implementing residue arith-
metic with computation modules, the stored value is
entered into the module as an operator (i.e., +K). The
state of the module represents both the operand (K) and
the operation (+). The module is therefore functioning
simultaneously as the adder and the data storage device.
This feature eliminates the need of a separate memory
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for values such as the coefficients of a reference function

in correlation detection operations. Without the access

time delay in reading out the stored values, the inputs
can be processed at a very high rate, especially for

computations that have to be performed repeatedly.
In this paper, we emphasized the use of the multi-

purpose computation module to demonstrate its ver-
satility. We should note that some of the functions,
such as binary to residue conversion, can be imple-

mented with less complex devices. However, the use

of a single mass-produced programmable module may

in the end be more economical.

Conclusion

We have presented the concept of an optical pro-

grammable multipurpose computation module for
residue arithmetic. A possible design for the module
using directional coupler waveguide switches is also

presented. The modules can be interconnected to
perform various functions, from arithmetic computa-
tions to coding and decoding. The computation module

design lends itself to parallel processing structure and
pipelining. We have shown that through pipelining, the

system throughput rate can be maintained at 1/one
set-reset time of a computation module. Much of the
hardware required for the construction of such a nu-
merical optical computer has been demonstrated.
However, the fabrication technology has not yet been
developed to a stage where all the components can be

put together in a small integrated package. Never-

theless, such a level of technology is attainable, and it

raises the possibility of having a new generation of

electrooptical computers, capable of performing, for
example, a 1024-point FFT in microseconds instead of
milliseconds.

We have presented material in this paper that is quite

specific as to the number systems, architecture, and
hardware realization. However, numerical optical

computing is a broad field that encompasses many de-
sign concepts. Much future effort is needed in this area

to develop new approaches, hardware components,
system architecture, and applications.

The authors thank W. Holsztynski for his valuable
discussions and comments. This research was sup-
ported by the Ballistic Missile Defense Advanced
Technology Center under the direction of J. McKay.
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