
Holographic optics for a matched-filter optical processor
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The requirements on and the performance of holographic Fourier transform lenses for a matched-filter opti-
cal processor are discussed. The holographic aberrations were analyzed using a ray-tracing computer pro-

gram, and holographic lenses were fabricated and assembled into an optical processor. Analysis and experi-

mental results show that holographic optics are capable of processing images of large space-bandwidth prod-

uct and can be an attractive alternative to conventional optics.

1. Introduction

Coherent optical processors have proven useful for
a number of applications.' The unique properties of
holographic optical elements offer a number of advan-
tages over glass lenses for use in optical processors.
Compared with conventional optics, holographic lenses
are thin and light weight. Made by a photographic
process, they are potentially inexpensive. They can be
made in reflection as well as transmission, allowing for
compact folded light paths. Additional advantages
include the possibility of multiple functions in the same
area of a given hologram (such as focusing, beam
splitting, and spectral filtering), multiple superimposed
holograms, the ability of a hologram on a curved surface
to function independently of shape of the surface, and
the ease of recording holographic elements with non-
spherical wavefronts.

Reflection holograms recorded in dichromated gelatin
can, satisfy the requirements of an optical processor for
high diffraction efficiency, high angular bandwidth, and
low optical noise.2 Dichromated gelatin holograms of
good optical quality can diffract over 95% of the incident
light into the first diffracted order and can have angular
bandwidths of several degrees.

We analyzed the aberrations of holographic optics in
a matched filter optical processor and fabricated and
tested an optical processor using holographic lenses.
We found holographic lenses to perform well and con-
clude that they are an attractive alternative to con-
ventional lenses for those applications that can benefit
from their unique properties.
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II. Analysis of Optics for a Matched-Filter Processor

For comparison, a conventional matched filter optical
processor and its holographic optics counterpart are
shown in Figs. 1(a) and 1(b), respectively. As previ-
ously noted, the striking properties of the holographic
optical processor are its compact folded geometry and
its light weight. Referring to Fig. 1, the input (signal)
transparency S, which has amplitude transmittance
s1(x), is illuminated by a plane wave from the collimator
H, (or La). We use 1-D notation for simplicity; the
extension to two dimensions is obvious. In the ideal
case, the first Fourier transforming element H1 (or Ll)
causes the wavefront S1(u) [sl(x)], the Fourier
transform of sl(x), to appear at the filter plane. The
matched filter has been made to have an effective
transmittance S'(u) = 15[s 2(x)I1*, where s2 (x) is a ref-
erence image, and * denotes the complex conjugate.
The second Fourier transforming element (also referred
to as the reimaging element) H2 (or L2 ) causes the
Fourier transform of Sl(u)S*(u), the wavefront
emerging from the filter, to appear at the output plane
OD. For simplicity, assume that the focal lengths of the
two Fourier transforming elements are the same. The
amplitude of the output is given by

g(x) = s(x) * s2(x) =E sl(xl)s2(x + xl)dxl, (1)

which is the desired cross-correlation. In Eq. (1),
constant factors that depend on optical parameters are
ignored. If the input image is simply the reference
image shifted so that it is centered at x0, the output
becomes the autocorrelation

g(x) = f s(x1 )s*(x + xo + x1 )dx,, (2)

which has its peak at -xo:

AO = g(-xO) = 3' Is(xi)I 2 dx= J- S(u)I 2 du, (3)

where the second line of the equation above results from
Parseval's theorem.

1 March 1979 / Vol. 18, No. 5 / APPLIED OPTICS 631



As with conventional optics, holographic optics have
aberrations that limit the performance of optical pro-
cessors. For conventional optics, aberrations can be
reduced by the use of well designed multiple-element
lens systems. However, a similar reduction of aberra-
tions is usually not practical with holographic optics.
Holographic elements ordinarily must be separated by
a considerable distance in order to separate the desired
order of diffraction from the spurious ones, although
this effect is minimized by volume phase holograms.
For reflection holograms, the element following the
hologram cannot be allowed to block the beam incident
on the hologram. Furthermore, due to their off-axis
nature, a group of hologram lenses would be more dif-
ficult to align than on-axis optics. Besides, the use of
multiple-element holographic optics would negate the
advantages of light weight and low cost. For these
reasons, we restricted our attention to simple single-
element holographic lenses on plane substrates.

Unlike a simple lens with spherical surfaces, a holo-
graphic lens recorded with spherical wavefronts will
introduce no phase errors if illuminated with the
wavefront for which it was made. However, as the
curvature and field angle of the incident wavefront
differ from the reference beam used to record the ho-
logram, aberrations appear, as analyzed by Cham-
pagne.3 The chromatic aberrations are not a factor
since the optical processor can operate with mono-
chromatic light of the same wavelength used to record
the hologram. Since a hologram lens in an optical
processor operates on a complex wavefront comprised
of the sum of many wavefronts of various field angles,
it necessarily exhibits aberrations. 4 The nonchromatic
holographic aberrations are the limiting factor in the
performance of the processor.

L, S Lo F

L2

OD

(a)

(b)

Fig. 1. Configurations of optical processors using (a) conventional
optics and (b) holographic optics.

A. Standard Deviation Criterion
In order to specify the maximum tolerable aberra-

tions that the Fourier transforming elements can be
allowed to introduce, it is first necessary to determine,
in general, the effects of aberrations in the Fourier
transforming elements on the correlation output of the
matched filter optical processor. However, due to the
operation of the matched filter combined with the space
variance of the aberrations, it is not possible to analyze
the entire system by conventional wavefront analysis
or ray-tracing methods. Therefore, it is necessary to
simplify the analysis, say, by treating only one element
at a time. In order to judge a single Fourier trans-
forming element, we used a standard deviation error
criterion, which is derived below. This derivation
applies to conventional as well as holographic optics.

Referring again to Fig. 1, suppose that H, introduces
a phase error 01(x). Strictly speaking, k, is a function
not only of the hologram coordinate, but also of the
coordinate u of the filter plane, that is, 01 is space var-
iant. We will continue this derivation with the sim-
plification that 01 is space invariant; a justification for
this simplification will be given later. A further sim-
plification is that the phase error 01 is introduced near
the input plane. This is strictly true for certain pro-
cessor geometries and approximately true for slowly
varying phase errors for the geometry of Fig. 1. The
justification of the latter simplification relies on the fact
that slowly varying phase wavefronts change slowly as
they propagate. Since the phase errors involved are,
in fact, small and slowly varying, this is a good approx-
imation. Thus, for a slowly varying phase error 01, the
wavefront arriving at the filter is proportional to

[S(u) exp(- Oi uxo)j * Jjexp(jol)],

where X is the wavelength of light, f is the focal length
of the Fourier transforming element, x0 is the transla-
tion of the center of the input from the optical axis, and
* denotes convolution. This wavefront, multiplied by
the filter function S*(u), is approximately an apodized
plane wave. (If no phase errors were present, its phase
would be -2ruxo/Xf.) It is Fourier transformed and
brought to focus in the output plane by H2, which in-
troduces a slowly varying phase error 12 (which depends
on x). The amplitude of the wavefront at the output
is given by

g(x) = S({|S(u) exp(j uxo)

* 5[exp(j40)I1S*(u) exp(i2)) * (5)

For the geometry of Fig. 1, the matched filter introduces
only distortion,5 which is ignored here since it has no
effect on the detectability of the output peak and can
ultimately be corrected by postdetection compensation.
If no phase errors are present, 01 = 02 = 0, then Eq. (5)
reduces to Eq. (2).

The effects of phase errors 2 are made more clear by
setting 1 = 0 in Eq. (5), which then reduces to

g(x) = J S(u)J2 exp[.b 2(u)] exp i u(x + x o) du. (6)
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Evaluating at the central peak, x = -xo, the ratio of the
intensity of the central peak to its theoretical maximum
value is

R = Ig(-xo)1
2

AO

IJW IS(u)12 exp'0 2(u)du2

If IS(U)12d 12

|j) f S()10')k Wll 
k=O k! 3 SuO 2du

(j)k .. 2k=J_~ | ! E I)2sh (7)

where )k is a weighted average of the kth power of 0 2 (u).

The weighting function I S(u) 12 is simply the intensity
pattern of the wavefront emerging from the spatial fil-
ter. For reasons described later, this weighting function
can be approximated by a constant over the width of the
filter. For small phase errors, assuming <k < 1 for k
2 3, Eq. (7) becomes

2

R 1 - 2 + 2 - -a2,' ; (8)

where
2

a2 = (P2 -P)1/2 (9)

is the standard deviation of the phase error. That is,
for small phase errors, the autocorrelation peak inten-
sity is independent of the type of phase error present
and depends only on a2. This relationship between the
normalized intensity and the standard deviation
(sometimes loosely referred to as the rms) of the phase
error is the familiar formula for the Strehl intensity.
This is expected since the function of H2 is essentially
to bring to focus a pointlike image. Linear phase errors
introduced by H2 shift the peak in the output plane
(distortion) without degrading the peak itself. Since
slight position errors may be acceptable or calibrated
out of the system, linear phase errors should not be in-
cluded in the calculation of a2-

The effects of phase error 01, introduced by the first
Fourier transforming element H1 , are made more clear
by setting 02 = 0 in Eq. (5), which then reduces to

g(x) = 3 s(Q) expU01 ( + xo)]s*( + xo + x)d4. (10)

Evaluating at the peak, x = -xo, this becomes

g(-Xo) = 3' Is(t)I~expLk(Q + xo)]d#. (11)

Again expanding the exponential and interpreting the
integral as a weighted sum of the phase errors, we find
that for small phase errors

2 R 1-o , (12)

where a1 = (02 _ >1_ )1/2 is the standard deviation of the
phase error introduced by H1. Unlike a2, a1 includes
the contributions from linear terms. Thus, the nor-
malized peak intensity of the autocorrelation output of
a matched filter optical processor decreases with the
square of the standard deviation of the phase error not

only for the second reimaging Fourier transforming el-
ement, but also for the first Fourier transforming ele-
ment. This relationship allows the use of a very simple
quality criterion for evaluating the Fourier transforming
elements for a matched filter optical processor.

The approximations assumed in the derivation of Eq.
(5) were that a, be small, slowly varying, and space-
invariant. While o1 generally will be small and slowly
varying, it will not be space-invariant. In most cases,
a, increases with increasing field angles or, equivalently,
with increasing u I in the filter plane and is maximum
for u coordinates at the edge of the filter plane. The
justification for the space-invariance approximation is
as follows. Since the purpose of the matched filter
optical processor is to produce a sharp peak in the out-
put plane, it is the value of a, for points near the edge
of the filter plane that determines the performance of
the processor. Using a, at the edge of the filter is ap-
propriate, since the information at the edges of the
matched filter is ordinarily emphasized in order to in-
crease the selectivity of the filter and increase the
sharpness of the autocorrelation peak.6 This is usually
unavoidable since it is difficult to record the large dy-
namic range of S* (u) in the matched filter; but it is also
highly desirable. The wavefront emerging from the
matched filter has an intensity distribution that is more
nearly constant or of an annular shape, rather than
being sharply peaked in the center as I S (U) 12 would be.
In this case, the output is no longer truly an autocorre-
lation; it more closely resembles a point image. Thus,
we are led to base our analysis of the performance of
element H1 on the value of a1 for field angles corre-
sponding to the edges of the filter.

A further justification of basing the analysis on a1 at
the edge of the filter is as follows. Suppose that for a
given input size and system design, a1 goes beyond a
certain critical level (the value of that critical level will
be shown later) for positions in the filter plane with I u I
> UmaxI. Then an aperture should be placed at the
filter plane to block out the portion of the wavefront for
which Iul I> umaxl, since that portion of the wavefront
will lead to a degradation rather than a reinforcement
of the autocorrelation peak at the processor output.
That value of I UmaxI defines the size of the filter used
and, consequently, the maximum spatial frequency
component of the input transparency that is used.
Thus, the maximum usable space-bandwidth product
of the input and the resolution at the output is deter-
mined by the value of I Umaxl for which a1 goes above the
critical level. One can therefore ignore the space vari-
ance of the phase error 01 and concentrate on the value
of a, as computed for the edge of the matched filter.

To test the validity of Eq. (12) and to establish more
accurately the effects of phase errors 01, we digitally
computed the aberrated autocorrelation integral of Eq.
(5) with 02 = 0 for the hypothetical 1-D object shown in
Fig. 2(a) with various phase errors 01. Figure 2(b)
shows the central portion of the autocorrelation output
with no phase error (uppermost curve) and with a1 = 1/16

wavelength nth-order phase error for n = 1-4, respec-
tively. That is, one curve results from a linear phase
error of 0.2165 wavelengths peak-to-peak, the second
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from a quadratic phase error of 0.2097 wavelengths, etc.
The peaks of all four curves fall into the range of
0.842-0.868, in very good agreement with the value 1 -
(2ir/16)2 = 0.846 predicted by Eq. (12). Figure 2(c)
shows the same thing with a, = 1/8 wavelength. In this
case, the peaks fall in the 0.478-0.567 range, not in very
good agreement with the 0.383 value predicted by Eq.
(12). Figure 2(d) shows the same thing with a1 = 1/4

wavelength. From Figs. 2(c) and 2(d), it is apparent
that Eq. (12) is no longer reliable for a 1/8 wavelength.
However, for a1 much greater than 1/8 wavelength, the
autocorrelation peak would no longer be detectable.

From the above results, we can formulate the fol-
lowing standard deviation phase error criterion: the
standard deviation of the total phase error should be
kept to 1/8 wavelength in order to insure that the auto-
correlation peak remain easily detectable. This cor-

LQ

U.D 1,U -U.25 0.0

(a) (b)

0.0 0.25 -0.25 0.0

(C) (d)

LIf

0.0 0.25 °-0.25 0.0
(e) (f)

Fig. 2. Computer simulation of matched filter output with aberra-
tions: (a) test object; (b)-(f) central portions of aberrated autocor-
relation outputs: (b) no phase error (uppermost curve) and a = A/16
nth order phase error, n = 1-4; (c) a = /8; (d) a = /4; (e) 20%

central stop, no phase error; (f) 20% central stop, a = /4.
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responds to the following peak-to-peak errors (in
wavelengths): 0.433 of linear; 0.419 of quadratic; 0.660
of cubic; and 0.468 of fourth-order. As shown in Fig.
2(c), a1 = 1/8 wavelengths results in a greatly reduced,
but still detectable, autocorrelation peak; and as shown
in Fig. 2(d), a1 = 1/4 wavelengths results in an autocor-
relation peak that would be lost in the noise.

As discussed earlier, it is desirable to record the
matched filter in a nonlinear way so as to block the lower
and emphasize the higher spatial frequencies. In a
computer simulation, this effect was approximated in
Eq. (5) by multiplying S*(u) by a high-pass stop of the
form [1 - rect(u/ua)]. As expected, this resulted in an
output peak that is much sharper and has a higher SNR.
An example of this is shown in Fig. 2(e), for which a1 =
0, and the high-pass stop was 20% of the total filter-
plane aperture width. Figure 2(f) shows the results
with a1 = 1/4 wavelength nth order phase error for n =
1-4, respectively. Since the output peaks are easily
detectable above the noise, these curves suggest that the
emphasis of the higher spatial frequencies also serves
to make the process less sensitive to the slowly varying
phase errors. Thus, the standard deviation phase error
quality criterion developed above for the case of linear
filter recording should be taken as a lower bound on the
performance of the Fourier transforming lens.

B. Aberration Computation

Champagne's equations3 can be used to compute the
third-order holographic aberrations, but they are in-
convenient for computing the standard deviation phase
error a. Furthermore, they do not include higher-order
aberrations without adding considerable complexity.
Consequently, to analyze and optimize accurately and
efficiently the design of the holographic optics, we used
a holographic ray-tracing computer program called the
Holographic Optics Analysis and Design (HOAD)
program, developed at ERIM.7

The hologram Hc shown in Fig. 1(b) is a collimator
and is reconstructed in exactly the same way that it was
recorded. Consequently, it has no holographic aber-
rations and produces an ideal plane wave.

In analyzing H1, the first Fourier transforming ele-
ment, it is important to note that, whatever aberrations
H1, introduces, if the same element is used to record the
matched filter, it is a matched filter of an aberrated
reference image. If the untranslated reference image
is used as the input, and the same aberrations are in-
troduced, it should correlate perfectly. This would
seem to indicate that a very poor lens could be used for
H1, and, indeed, that is the case if the image is not
translated in the input. However, as the input is
translated, the effective aberrations change, and the
correlation peak degenerates. Thus, the phase error of
interest is not the absolute phase error, but is the dif-
ference between the phase error when the center of the
input image is translated to x0 and the phase error when
the center of the image is on the optical axis (i.e., as the
matched filter was recorded). Consequently, some of
the requirements for the Fourier transforming lens, for
example, that the Abbe sine condition must be fulfilled,8
may be relaxed. Generally, the phase error differences



are minimized when the absolute phase error is mini-
mized, and low-aberration lenses are required for the
matched filter optical processor.

To analyze H1 , we considered one plane-wave spatial
frequency component of the input at a time, by tracing
crossed fans of parallel rays at a given field angle from
the input plane, through H1, to the filter plane. Often
the translation x0 of the input image relative to the
reference image is comparable in size to, or larger than,
either the input image or the reference image. (In many
applications, one of the two images covers a much
smaller area than the other-we refer to the smaller of
the two as the image of interest.) In that case, the
predominant term in the difference of the phase errors
is linear. That is, the predominant effect is that if a
plane-wave component of the image comes to focus at
u1 when the image is centered on the optical axis, then
it will come to focus at ul + Au when the image is cen-
tered at x0; and the linear phase term is proportional to
Au. The difference of the phase errors can be approx-
imated by computing the aberrations of the plane-wave
component of the input image with respect to the po-
sition ul in the filter plane (rather than computing the
aberrations with respect to its own image point at u 1 +
Au).

The analysis of H2 is simpler, since it only brings a
quasi-plane wave to focus at the output, and linear
phase errors are not considered significant. Because
of this, the requirements on H2 are not as stringent as
on H1 , nor are they as stringent as they would be for
some other types of processors.

C. Optimization and Analysis

Holographic optics has a somewhat different set of
parameters for design optimization than is available to
conventional optics. The over-all geometry of a holo-
graphic optical system can be adjusted by appropriate
choices of focal lengths, offset angles, and transmissive
vs reflective holograms. Since the gross imaging
properties of an individual holographic element do not
depend on the angular orientation or shape of its sur-
face, the angular orientation of the element with respect
to the rest of the system and the curvature of the surface
of the hologram substrate can be designed to minimize
aberrations. A hologram can be made at one wave-
length and read out at a second wavelength. The
thickness and refractive index modulation of a holo-
graphic element can be manipulated to produce a de-
sired Bragg angular and wavelength selectivity.
Analogous to conventional lenses, holographic elements
of a given focal length can have different shape factors,

OBJ

Fig. 3. Recording geometry for 100 offset Fourier transforming
holographic lens.

depending on the curvatures of the reference and object
beams used to record the hologram.

In general, aberrations tend to be minimized when the
offset angles are minimized, so the minimum offsets
allowed by the system geometry were used. It was as-
sumed that the processor operates at the same wave-
length, 514.5 nm, at which the holograms are recorded,
which also tends to minimize aberrations. In order to
keep the system as simple and economical as possible,
only single elements on plane surfaces were consid-
ered.

1. Before-the-Lens Processor
Using the HOAD program, we optimized the shape

factors of H1 and H2 and their angular orientations with
respect to the rest of the system. As depicted in Fig.
1 (b), H1 and the filter should be parallel to one another
and normal to the axis between them. Similarly, H2
and the output plane should be parallel to one another
and normal to the axis between them. (Note that the
input plane S is parallel to H1 , as shown, making it tilted
with respect to the S-H1 axis. If S is rotated to be
normal to the S-H1 axis, the output plane OD rotates
to become parallel to S, but tilted with respect to the
H2 -OD axis.) The recording geometry for H1 is shown
in Fig. 3 for a 10° offset, where the point source for the
object beam is located at the center of the filter plane,
and the reference beam is a plane wave conjugate to the
S-H1 axis. The recording geometry of H2 is the mirror
image of Fig. 3, where the point source for the object
beam is located at the center of the output plane, and
the reference beam is a plane wave conjugate to the
filter-H2 axis.

The HOAD program was used to compute a,, the
standard deviation phase error of H1, as a function of
field angle (or filter plane location), diameter D, of the
image of interest, translation x0 of the input, and focal
length. The performance can be determined, for ex-
ample, by fixing all the parameters except x0, then in-
creasing x0 until a1 equals 1/8 wavelength. This, along
with the diameter of the image of interest, defines D =
D, + 2xo, the greatest width of an image that can be
processed, that is, within which the image of interest can
be located and still produce a detectable correlation
peak. Combined with the field angle (corresponding
to the maximum spatial frequency component of the
image), the width gives the maximum space-bandwidth
product (number of picture elements) that can be pro-
cessed without a loss of resolution.

Two families of operating curves for a 100-mm
focal-length H1 are shown in Fig. 4. The varying pa-
rameters for the different curves are D, and the maxi-
mum spatial frequency, respectively. These curves may
be used as follows. If it is required that the resolution
of the matched filtering operation be equivalent to 20
cycles/mm in the input plane and that the image of in-
terest be detectable anywhere within a total image area
of 750 X 750 picture elements, the image of interest
could contain no more than 100 X 100 picture elements.
Two facts made evident by Fig. 4 are that the perfor-
mance improves if the image is demagnified (i.e., it
performs better for higher spatial frequencies, but
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Fig. 4. Performance of a 100-mm focal length Fourier transforming
holographic lens: the linear space-bandwidth product of the total
image vs the linear space-bandwidth product of the area of interest,
for various values of the width D, of the area of interest and of the
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Fig. 5. Translation x0 of the input resulting in a = /8, vs focal
length F, for various widths D, of the image of interest. A 100 offset
and 40-cycle/mm spatial frequency are assumed, making 10 mm

equivalent to 800 picture elements.

proportionally smaller image widths) and that there is
a trade-off between D, and D (i.e., the larger the image
of interest, the less it can be translated).

The aberrations of the second Fourier transforming
element H2 were also computed. Since it was found
that the aberrations of H generally were the limiting
factor in the performance of the system, the less inter-
esting results on H2 will not be given here.

A most important parameter is the focal length F of
the Fourier transforming elements. Using Cham-
pagne's equations, 3 it can be shown that, for a given
image size and field angle, third-order coma is propor-
tional to 1/F2, and third-order astigmatism is propor-
tional to 1/F. Consequently, the performance of the
processor improves greatly with increasing focal lengths.
As an example, Fig. 5 shows the translation x0 that re-
sults in a = 1/8 wavelength vs focal length for various
values of D,. A highest spatial frequency of 40 cycles/
mm and an offset of 100 were assumed. In this case, 10
mm is equivalent to 800 picture elements. Figure 5
indicates that a compact processor using elements with
short (100-mm) focal lengths can process imagery of a
few hundred picture elements on a side; and if long

(>1-m) focal lengths are allowed, the holographic optics
can handle imagery having thousands of picture ele-
ments on a side.

2. After-the-Lens Processor
An alternative to the configurations shown in Fig. 1

is to locate the input plane in a converging beam after
a transmissive first Fourier transforming lens,9 which
would allow for easy changes in scale by translating the
input along the optical axis. In this case, the first
Fourier transforming element, which could be combined
with the collimator, would produce a perfect converging
spherical wavefront. Nevertheless, the resulting Fou-
rier transform would be aberrated everywhere except
on axis (in addition to having a spherical phase factor
associated with the Fourier transform). The Fourier
transforming property of a converging beam is valid
only under the paraxial approximation.

In order to analyze the aberrations of the after-the-
lens Fourier transform geometry, consider a single
spatial frequency component of the input. For a given
spatial frequency component, the input can be modeled
as a constant-frequency holographic grating with re-
cording parameters RR = R = +, R = R = 0, and
ao and f3o are the angles corresponding to the spatial
frequency under consideration. For this analysis, we
use Champagne's notation and equations, 3 in which R
is the radial distance of a recording or reconstruction
point source from the hologram, a and are field angles,
and subscripts R, 0, C, and I refer to reference, object,
reconstruction, and image beams, respectively. For
simplicity, consider flo = 0, since the performance will
be symmetric in the x and y dimensions. The recon-
struction beam is the spherical wave converging to the
center of the matched filter plane and is given by RC =
-F and ac = Bc = 0. Then Champagne's equations for
the image location reduce to

R = Rc= -F,

sinai = sinao, or, al = ao a,

cosaj sinol = cosac sinf3c = 0;

(13)

(14)

(15)

and the coefficients of the third-order aberrations re-
duce to

S = 0 - = '

C.n= sin = - I

RI F
2

Cy = 0,

(16)

(17)

(18)

sin2 A sin2a (19)

Ay = A,,y = 0, (20)

where the coefficients S, C, and A are for aberrations
of the spherical, comatic, and astigmatic types, re-
spectively.

It is interesting to compare these aberrations with
those of the before-the-lens processor. For the be-
fore-the-lens processor, using the holographic element
shown in Fig. 3, the recording parameters are R l-,

Ro = F, aqR = 100, and OR = ao = o = 0; and for the
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reconstruction, Rc = , and ac and fic are variable. If
fic is set to zero and sina is substituted for sinac -
sinaR, it can be shown that the aberration coefficients
of the optimized holographic before-the-lens processor
are the same as those given above the after-the-lens
processor. The aberrations in the two cases are not
exactly the same, however, since a given plane wave
spatial frequency component of the input to the be-
fore-the-lens processor arrives at H1 off center by a
distance F sina. Nevertheless, using the HOAD pro-
gram it was found that, for the range of parameters
studied, the performance of the after-the-lens processor
differs very little from that of the holographic before-
the-lens processor.

In addition to allowing scale changes, the after-the-
lens processor allows for a distance of F between the
input and filter planes, as compared with 2F for the
before-the-lens processor. (This advantage is diluted,
however, since the before-the-lens processor can be
folded to reduce the 2F length back to F.) Further-
more, for longer focal length systems for which aF is
comparable with D, the Fourier transforming element
in the after-the-lens processor can be smaller than that
of the before-the-lens processor. A disadvantage of the
after-the-lens processor is that since the matched filter
is required to record an additional spherical phase fac-
tor, the matched filter itself will introduce aberrations
not present in the matched filter made for a before-
the-lens processor.5 9

3. Fourier Spectrum Analysis
The holographic Fourier transforming lenses were

also analyzed for use in simple Fourier transform optical
processors for performing Fourier spectrum analysis of
an input transparency. Such a processor would be
similar to the first half of the matched-filter optical
processor, with the output plane being located in place
of the matched filter. For this analysis, the distortion
of the output (linear phase errors) was ignored, and it
was assumed that the optimized holographic lens shown

10,000 .
X/

0 5,000/

in Figs. 3 with a 100 offset angle is used, and it was re-
quired that a not exceed 1/8 wavelength at 40 cycles/mm
in the input. Figure 6 shows the predicted linear
space-bandwidth product of the input that could be
Fourier transformed (which is proportional to the
maximum allowed width of the input) as a function of
the focal length of the holographic lens.

111. Hologram Fabrication

Dichromated gelatin plates were prepared by fixing
the silver halide out of 5 X 5-in. (12.7 X 12.7-cm) Kodak
649-0 microflat plates, then sensitizing with ammo-
nium-dichromate solution. The processing procedures
used were those of Chang and Leonard,2 which are
similar to those of Chang.10 Because of the physical
sizes of the plate holders and other available equipment,
we chose the focal lengths and offset angles of the two
Fourier transforming lenses to be 500 mm and 200, re-
spectively. Using the 514.5-nm wavelength from an
argon-ion laser, typical exposures were at 1 mW/cm2 for
8 min.

The emulsion side of the plate was placed away from
the point source during recording and away from the
input and filter planes when in the processor. Conse-
quently, the input wavefront passes through the glass
substrate both before and after reflection from the ho-
lographic lens. The spherical aberration introduced by
the glass substrate into the diverging recording beam
is canceled by the opposite aberration introduced by the
substrate into the converging reflected wavefront upon
readout. An advantage of this orientation of the
emulsion is that the reconstructed beam is reflected
without passing through the outer surface of the
emulsion. Then the dichromated gelatin hologram can
be sealed (to protect the emulsion primarily from the
effects of humidity) by cementing on a thin glass cover
plate, without having to consider the optical quality of
the cover plate.

The diffraction efficiency of a typical holographic lens
made for the experiments is 70%. Heavier exposures
resulting in higher diffraction efficiencies were avoided
since they also result in the recording of spurious holo-
grams. The spurious holograms arise from beams in-
ternally reflected from the air-glass and air-gelatin
surfaces. For the highest quality results, those un-
wanted reflections can be eliminated by recording the
hologram in a liquid gate with antireflection win-
dows.

The diffraction efficiency of the holographic lenses
must remain high for a range of angles of illumination.
For the first Fourier transforming lens, the required
angular bandwidth is ±am, where am is the angle cor-
responding to the maximum spatial frequency of the
input; for example, am = 1.18° for a frequency of 40
cycles/mm. For the second Fourier transforming lens,
the required angular bandwidth is ±arctan(xm/F),
where xm is the largest allowed translation of the input;
for example, if Xm/F = 25 mm/500 mm, the required
angular bandwidth is ±2.860 . The angular bandwidths
of the holographic lenses were made to satisfy easily
these requirements, as can be seen from the curves
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Fig. 6. Performance of holographic lens for Fourier
analysis, assuming a < X/8 at 40 cycles/mm.
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Fig. 8. Interferometer for testing holographic lenses.

40

Fig. 7. Diffraction efficiency vs angle of illumination for holographic
lenses A and B.

shown in Fig. 7 of diffraction efficiency vs angle of il-
lumination for the central portions of two different
holographic lenses. Both holographic lenses were re-
corded with 200 offset angles and are designed to op-
erate at angles about 200. The double peaks in curve
A arise from the symmetry of the Bragg condition about
the angle of approximately 100 to which the fringe
planes are normal. The right peak of curve A is at an
angle greater than 200 due to an increase in the thick-
ness of the hologram emulsion. A decrease in the
emulsion thickness caused the peaks of curve B to move
together to form a single broad peak. The emulsion
thickness is controlled primarily by the concentration
of the sensitizer. The thickness can then be fine-tuned
during the drying process in which the holograms are
baked in an oven under vacuum, which drives moisture
from the emulsion. The emulsion thickness can be
decreased by additional baking. If the emulsion is
baked excessively and becomes too thin, it can be made
thicker by immersing it in water and baking it again to
a lesser degree. In this way the peak of the angular
selectivity curve can be adjusted as desired, within
certain limits.

The high angular bandwidths of the holographic
lenses result from large refractive index modulations,
determined to be approximately 0.07. Higher modu-
lation could be achieved, but at the expense of optical
quality.

Our primary consideration was the phase aberrations
of the holographic lenses. Before preparing them for
exposure, the best samples from a few boxes of 679-0
plates were selected, based on examination of flatness
using a Mach-Zehnder interferometer. Since washing
and sensitization of the plates were done after the in-
terferometric test, it did not matter that the plates were
exposed to light during the test. After being recorded
and processed, the holograms were tested for aberra-

A

B

Fig. 9. Interferograms of holographic lenses A and B.

tions using the interferometer geometry shown in Fig.
8. The position of the point source illuminating the
hologram was the same as that used to record it, and so
there are no theoretical holographic aberrations. The
aberrations that appear in this configuration (the
nonholographic aberrations) are due, primarily, to
variations in emulsion thickness and edge effects.
Figure 9 shows interferograms of 10-cm diam of two
different holographic lenses used in our experiments.
The peak-to-peak phase error of lens A is about /4 over
a 4-cm diam and /2 over an 8-cm diam, and of lens B
it is about /4 over a 4-cm diam and about /2 over a
6-cm diam. These aberrations are sufficiently low for
the purposes of our experiments.
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Fig. 10. Input image for correlation experiments.

IV. Correlation Experiments

The holographic lenses described in the previous
section were assembled into a matched filter optical
processor, and matched filtering experiments were
performed. Matched filters on 4 X 5-in. (10 X 12.7-cm)
Kodak 131-01 microflat plates were recorded with the
image centered in the input plane and using H1 to per-
form the Fourier transform; referring to Fig. 1(b), the
reference beam was a plane wave along the filter-to-H 2
axis. The intensities of the reference and signal beams
were adjusted so that the fringe contrast was highest for
spatial frequencies above 15 cycles/mm. This resulted
in matched filters that are opaque in their central re-
gions because of heavy overexposure. The filters, giving
heavy weighting to the higher spatial frequencies, re-
sulted in very sharply peaked correlation outputs.6

In one experiment, the matched filter was recorded
of a 25-mm diam area of the input image shown in Fig.
10. The filter was limited to a 13.5-mm diam aperture,
corresponding to a field angle of 0.77° and a spatial
frequency of 26 cycles/mm. The central 3.5-mm diam
area of the filter was opaque, resulting in an active area
of the filter having an annular shape. A photometric
scan through the correlation peak for x0 = 4 mm is
shown in Fig. 11. The half-power width of the peak
shown is about 31 Am, and it is more than 30 dB above
the noise. The sidelobe ring around the main peak is
a characteristic of the annular shape of the matched
filter. The intensity of the correlation peak as a func-
tion of input translation x0 is shown in Fig. 12. Even
at x0 = 21 mm, for which its intensity is 15% of its value
for x0 = 0, the peak, though aberrated, is easily detect-
able and is 28 dB above the noise, as shown in Fig. 13.

Fig. 11. Scan through peak of output, x0 = 4 mm.
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Fig. 12. Intensity of output peak vs xo.
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Fig. 13. Scan through peak of output, = 21 mm.
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The performance of the holographic optics indicated
by the results above is somewhat better than that pre-
dicted by the standard deviation phase error criterion.
For an input of 25-mm diam and a field angle of 0.770,
the HOAD program predicts 1 = 1/8 wavelength for x0
= 10 mm; but the measured peak intensity does not
drop to 50% until x0 = 13.5 mm and is easily detectable
for x0 beyond 21 mm. This discrepancy is due to the
inaccuracy of the space invariance assumption and the
decreased sensitivity of the processor to slowly varying
phase errors when the higher spatial frequency infor-
mation is emphasized. Thus, the standard deviation
phase error criterion should be taken as a lower bound
on the performance of the processor.

V. Conclusions

Analysis was performed and experiments verified
that holographic optics can perform well as the Fourier
transforming elements of a matched-filter optical pro-
cessor. The aberrations of a holographic before-the-
lens processor were found to be comparable with those
of an after-the-lens processor. Holographic optics of
a simple design are capable of processing imagery of a
large space-bandwidth product if long enough focal
lengths are allowed. The standard deviation phase
error criterion was found to be a useful guide for pre-
dicting the performance of the lenses in a matched-filter
optical processor.

This work was supported by the Air Force Office of
Scientific Research under contract F44620-76-C-
0047.
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