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Expressions are derived for the normalized root-mean-square error of an image relative to a reference
image. Different versions of the error metric are invariant to different combinations of effects, including
the image’s ~a! being multiplied by a real or complex-valued constant, ~b! having a constant added to its
phase, ~c! being translated, or ~d! being complex conjugated and rotated 180°. Invariance to these effects
is particularly important for the phase-retrieval problem. One can also estimate the parameters of those
effects. Similarly, two wave fronts can be compared, allowing for arbitrary constant ~piston! and linear
~tilt! phase terms. One can also include a weighting function. The relation between the error metric
and other quality measures is derived. © 1997 Optical Society of America
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1. Introduction

When developing digital image-reconstruction algo-
rithms, we often start with an ideal test image, de-
grade it in some way ~say, blurring, adding noise, or
discarding parts of the data!, and then perform a
reconstruction on the degraded image. To evaluate
the performance of the algorithm, we compute a qual-
ity measure for the reconstructed image. References
1 and 2 discuss several image-quality measures. To
compare the reconstructed image with the ideal, many
researchers use the root-mean-square ~rms! error as a
measure of image quality because it is relatively easy
to analyze. In some cases the reconstructed image
might be multiplied by an unknown constant relative
to the ideal image. If we did not want to count this as
a defect, we would wish to compute a modified rms
error that is invariant to multiplicative constants.
When reconstructing images from Fourier magnitude
data ~i.e., performing phase retrieval!, which is insen-
sitive to image translation, constant phase, and com-
plex conjugation and rotation by 180° ~i.e., the twin
image!, we would wish to compute a modified rms error
that is invariant to these effects. We wish the quality
metric to be invariant to these various effects since
they do not degrade the image or make it less recog-
nizable.

Section 2 of this paper derives rms errors that are
insensitive to these effects and shows how to estimate
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the unknown parameters. Section 3 shows how to
use the same mathematics to compare two wave
fronts in such a way that they are insensitive to ar-
bitrary piston and tilt terms. The weighted version
of the error metric is also given. Section 4 comments
on a necessary computation—the upsampling of the
cross correlation between the ideal and reconstructed
images. Section 5 shows the relations among these
error metrics and other error metrics. Section 6 con-
cludes the paper.

2. Normalized rms Error

Let us take a given ideal digital image f ~x, y!, defined
on the integer grid, and a reconstructed image g~x, y!.
The commonly used sum-of-squares error between
them is given by

e2 5 (ug~x, y! 2 f ~x, y!u2, (1)

where the summation is over all the pixels ~x, y! in
the image. Since this metric depends on the multi-
plicative scale of f ~x, y!, it is meaningless by itself,
and so we prefer to use a normalized error

E2 5
(ug~x, y! 2 f ~x, y!u2

(u f ~x, y!u2
, (2)

or, better yet, its square root E. This normalized
sum-of-squares error metric E2 is the normalized
mean-square error ~nmse! metric, and E is the nor-
malized root-mean-square error ~nrmse!. Note that
we allow the image to be complex valued. Next we
explore versions of the nmse that are insensitive to
various factors that we may deem to be unimportant.

Although in this paper we use the discrete model,



which is pertinent to digital image-reconstruction ex-
periments, everything described here is equally ap-
plicable to functions of continuous variables. Also,
although we show everything in two dimensions, it is
equally applicable to any number of dimensions.

An important class of problems concerns phase re-
trieval, for which we know the magnitude uF~u, v!u of
the Fourier transform of the image:

F~u, v! 5 ~MN!21y2 ( f ~x, y!expF2i2pSux
M

1
vy
NDG

5 ^@ f ~x, y!#, (3)

where the summation is over x 5 0, 1, . . . , M 2 1,
and y 5 0, 1, . . . , N 2 1, and ^ denotes the Fourier
transform. For this problem

u^@ f ~x, y!#u 5 u^@exp~ia! f ~x 2 x0, y 2 y0!#u

5 u^@exp~ia! f*~2x 2 x0, 2y 2 y0!#u, (4)

where the asterisk denotes complex conjugation, that
is, the Fourier magnitude is insensitive to multipli-
cative constant phase factors exp~ia!, translations
~x0, y0!, and image twinning ~complex conjugation
plus rotation by 180°. The Fourier magnitude is am-
biguous with respect to these alternative images.
We consider any of these alternative images to be
acceptable substitutes for the ideal image f ~x, y! since
they have the same appearance as f ~x, y!. Hence we
wish our error metric to be zero for any of them. For
this reason, for phase-retrieval problems we use an
error metric of the form

E2 5 minHmin
a,x0,y0

E2~g; a, x0, y0!, min
a,x0,y0

E2@g*~ 2 !; a, x0, y0#J ,

(5)

where

E2~g; a, x0, y0! 5
(uexp~ia!g~x 2 x0, y 2 y0! 2 f ~x, y!u2

(u f ~x, y!u2
,

(6)

and g*~2! represents the twin image. That is, we find
the parameters a, x0, and y0 that minimize the error of
the image g~x, y! with respect to f ~x, y!, we repeat the
process for the twin image, and then we pick between
the image and the twin, depending on which has the
lower error. Fortunately, as we show next, there is a
straightforward way to compute this error metric.

To facilitate the derivation, we rewrite
where we assume a circular ~wraparound! coordinate
system for g~x, y! wherein no values are lost by trans-
lation, c.c. denotes the complex conjugate of the term
that precedes it, and rfg~x, y! is the cross correlation
of f and g. As is commonly known, minimizing the
mean-square error is equivalent to maximizing the
cross correlation.

For a given translation ~x0, y0!, we determine the
constant phase a that minimizes the error by setting
equal to zero the partial derivative of E2~g; a, x0, y0!
with respect to a and solving for a:

0 5
2@2i exp~2ia!rfg~x0, y0! 1 c.c.#

(u f ~x, y!u2

5
22 Im@exp~2ia!rfg~x0, y0!#

(u f ~x, y!u2

5
2urfg~x0, y0!usin@a 2 arg rfg~x0, y0!#

(u f ~x, y!u2
, (8)

which has the solution

a 5 arg rfg~x0, y0! 1 np, (9)

where n is an integer and arg~z! is the phase~modulo
2p! of z. Inserting this solution for a into the ex-
pression for E2 yields an expression with the term
6urfg~x0, y0!u, with the plus sign corresponding to the
maximum of E2 and the minus sign corresponding to
the desired minimum:

min
a

E2~g; a, x0, y0!

5
(ug~x, y!u2 1 (u f ~x, y!u2 2 2urfg~x0, y0!u

(u f ~x, y!u2
. (10)

Noting that rff ~0, 0! 5 ¥u f ~x, y!u2, we can express Eq.
~10! in the form

min
a

E2~g; a, x0, y0!

5
rgg~0, 0! 1 rff~0, 0! 2 2urfg~x0, y0!u

rff~0, 0!
, (11)

which is minimized for the location ~x0, y0! where
urfg~x0, y0!u is maximized:

min
a, x0,y0

E2~g; a, x0, y0!

5

rgg~0, 0! 1 rff~0, 0! 2 2 max
x0,y0

urfg~x0, y0!u

rff~0, 0!
. (12)
E2~g; a, x0, y0! 5
(ug~x 2 x0, y 2 y0!u2 1 (u f ~x, y!u2 2 Fexp~2ia! ( f ~x, y!g*~x 2 x0, y 2 y0! 1 c.c.G

(u f ~x, y!u2

5
(ug~x, y!u2 1 (u f ~x, y!u2 2 @exp~2ia!rfg~x0, y0! 1 c.c.#

(u f ~x, y!u2
, (7)
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So, for evaluating images reconstructed for the
problem of phase retrieval from Fourier magnitude
data, we can compute an appropriate quality metric
by ~i! computing the magnitude of the cross correla-
tion of the reconstructed image with the ideal image,
~ii! finding the maximum value of its magnitude ~see
Section 4!, ~iii! evaluating Eq. ~12! above, ~iv! taking
the square root to get the nrmse, ~v! repeating steps
~i!–~iv! for the twin image g*~2x, 2y!, and ~vi! taking
the minimum of the two error metrics. Note that we
use rff ~0, 0! as a notational device only; the actual
computation would be performed more efficiently as
¥u f ~x, y!u2, and similarly for rgg~0, 0!.

In the process of computing the nrmse we have also
computed ~x0, y0!, the translation that minimizes the
nrmse, and we have determined whether g~x, y! or its
twin is closer to the ideal image, f ~x, y!. We can also
compute the phase constant a by evaluating rfg~x0, y0!
and taking its phase.

The exact form of the invariant error metric
changes, depending on what we assume we know or
to what we want the metric to be invariant. Sup-
pose, for example, that in the phase-retrieval problem
the Fourier magnitude data is multiplied by an un-
known, real, nonnegative constant. If a constant
phase is unknown as well, then the reconstructed
image will be multiplied by an unknown complex
constant, a 5 aR 1 iaI, where aR is the real part and
aI is the imaginary part of a. Then we wish to min-
imize the error:
yielding

a 5
rfg~x0, y0!

(ug~x, y!u2
. (17)

Inserting a back into the error metric and simplifying
yields

min
a

E2~g; a, x0, y0! 5 12
urfg~x0, y0!u2

(ug~x, y!u2 (u f ~x, y!u2

5 12
urfg~x0, y0!u2

rgg~0, 0!rff~0, 0! , (18)

which is minimized for the location ~x0, y0!, where
urfg~x0, y0!u is maximized:

min
a, x0,y0

E2~g; a, x0, y0! 5 12
max
x0,y0

urfg~x0, y0!u2

rgg~0, 0!rff~0, 0!
, (19)

for the case of invariance with respect to a complex
constant factor. The procedure for computing this
error metric is identical to the one described above
but uses the new expression for E2~g; a, x0, y0!.
Note that, if we express the complex constant as
a 5 uauexp~ia! and minimize with respect to uau and
a rather than with respect to aR and aI, we get this
same result. Also note the considerable difference
between Eq. ~19! and Eq. ~12!, for which invariance
to only a was desired. Also note that the optimum
E2~g; a, x0, y0! 5
(uag~x 2 x0, y 2 y0! 2 f ~x, y!u2

(u f ~x, y!u2
5

uau2 (ug~x, y!u2 1 (u f ~x, y!u2 2 @a*rfg~x0, y0! 1 c.c.#

(u f ~x, y!u2
.

(13)
For a given translation ~x0, y0!, we determine the
constant aR that minimizes the error by setting equal
to zero the partial derivative of E2~g; a, x0, y0! with
respect to aR and solving for aR:

0 5
2aR (ug~x, y!u2 2 @rfg~x0, y0! 1 c.c.#

(u f ~x, y!u2

5
2aR (ug~x, y!u2 2 2 Re@rfg~x0, y0!#

(u f ~x, y!u2
, (14)

which has the solution

aR 5
Re@rfg~x0, y0!#

(ug~x, y!u2
, (15)

and similarly,

aI 5
Im@rfg~x0, y0!#

(ug~x, y!u2
, (16)
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phase constant a is the same whether or not we
require invariance to uau.

Similarly, if we restrict the multiplicative constant
to being real, assuming a known constant phase, then
the error metric becomes

min
aR, x0,y0

E2~g; aR, x0, y0! 5 12

max
x0,y0 ($Re@rfg~x0, y0!#%

2)
rgg~0, 0!rff~0, 0!

.

(20)

From the definition of E2~g, a, x0, y0! we see that
E2~g; a, x0, y0! $ 0. Furthermore, since the second
term in Eq. ~19! is negative, we see that

0 # min
a, x0,y0

E2~g; a, x0, y0! # 1, (21)

and similarly

0 # min
aR, x0,y0

E2~g; aR, x0, y0! # 1. (22)

If we wish the error metric to be invariant to only the
multiplicative constant and assume that there is no
translation, then in inequalities ~21! and ~22! we sim-



ply do not find the maximum of the cross correlation
but replace rfg~x0, y0! with rfg~0, 0! 5 ¥ f ~x, y!g*~x, y!.

When making the error metric invariant to multi-
plication by a or aR, we multiply g~x, y! by a 5 rfg*~x0,
y0!y¥ug~x, y!u2 or by aR 5 Re@rfg~x0, y0!#y¥ug~x, y!u2.
Note that these terms differ in magnitude from the
normalization constant

const 5 F(u f ~x, y!u2

(ug~x, y!u2G
1y2

, (23)

which would cause the energy of const 3 g~x, y! to
equal the energy of f ~x, y!. Multiplication by aR
ordinarily yields an error metric that is smaller than
that obtained by multiplication of g by const, and
multiplication by a yields the smallest error metric of
all for complex-valued images.

If we wish the error metric to be invariant to only
the translation and assume that there is no multipli-
cative constant, then we compute
Suppose we wish to compare an estimated wave
front G~u, v! with an ideal wave front given by F~u,
v!, but we want the error metric to be invariant to
piston and tilt wave-front errors. With a replaced
by exp~ia! in Eq. ~25!, we have exactly that error
metric. Hence for calculating the error of a wave
front or for least-squares matching of wave fronts
we can use the same computations. With this no-
tation the tilt term in u has the coefficient
22px0yM, which causes a spatial-domain transla-
tion by x0, and similarly for the v term. The values
of a, x0, and y0 found by these steps give the least-
squares solution to the piston and tilt phases of G~u,
v! relative to F~u, v!.

If we are matching wave fronts and know the way
in which the signal-to-noise ratio ~SNR! varies
across the wave front, then we can introduce a
weighting function to optimize the matching. Sim-
ilarly, in an image-reconstruction problem we may
wish to have a Fourier domain weighting function
that emphasizes certain spatial frequencies or elim-
inates the consequences of bad ~u, v!-plane pixels.
3. Fourier Domain and Weighting

Since ¥ f ~x, y!g*~x, y! 5 ¥ F~u, v!G*~u, v! by Parse-
val’s theorem, we have

Similar relations hold if we replace a with aR or
exp~ia!. All the preceding derivations can take place
in the Fourier domain as well as in the image domain.

If we multiply both F~u, v! and G~u, v! by a weight-
ing function W~u, v!, we obtain the weighted error
metric

E2~g; a, x0, y0! 5
(uag~x 2 x0, y 2 y0! 2 f ~x, y!u2

(u f ~x, y!u2

5
(uaG~u, v!exp@2i2p~ux0yM 1 vy0yN!# 2 F~u, v!u2

(uF~u, v!u2
. (25)

min
x0,y0

E2~g; x0, y0! 5
(ug~x 2 x0, y 2 y0! 2 f ~x, y!u2

(u f ~x, y!u2

5
(ug~x, y!u2 1 (u f ~x, y!u2 2 2 xo, yo

max Re@rfg~x0, y0!#

(u f ~x, y!u2

5
rgg~0, 0! 1 rff~0, 0! 2 2 xo, yo

max Re@rfg~x0, y0!#

rff~0, 0!
. (24)

E2~g; a, x0, y0! 5
(uaW~u, v!G~u, v!exp@2i2p~ux0yM 1 vy0yN!# 2 W~u, v!F~u, v!u2

(uW~u, v!F~u, v!u2

5
(uagw~x 2 x0, y 2 y0! 2 fw~x, y!u2

(u fw~x, y!u2
, (26)
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where

fw~x, y! 5 ^21@W~u, v!F~u, v!# 5 f ~x, y! p w~x, y!, (27)

where the asterisk denotes convolution and w~x, y! 5
^21@W~u, v!#. Then we perform the same calcula-
tions as above but replace f ~x, y! with fw~x, y!, and
g~x, y! with gw~x, y!. The weighting function can
also be, for example, that which is due to aperture
weighting ~apodization! used to control the sidelobes
of the impulse response or one that reflects the trans-
fer function of the human visual system.

4. Upsampling the Cross Correlation

Unless we know the image translation to be an integer
pixel distance ~or zero!, it is important to upsample the
cross-correlation function rfg~x, y! to determine accu-
rately the peak of its magnitude or of its real part.
This is most simply accomplished by performance of
the cross correlation by Fourier techniques:

rfg~x, y! 5 ^21@G*~u, v!F~u, v!#, (28)

where, prior to the inverse Fourier transform, we
embed @G*~u, v!F~u, v!# in a large array of zeros.
Then we can find the true maximum magnitude of
the cross correlation with good accuracy by selecting
the maximum from the upsampled pixels. This ap-
proach is suitable for small arrays but not for arrays
so large that the embedded array becomes difficult to
keep in memory or difficult to fast Fourier transform.

One approach investigated for computing the up-
sampled maximum of rfg~x, y! for larger arrays was to
~i! compute rfg~x, y! without upsampling and find the
maximum of rfg~x, y! to within the nearest pixel, ~ii!
extract a moderate-sized array about the maximum of
rfg~x, y! and upsample that to the desired oversam-
pling ratio, and ~iii! find the maximum of the up-
sampled array. This approach sometimes fails
because of ringing artifacts associated with the edges
of the extracted array. This ringing can be greatly
reduced by the application of a function to weight down
the edges of the extracted array prior to upsampling.

Another approach to consider is again to compute
the maximum of rfg~x, y! to within the nearest pixel;
then, from that starting point we perform a nonlinear
optimization to determine the maximum of rfg~x, y! to
within a small fraction of a pixel. A nonlinear opti-
mization algorithm, such as a conjugate-gradient
search or a Newton method, is aided by the existence of
analytic expressions for the derivatives of rfg~x, y! with
respect to x and y, and these can be computed easily.

We have found that, for some cases, the cross-
correlation peak may be highly asymmetric about its
maximum, making attempts to estimate the peak
location by fitting of a simple parabola to the peak to
be of limited utility in those cases. Fitting a higher-
order two-dimensional polynomial would be required
in such cases.

5. Relations to Other Metrics

First we relate the invariant nmse to the standard
deviation of the phase error and the Strehl ratio, then
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to the SNR. In Ref. 3 it was shown that, if the phase
errors dominate over the magnitude errors, then for a
Gaussian-distributed phase error with a standard de-
viation sf ~in radians! the expected nmse ~with shifts
ignored! is given by

^E2& 5 Kmin
a

E2~g; a!L
5 min

a

K(uag~x, y! 2 f ~x, y!u2L
(u f ~x, y!u2

5 1 2 exp~2sf
2!, (29)

which approaches unity for sf
2 .. 1 and approaches

sf
2 when sf

2 ,, 1. Angle brackets denote the ex-
pected value over the Gaussian distribution.

For the phase error f~u, v! over an aperture A~u, v!,
the ~coherent! impulse response is cf~x, y! 5 ^21$A~u,
v!exp@if~u, v!#% and the point-spread function is sf~x,
y! 5 ucf~x, y!u2. The Strehl ratio is given by4

IS 5
sf~0, 0!

s0~0, 0!
< 1 2 sf

2 < exp~2sf
2! (30)

for small phase errors, where s0~0, 0! is the peak of
the impulse response when f 5 0. We see that

^E2& < 1 2 IS, IS < 1 2 ^E2& (31)

when Fourier phase errors dominate over magnitude
errors. These relations are accurate whenever the
Fourier magnitude is fairly uniformly distributed,
which is the case for coherent ~complex-valued,
speckled! images and for incoherent ~real, nonnega-
tive! images that are collections of points. For low-
contrast, extended, incoherent images, most of the
signal is concentrated near the origin in Fourier
space, and the error metric tends to be smaller than
what is predicted by approximations ~31! for a given
value of IS or sf

2.
If we think of the integrated squared noise as the

numerator for our error metric and the integrated
squared signal as the denominator, then we can con-
sider E2 to be the reciprocal of the ~power! SNR.
This does not hold, however, when the SNR is near to
or less than unity since the factor a substantially
decreases the effect of the noise in that regime. The
normalization factor a prevents the nrmse from be-
coming greater than unity, even when 1ySNR . 1.
Assuming noise that is uncorrelated with the signal,
we can show that

^E2& <
1

SNR 1 1
, SNR <

1 2 ^E2&

^E2&
. (32)

6. Conclusions

We have shown that we can make the nmse between
an ideal image and a reconstructed image invariant



to the effects of multiplicative constants, constant
phases, translations, and image twinning ~complex
conjugation and rotation by 180°!. Calculating the
invariant error metrics requires finding the peak of
the cross correlation of the ideal and reconstructed
images, and we must do this to subpixel accuracy.
We can similarly compute an error metric for evalu-
ating the difference between two wave fronts that is
invariant to piston and tilt terms. Fourier domain
weighting functions are easily included. The nor-
malized invariant squared error metric is approxi-
mately equal to one minus the Strehl ratio and to the
inverse of one plus the ~power! SNR.
Portions of this paper were presented at the 1996
Annual Meeting of the Optical Society of America.
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