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Transverse translation diverse phase retrieval (TTDPR), a
ptychographic image-based wavefront-sensing technique,
is a viable method for optical shop testing due to its high
accuracy and relatively simple experimental arrangement.
However, when measuring a reflective optic, a normally
hard-edged translating illumination will become soft-edged
due to diffraction, which may reduce the accuracy of
TTDPR by suppressing fine structures in measured data.
In this Letter, we quantitatively explore the wavefront-
sensing accuracy of TTDPR in the presence of soft-edged
translating illumination. © 2018 Optical Society of America

OCIS codes: (100.5070) Phase retrieval; (120.3940) Metrology;

(120.5050) Phase measurement.
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Transverse translation diverse phase retrieval (TTDPR) [1–4] is
an image-based wavefront-sensing technique similar to the co-
herent diffractive imaging technique (CDI) of ptychography
[5–9]. In TTDPR, the unknown phase of an optical field of
interest is reconstructed based on intensity-only measurements
taken in a plane positioned a distance from the field of interest,
often near focus. A known subaperture illumination is trans-
versely translated across a field of interest, and intensities are
recorded on an array detector for each translated illumination
position. These data are then used in an iterative phase retrieval
algorithm to reconstruct the amplitude and phase of the field of
interest. TTDPR has been proposed before as a method for as-
built hardware characterization of optical systems [2,3,5,10].

TTDPR is an attractive method for optical shop testing due
to its relatively simple experimental arrangement [1]. For certain
test configurations, such as a concave surface in reflection or a
positive-powered optic in transmission, TTDPR may require
only a translating aperture and an array detector to determine
the wavefront aberration function of an optic under test, from
which surface topography can also be inferred. Due to the lack of
complexity in the TTDPR test geometries, TTDPR is relatively
inexpensive compared to a conventional interferometer. Unlike
interferometry, certain types of optics can be measured using
TTDPR without requiring any reference optics, thereby reduc-
ing system cost and eliminating induced aberration from these

additional optics. TTDPR does not suffer from retrace errors,
allowing aspheric wavefronts, whose wavefront departures would
create unresolvable fringes in an interferogram, to be measured
without requiring custom null optics [11], thus making TTDPR
suitable for aspheric and freeform metrology. Furthermore,
because TTDPR does not rely on the interference between a
test and reference beam, it has reduced sensitivity to vibration
that degrades the accuracy of interferometers.

The specific test geometry of a TTDPR system depends on
the type of measurement being performed. If it is used to char-
acterize the transmitted wavefront error, the full aperture of a
test optic can be illuminated, and a hard-edged subaperture
may be placed just before or after the optic to create a trans-
lating illumination pattern. Such a measurement was demon-
strated by Brady [1]. Measurements of surface error, however,
must be taken in reflection. A hard-edged translating mask can-
not be placed directly in the pupil for a reflective measurement
because it may contact and, therefore, harm the reflective sur-
face or obscure regions of the reflected field, as illustrated in
Fig. 1(a). One way to overcome this limitation is instead to
optically project a known illumination pattern onto the surface
of interest. Due to diffraction effects, an illumination pattern
created by a distant hard-edged mask will have softened edges
when incident on the optical surface, the exact nature of which
depends on the source wavelength, mask size, and propagation
distance to the surface. In this context, we define softness as a
smooth variation from high amplitude to low, near the edge of
the illumination pattern.

Fig. 1. TTDPR for reflective surface metrology. (a) Mask near the
surface of interest may obscure reflected intensity and (b) a solution to
project instead the illumination pattern from a distance.
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A soft-edged support constraint in image-reconstruction phase
retrieval, which is analogous to soft-edged illumination in
TTDPR, has been shown to cause degradation in reconstructed
images, even in noiseless simulations [12]. For that reason, in this
Letter, we explore the wavefront-sensing accuracy of TTDPR for
optical metrology in the presence of a soft-edged illumination pat-
tern through computer simulation. Softness in the illumination
suppresses, in the measured intensities, fine fringe structures that
are thought to help phase retrieval algorithms converge to a unique
solution. Although TTDPR with soft-edged illumination has
been demonstrated for CDI [4], the object, a simulated biological
specimen, had rapidly changing features throughout its area,
which created large amounts of diffractive structure in the far field,
even in the presence of soft-edged illumination. This differs from
the case of optical metrology, in which the reconstructed object,
a reflected wavefront, is assumed to be dominated by slowly vary-
ing phase terms. The fine diffractive structure from hard-edged
illumination may be more important in optical metrology than
in CDI, motivating our investigation.

The computational forward model used for TTDPR is as
follows. We first modeled the field as

h�x; y� � jh�x; y�j exp�i2πW �x; y��; (1)

where W �x; y� is the classical wavefront aberration function
of the field, having units of waves. For the TTDPR simulations
in this Letter, W �x; y� was constructed as a weighted super-
position of J Zernike polynomials [13]:

W �x; y� �
XJ
j�1

ajZ j�x; y�; (2)

where the aj is the weighting coefficient of the jth Zernike poly-
nomial. A known subaperture illumination, A�x; y�, which can
be complex-valued, was transversely translated across the field,
resulting in a transmitted field:

gn�x; y� � A�x − xn; y − yn�h�x; y� (3)

for each of n translated positions [1]. In this Letter, integer pixel
nominal translations �xn; yn� were used to simulate synthetic
test data, and bilinear interpolation was used for subpixel trans-
lation if �xn; yn� were varying as optimization parameters [3].

Next, gn�x; y� was digitally propagated to the detector plane by
Gn�u; v� � P�gn�x; y��; (4)

where P is a propagator for the system. In the absence of noise, the
intensity distribution measured by the array detector was given by

Dn�u; v� � jGn�u; v�j2: (5)
These data were then used in an iterative phase retrieval

algorithm. In each iteration, a candidate wavefront Ŵ �x; y�
was constructed, and intensities were simulated according to
Eqs. (1)–(5). These simulated intensities were compared to
measured data using a normalized least-squares error metric:

E �
P

n
P

u;v wn�u; v��Mn�u; v� − Dn�u; v��2P
n

P
u;v

�Dn�u; v��2
; (6)

where wn�u; v� is a weighting function, andMn�u; v� is the nth
modeled intensity, given by

Mn�u; v� � βnjGn�u; v�j2 � δn: (7)

βn and δn are per-frame linear detector gain and bias, respec-
tively, with values calculated according to Eq. (C3) in [2] to

make Eq. (6) gain and bias invariant. E was then minimized
with respect to experimental parameters to yield a final estimate
ofW �x; y�. Exact algorithmic gradients for this type of forward
model were calculated and used for non-linear optimization
using the L-BFGS algorithm [14,15].

Simulations were performed to explore the wavefront-sens-
ing accuracy of TTDPR in the presence of soft-edged translat-
ing illumination. In each simulation, the field magnitude,
jh�x; y�j, was modeled by a binary circular subaperture, over
which a set of orthonormal Zernike polynomials were defined.
35 Zernike polynomials were superposed to model W �x; y�
with randomly generated coefficients, aj. Because we expect
real-life wavefronts to be dominated by lower-order terms, such
as astigmatism and coma, wavefront coefficients were multi-
plied by a function which decreases in value as polynomial or-
der increases. Then, for each simulation, the root-mean-square
(RMS) value of W �x; y� was scaled to a prescribed value.

For these simulations, the soft-edged illumination was
modeled using the raised cosine function

A�ρ� �

8>>><
>>>:

1; 0 < ρ ≤ R
�

1−β
1�β

�

1
2

n
1� cos

h
π�1�β�
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�
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�io
; R

�
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�
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(8)

where

ρ � ρ�x; y� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

q
; (9)

and R is the radius of A.
The parameter β, which ranges in value from 0 to 1, tunes

the relative “softness” of A, as shown in Fig. 2. For β � 0,
A�x; y� is a hard-edged circle with radius R. For β � 1,
A�x; y� is a radially symmetric truncated cosine cycle with
period 2R. Values of β between 0 and 1 approximate smoothly
varying illumination patterns that may arise in the lab from
beam diffraction from a clipping subaperture. For example,
β � 1 roughly approximates the amplitude from a circular
aperture propagated with a Fresnel number [16] Nf � 1,
β � 0.5 to Nf � 10, and β � 1∕7 to Nf � 100. These
patterns also approximate other illumination strategies, such
as the use of beam shaping optics. The parametrization of
A�x; y� is also selected so that the total non-zero support of
A�x; y� is constant for all simulated values of β. Therefore, even
when β is varied between simulations, the total footprint of all
translated illuminations will experience the same simulated
field. 32 translated positions, �xn; yn�, were used in each

Fig. 2. One-dimensional cut-through of raised cosine illumination,
according to Eq. (8), for various values of β.
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simulation. A visualization of all translated illumination pat-
terns is shown in Fig. 3. In order to isolate the effect of varying
β, the illumination was translated such that it never overlapped
the edge of jh�x; y�j. Otherwise, the hard edges would have
been induced into otherwise smooth illumination patterns.
The peak of each simulated intensity measurement was scaled
to 40,000 photo-electrons, and Poisson noise and 16-electron
RMS Gaussian read noise were added, the noise characteristics
being indicative of a reasonable-quality CCD camera.

First, simulations were performed to reconstruct a 0.10-
wave RMS wavefront (piston, tilt, and power removed), which
corresponds to the wavefront aberration of a well-corrected op-
tic. A known amount of 10-wave peak-to-valley defocus was
added to the field wavefront, because it has been shown that
phase retrieval for wavefront sensing can benefit from the ad-
dition of defocus to the nominal wavefront [17–20]. For each
of five β values, TTDPR simulations were performed on 10
different wavefront realizations, assuming that all experimental
parameters except W �x; y� were known. Figure 4 shows the
results of this set of simulations: the RMS wavefront-sensing
error (WFSE) as a function of β. The WFSE is in units of
waves, calculated as an equally weighted RMS difference be-
tween the reconstructed and known wavefronts over the
non-zero footprint of all A�x − xn; y − yn�. We defined a success
criterion of 0.015 waves of RMS WFSE to identify successful
reconstructions. All results shown in Fig. 4 meet the success
criterion, with WFSE <1∕1000 waves for all β. Although
median WFSE tends to increase with β, WFSE caused by beam
softness alone should not impose a practical constraint in an
optical shop-testing environment for well-corrected optics,

where other sources of laboratory error will likely set the lower
limit of overall measurement uncertainty.

Next, simulations were performed to reconstruct fields with
∼10-wave RMS wavefront aberration. These simulations corre-
spond to the measurement of an aspheric or freeform optical sur-
face, in which the surface departure will induce large aberrations
in the reflected field. A wavefront Ŵ �x; y� with 3.0 wave RMS
departure from the true wavefront was used as a starting point for
optimization. Ŵ �x; y� in this case corresponds to the expected
wavefront from a given nominal surface prescription, and the
true wavefront corresponds to one manufactured having un-
known fabrication errors. We note that this set of simulation
parameters created a more difficult case for TTDPR, due to both
larger nominal aberrations and a larger distance between the
starting point and true solution for optimization.

After an initial round of simulations, it was discovered that
some intensities were being aliased by the discrete Fourier
transform (DFT) used for digital propagation [Eq. (4)].
Figure 5 illustrates one worst case. The DFT is periodic,
and significant aliasing occurs when the wavefront function
varies too rapidly between adjacent pixels. A phase change
of π radians/pixel, or 0.5 waves/pixel, will result in energy at
the edge of the simulated detector window. As a rule of thumb,
one should keep wavefront slopes < π rad/pixel so that the
simulated detector window contains all significant energy, i.e.,

jW p;q −W p�1;qj < π; (10)

jW p;q −W p;q�1j < π; (11)

for all values of p and q, for the p, q pixel-indexed wavefront
array, W . For a given wavefront realization, this is achieved by
simply increasing the number of pixels across W . In practice,
one should be cautious when using phase retrieval with data
gathered from the lab, so that non-physical aliasing does not
hinder the ability of phase retrieval to match the physical data.

Fig. 3. Translated illumination patterns used for TTDPR simulations.
Each circle indicates the region of >50% peak amplitude; the color in-
dicates the sum of all translated illumination (amplitude). Note that as β
increased, the pupil was both effectively apodized and sampled more
sparsely.

Fig. 4. RMS WFSE versus β for wavefront reconstructions with
0.10-wave RMS. Black +, final WFSE for each of 10 randomly gen-
erated wavefronts; green ▹, median WFSE.

Fig. 5. (a) Sample aberrated wavefront. (b) Instantaneous wavefront
for a given subaperture with β � 0. (c) Resulting intensity, raised to
the 1/5th power. Aliasing occurs at the corners of the simulated de-
tector due to periodicity in the DFT. (d) Intensity raised to the 1/5th
power after doubling pupil resolution.
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After correcting the aliased intensities by doubling the num-
ber of pixels over the wavefront, all reconstructions met the
success criterion of RMS WFSE <0.015 waves, as shown in
Fig. 6. Although WFSE tended to be larger than the results
with less aberrated wavefronts, shown in Fig. 4, excellent per-
formance was attainable for all values of β, indicating that beam
softness by itself should not be a limiting factor in TTDPR
accuracy on highly aberrated wavefronts. If one desires even
higher wavefront-sensing accuracy, steps can be taken to mit-
igate residual WFSE, including increasing the overlap between
adjacent subapertures, improving the signal-to-noise ratio by
averaging multiple measured intensities for each subaperture
position, and by only considering WFSE over regions which
were sampled by multiple subapertures.

After investigating the performance of TTPDR when all ex-
perimental parameters are known exceptW �x; y�, we performed
additional simulations, including uncertainty in subaperture
translation. Such uncertainty might arise from incorrect calibra-
tion of a TTDPR system, or from positioning errors in the stages
used to translate the illumination. Random translation errors
were drawn from a uniform distribution with a standard
deviation of R∕50 and added to the nominal translations to form
an initial guess for �xn; yn�. In optimization, iterations were first
performed varying only Zernike wavefront coefficients. Next,
iterations were performed varying wavefront coefficients along
with translations �xn; yn�. Figure 7 shows the results of
TTDPR simulations on 0.1-wave RMS wavefronts. In order
to correct for any shared global linear phase, which would apply
only a common shift to all simulated intensities, WFSE was cal-
culated with piston and tilt removed. Compared to the results in
Fig. 4, the results in Fig. 7 have both higher median and variance
for each β, which we attribute to the effect of unknown trans-
lation [2]. However, all reconstructions readily satisfy the success
criterion of WFSE <0.015 waves, indicating that limited trans-
lation knowledge should not be the dominant source of wave-
front sensing error for measuring well-corrected optics. For
higher aberrated wavefronts, we expect that small translation er-
rors can be tolerated by TTDPR, though performance may de-
pend on the aberration content, subaperture pattern, etc., and is
not explored in this initial Letter.

In conclusion, we have explored the wavefront-sensing accu-
racy of TTDPR, a viable technique for optical surface metrology,
in the presence of soft-edged translating illumination. For recon-
structions of well-corrected wavefronts, we demonstrated wave-
front reconstructions WFSE <0.002 waves RMS, even in the
presence of minor unknown translation errors and realistic

detector noise. For testing of more aberrated wavefronts, we
obtained successful reconstructions (WFSE <0.015-wave
RMS) of 10-wave RMS wavefronts for all values of β. The cases
of β < 1∕7 are most pertinent to a laboratory application of
TTDPR, where we expect some beam softness due to diffrac-
tion, but that the illumination is still approximated well by a
geometric projection of the translating mask onto the optical sur-
face. For these cases, TTDPR consistently performs very well.
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Fig. 6. RMS WFSE versus β for wavefront reconstructions with
∼10-wave RMS. Black +, final WFSE for each of 10 randomly gen-
erated wavefronts; green ▹, median WFSE. The dashed line shows
WFSE success criteria of 0.015 waves.

Fig. 7. RMS WFSE versus β for wavefront reconstruction with
0.10-wave RMS when the illumination translation is not well known.
Black +, final WFSE for each of 10 randomly generated wavefronts;
green ▹, median WFSE.
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