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Phase errors in multiple planes create an anisoplanatic (space-variant) blur in an image. We show how
phase errors in multiple planes can be corrected with the use of a sharpness metric for heterodyne or holo-
graphic imaging. We derive the theoretical framework necessary for this anisoplanatic imaging situation. A
digital simulation and results are presented. We demonstrate the success of this nonlinear optimization

technique for phase errors in two planes. © 2009 Optical Society of America
OCIS codes: 090.1000, 100.3010, 100.3020, 090.1995, 100.3190, 010.1330.

Imaging through multiple planes of optical aberra-
tions occurs in a variety of scenarios such as atmo-
spheric turbulence (particularly for horizontal paths)
[1], biological tissue [2], other random media, and
space-variant optical systems. Sharpness metrics
were first used for incoherent imaging through atmo-
spheric turbulence using telescopes [3]. Following
that work, several others have applied sharpness
metrics to correcting motion-induced, 1-D phase er-
rors in synthetic aperture radar problems [4-6]. Re-
cent research has explored various sharpness metrics
and their performance in correcting 2-D phase errors
in digital holography [7]. In all these previous cases,
the phase errors could be approximated as being in
one plane near the pupil of the telescope or detection
plane, and the aberrations were space invariant.
Thurman and Fienup [8] demonstrated the correc-
tion of space-variant phase errors (the anisoplanatic
case) caused by a single phase screen a distance from
the aperture. That approach could not correct mul-
tiple phase screens. In this Letter, we extend that
work to incorporate correction of aberrations in mul-
tiple planes.

For the process of simulating the digital hologram
with aberrations, we follow the method outlined in
[7,8] and reconstruct the aberrated field, G(x,y), from
the object. Alternatively, one may perform hetero-
dyne detection or record three or more on-axis holo-
grams with different constant phases associated with
the reference beam and use standard phase-shifting
techniques. By inverting G(x,y) while compensating
for the aberrations, we can compute an image, (£, ),
of the optical field scattered by the object in the nomi-
nal object plane. In this Letter, we use different
speckle realizations of the fields, assuming an opti-
cally rough object. This can be implemented experi-
mentally by slightly rotating or translating the object
between exposures, assuming that the aberrations
are fixed during the entire data collection time. The
speckle-reduced image intensity is then the average
of the magnitude-squared image fields,

1 K
I(&mn) = EE (& )2, (1)
k=1

where K is the number of speckle realizations.
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We consider a case for which there is a volume of
phase errors between the object and the hologram
plane. Simulating the extended media as a collection
of thin phase screens that are located at different dis-
tances within the total propagation length can be a
good approximation. For the present discussion, we
examine the case in which the phase errors are lo-
cated solely in the object beam path and the reference
beam is ideal. We ignore aberrations in the beam il-
luminating the object, since the rough object will im-
pose a random phase on the illuminating beam. We
wish the digital transverse sample spacing to remain
the same, so we implement the propagation between
phase screens using angular-spectrum propagation,
given in the paraxial regime for a given field g(x,y)
over a distance z as

Alz;8(x,y)] = FH{Flg(x,y)lexpl- imhz(f? + )1},
(2)

where F denotes a Fourier transform and we have
ignored inconsequential constants.

Figure 1 depicts the holography setup and optical
propagation paths, where z; is the distance from the
object plane to the first plane of phase error, z,, is the
distance from the (p-1)th phase plane to the pth
phase plane, ¢, is an estimate of the phase error for
the pth plane, P is the number of phase screens, and
G,(u,v) is the kth aberrated field in the hologram
plane. To simplify later notation, we define a forward
propagator
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Fig. 1. Layout for recording a digital hologram with mul-
tiple planes of phase error present.

© 2009 Optical Society of America



702  OPTICS LETTERS / Vol. 34, No. 5 / March 1, 2009

Pl—»p_[fk(g’ 7])] = A{Zp,eXp(l QDp—l) T
X Alzg;expl(ier) Alz1;f3 (6 m1H -}
(3)

The inverse propagator from the hologram plane
can be written in a similar fashion,

Alzs;exp(ig)

Pha1p [Gr(u,0)] = exp(~ig,)A(-

Zp+1s
Xexp(=i¢y,1) " exp(-ipp_y)

X A[-zp;exp(-igp)
XAM=2zp,1;Grw,0)} ). (4)

Using the above definitions, the aberrated field in the
hologram plane can be written as G,(u,v)
=P_p.lf:(§, 7)]. Likewise, using the inverse propa-
gator, the image field is f3(¢, 77)=P:£+1H1[Gk(u,v)],
where for brevity we are ignoring the finite extent of
the recorded hologram.

To estimate and correct for the phase errors
present in the object-beam propagation path, we
maximize the sharpness metric

S= 21’3(6, ) - az > M(fof)IFxfof)?  (5)

k=1fsfy

as a function of the phase estimates, where « and B8
are constants, F(f,f,) is the Fourier transform of
(&, ), and M(f,,f,) is a weighting function that de-
fines the spatial frequency content of the object fields
that are sensed over the area of the digital hologram.
The first term is a standard sharpness metric. The
second term penalizes frequency content of the image
field that could not have come from the digital holo-
gram through reasonable atmospheric turbulence.
We found that including a constraint for the fre-
quency content was important to achieve successful
image reconstruction by avoiding phase screens that
constituted telescopes demagnifying the image
(thereby increasing the sharpness). We chose to con-
strain the Fourier domain, since the frequency con-
tent of the object will remain approximately constant
throughout the propagation distance, even in the
presence of reasonable phase aberrations.

We used a conjugate-gradient routine to maximize
the metric as a function of estimates of the phase
screens. The partial derivative of S with respect to
the value of the phase in screen p at location (x,y)
can be written in a fashion similar to Eq. (41) in [9],
in terms of the hologram and image fields, as

oS 2 K
m KE Im(P; ., [BIF (& fi(ém)]
X {P},1_,[Gy(w,0)]}")
2a K
- E% Im(Py_, {F UM(fof ) Fi(fuf )]}
X {P},1_,[Gr(w,0)]}). (6)

Since an atmospheric phase is smooth, we chose
polynomial phase estimates,

QDp(x;y) zch,jl/jj(x’y)7 (7)
J

where j is the index for the basis function ;(x,y) and
cp,j are the expansion coefficients. We optimized over
the coefficients ¢, ;, for which the partial derivatives

p.J>

are
oS E ) S ®
dy; 2 Y e )

Our starting guess for each coefficient was zero. We
then performed five conjugate gradient (CG) itera-
tions using the third-order polynomials terms and
five more iterations adding fourth-order terms and
repeated five more CG iterations for each additional
higher-order term up to the 15th-order polynomial
terms, similar to what was done in [7].

Individual speckle realizations were simulated by
multiplying the square root of the object intensity by
a zero-mean, circular complex Gaussian-distributed
random variable. To avoid aliasing and wrap-around
effects in our digital simulation, we limit the angular
extent of the field propagated from the object by crop-
ping out higher spatial frequencies but left the angu-
lar extent wide enough to illuminate an area larger
than the detector. The spatial frequency content of
the image is determined by considering the pixel
pitch of the detector Ax, the total array size N, dis-
tance of propagation z, and the laser illumination
wavelength . For the simulations presented in this
paper, N=256, D=NAx=16 cm, A=514 nm, and z
=500 m. We employed K =24 speckle realizations. For
our forward propagation model, an array larger than
our detector size was used.

The aberrations are assumed to be constant during
the collection of all the speckle realizations. The
phase screens used in this simulation are 15th-order
polynomial approximations for atmospheric phase
screens [10]. The effective D/ry [11] of both phase
screens is 10. The phase screens were spaced equidis-
tant throughout the propagation distance such that
21=29=23=166.6 m.

The support of the mask was created by taking the
Fourier transform of G;(u,v), the aberrated field in
the hologram plane for one of the speckle realiza-
tions, and defining a square that captured most of its
energy. M(f;,f,) is set to zero inside the square and
unity outside the square. A cosine guard band is used
as a gradual transition between regions. By testing a
few different values for the scaling constant «, 5
X108 was chosen for the simulations presented
here. For the sharpness metric term, we chose S
equal to 1.01. More work could be done to optimize «,
B, and the size of the mask to achieve better image-
reconstruction results.

The ability to successfully reconstruct images by
using our sharpness algorithm for multiple planes is
shown in Fig. 2. Figure 2(a) shows the ideal image.
Figure 2(b) shows the image when the phase screens
are present in the system without correction. The ab-



Fig. 2. Image reconstruction results using two phase
screens. (a) The ideal image. Two-screen simulation when
(b) there is no aberration correction and (c) the phase esti-
mates have been used in the reconstruction.

errated image is a poor visual representation of the
ideal image. However, once we have estimated the
phase screens and used them to reconstruct and im-
age by inverse propagation, we obtained an image
shown in Fig. 2(c), having greatly improved quality.
To quantify the results of our phase-error correc-
tion, we computed the absolute normalized rms error
of the reconstructed image with respect to the ideal
image [12,13]. For the aberrated images, the absolute
error was 0.3368. Upon reconstruction, the absolute
error improved to 0.1804. Successful image recon-
struction depends on multiple parameters, including

Fig. 3. (Color online) Field magnitude versus z from the
image to the detector (left to right); each pair: truth and re-
constructed. (a), (b) Horizontal slice; (c), (d) vertical slice;
and (e)—(h) magnified slices of (a), (c), (b), and (d) near the
image.
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number of speckle realizations, type and contrast of
the object, distance between phase screens, location
of phase screens with respect to the object location
and detector location, magnitude of the aberrating
phase, and signal-to-noise ratio. As in [7] we expect
this approach to be relatively insensitive to noise.
Figure 3 shows the magnitude of the field backpropa-
gated to the image (on the left) from the detector (on
the right). Figures 3(e)-3(h) show an enlarged por-
tion of vertical and horizontal slices near the image.
Although we can see differences in the propagation of
individual speckles, Fig. 2 shows that we are able to
reconstruct a reasonably good image with similar
speckles.

We have successfully demonstrated the ability to
reconstruct images from digital holography data
when multiple planes of aberrations are present,
causing anisoplanatic blurring. Image reconstruction
has been shown for two planes of optical aberrations.
Good reconstruction results under heavily
nonisoplanatic conditions is a significant advance.
Future research will include optimization of the two-
screen case for increased robustness, extending it to
a greater number of phase screens to more accurately
model volume atmospheric turbulence, developing an
understanding of performance as a function of the
statistics of the object and imaging scenario, and
laboratory experiments to verify the simulations pre-
sented in this Letter.
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