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We present results for a digital holography experiment with anisoplanatic image correction through two discrete
planes of phase errors. Using a nonlinear optimization technique, wemaximize amodified sharpnessmetric to solve
for estimates of the phase errors in the system in the multiple planes where they physically exist. We show that
correcting for phase errors in multiple planes gives a superior image to correction in one plane. © 2010 Optical
Society of America
OCIS codes: 090.1000, 090.1995, 110.3010, 110.6150.

Anisoplanatic imaging occurs, for example, when the
light scattering from two spatially separated object
points passes through different portions of the atmo-
sphere (or other aberrating media) on the way to the en-
trance pupil of an imaging system and, as a result, has
significantly different point spread functions across the
image of the object. This effect occurs in horizontal path
imaging and ground-based astronomy, as well as other
applications. Researchers in the astronomy community
have attempted multiple guide stars, coupled with adap-
tive optic systems containing more than one deformable
mirror in different axial planes, to overcome some of the
effects of anisoplanatism [1]. In coherent imaging with
digital holography, Thurman and Fienup showed isopla-
natic [2] and anisoplanatic [3] (when the aberrating plane
was separated from the entrance pupil) image correction
in one plane using a nonlinear optimization, sharpness-
metric-based approach. Marron et al. demonstrated
image correction over a small region of the entire field
of view in the presence of anisoplanatic phase errors
[4]. We developed an algorithm for estimating phase er-
rors in multiple planes using an image sharpness metric
that allows correction over the entire image and demon-
strated it in digital simulations [5]. In this Letter, we de-
monstrate this approach in digital holography laboratory
experiments and show the importance of correcting for
multiple planes of phase errors when there is more than
one plane of phase errors in the system that cause ani-
soplanatic blurring. By estimating and correcting in the
computer the phase errors in the planes in which they
occur, we are able to achieve anisoplanatic image correc-
tion over the entire field of view.
We performed our experiment using the laboratory di-

gital holography experiment illustrated in Fig. 1. An ar-
gon-ion laser operating at a wavelength of 514 nm was
used as the coherent illumination source. A beam splitter
was used to divide the light between two paths, an off-
axis reference beam and a beam to illuminate the object.
The laser output power was 400 mW, and the power in
the reference arm of the experiment was reduced with
a neutral density filter of optical density 5.5 such that
the light from the reference beam was moderately bright-
er than from the diffuse scattering object. In this Letter,
we present results for two different imaging cases. The
first case is one with a 3:2 cm brass toy train and three

7:9 mm ð5=16 in:Þ ball bearings mounted on a black, low-
reflectance felt cloth. In the second case, we removed the
ball bearings and imaged the train only.

The object was mounted on a computer-controlled
rotation stage and was rotated 2:09 mrad between collec-
tion frames. We collected the holographic interference
patterns for K ¼ 9 speckle realizations using a comple-
mentary metal-oxide-semiconductor camera with a
6:7 μm pixel pitch. The camera collected 1024 × 1280
pixels, but we cropped the data to a 1024 × 1024 square.
We digitally separated the object field by first Fourier
transforming the collected intensity data, windowing
out the object term, and performing an inverse Fourier
transform.

With access to the field from the object obtained
through this holographic reconstruction, we can digitally
propagate the field to any z plane. We used paraxial an-
gular spectrum propagation, where an arbitrary field
gðx; yÞ can be propagated a distance z by

A½z; gðx; yÞ� ¼ FT−1fFT½gðx; yÞ� exp½−iπλzðf 2x þ f 2yÞ�g;
ð1Þ

where FT denotes a discrete Fourier transform. Angular
spectrum propagation preserves the pixel sample spa-
cing regardless of propagation distance. However, with
the object being approximately five times larger than the
detector, as was the case in this experimental arrange-
ment, the initial 1024 × 1024 array recorded by the detec-
tor would need to be embedded into a much larger array
to avoid aliasing artifacts when propagating to the object
plane. Multiplying the field in the detector plane by
an appropriate converging spherical wave allows for

Fig. 1. Layout of the digital holography experimental setup
including phase screens: B/S, beamsplitter; M, mirror; Det,
detector array, and PS, phase screen.
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coordinate transformation to collimated space [6], which
allows us to maintain a reasonable array size for large
object/detector size ratios.
For static phase screens, we used plastic compact disk

cases that were slightly warped by heat treating to in-
crease the aberration. To cause anisoplanatism, two
phase screens were separated within the propagation
path between the object and detector. The total distance
between the object and detector was 3:32 m. One screen
(Screen A) was placed 22 cm from the detector, and the
other (Screen B) was placed 104:3 cm from the detector.
The uncorrected images (corrected just for focusing)
when blurred by Screen A are shown in Figs. 2(a) and
2(b), by Screen B in Figs. 2(c) and 2(d), and by both
screens in Figs. 2(e) and 2(f). The anisoplanatism intro-
duced by these two phase screens can be seen in the
images of the ball bearings, which act like point sources
and, therefore, are local point spread functions, below
and to the left of the train. In both Figs. 2(c) and 2(e),
they are all distinctly different from one another in their
details. In contrast, with only Screen A present, Fig. 2(a)
shows that all three point sources have similar blur func-
tions, i.e., an approximately isoplanatic case.
To quantify the quality of a given image, we used a

modified Muller–Buffington sharpness metric [5,7]:

S ¼
X

ξ;η
Wðξ; ηÞIβðξ; ηÞ − α

XK

k¼1

X

f ξf η

Mkðf ξ; f ηÞjFkðf ξ; f ηÞj2;

ð2Þ

whereWðξ; ηÞ is an optional window function that allows
one to select a subregion of the image on which to base
the phase-error correction (equal to unity over the entire
image unless otherwise stated), Iðξ; ηÞ is the incoherent
sum of our K speckled images, α and β are constants (we
used β ¼ 1:01 [2]), Mkðf ξ; f ηÞ is a weighting function de-
fined by the spatial frequency content of the kth speckle
realization of the object field sensed over the area of the
digital hologram, and Fkðf ξ; f ηÞ is the Fourier transform
of the kth object field in the image plane.Mkwas the same
for all the speckle realizations. For the first case, with the
scene containing both the train and the ball bearings, we
used only the first term of this sharpness metric in a non-
linear optimization algorithm [5] to reconstruct the two
discrete planes of phase errors present in our optical sys-
tem and a corrected image. We found the metric to per-
form well under this imaging condition; the solution for
the estimated phase screens was driven in large part by
the strong glints produced by the ball bearings in the
scene. For the second case in which the ball bearings
were removed, we found it necessary to use both terms
in this metric to prevent oversharpening of the image. Es-
timating multiple phase screens in a sharpness-metric
nonlinear optimization approach tends to drive the solu-
tion to a telescopelike pair of phase screens, demagnify-
ing and warping the image. This effect makes the
sharpness metric higher [5], but the image may be a poor
reconstruction of the original object. To combat this spe-
cific form of oversharpening, the second term in Eq. (2)
requires the spatial bandwidth of the field to be the same
in the image plane as it is in the detector plane. We infer

the spatial bandwidth of the object from the Fourier
transform of the field in the detector plane. The spatial
bandwidth is not changed by free-space propagation and
is changed negligibly by the phase screens, allowing us to
approximate it everywhere. An analytic gradient for that
sharpness metric allows for efficient computation in a
conjugate gradient search [5]. For these reconstructions,
we employed a bootstrapping approach using the method
of sieves [8]. In this approach, we start by convolving a
point-by-point version of the analytic gradient with a
large Gaussian kernel so that only low-order phase cor-
rections are made. Through successive iterations, we
slowly reduce the size of the Gaussian kernel until we
eventually solve for the point-by-point phase map recon-
struction; this helps to avoid algorithm stagnation. For
this work, we started with a Gaussian kernel with a
FWHM of 100 pixels and reduced the Gaussian kernel
size by half every five iterations. Point-by-point phases
were used to better estimate the high-frequency content
present in the physical screens. The nonlinear optimiza-
tion code took 130 min to run on an IBM x3755 server
with four AMD Opteron 8224 SE processors. We believe
that with more efficient programming and use of graphics
processing unit cards, this process would run many times
faster.

We also tried single-plane correction in each of several
planes– thedetectorplane, eachphase-screenplane, anda
fewplanes locatedbetweenthetwophasescreens.Forthis
experiment, we found the best single-plane correction to

Fig. 2. Image with (a), (b) Screen A, (c), (d) Screen B, and (e),
(f) both screens present in the imaging path. Images shown here
are scaled, saturated, and cropped to show 530 × 650 pixels (left
column, with ball bearings) and 535 × 575 pixels (right column,
without ball bearings) of the entire 1024 × 1024 array.
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be in the plane of phase Screen A, the one closer to the de-
tector. This near-isoplanatic image correction, shown in
Figs. 3(a) and 3(b), are a slight improvement upon the un-
corrected images shown in Figs. 2(e) and 2(f). We see
strong evidence of anisoplanatism still present in the re-
sulting images in Figs. 3(a) and 3(b) because one cannot
correct anisoplanatic errors in a plane near the detector.
Figures 3(c) and 3(d) show images corrected, using the
weighting functionWðξ; ηÞ in Eq. (2), over small, isoplana-
tic patches designatedby the dashed regions. The features
within this region of interest are sharpened, while the rest
of the image remains unimproved. In fact, areas far from
thecorrectedregion inFig.3(c)areblurredevenmorethan
theuncorrected image, similar towhathappenswithadap-
tive optics correction for areas of an image outside of the
isoplanatic patch surrounding a guide star. Figures 3(e)
and 3(f) show the images corrected in both of the planes

of thepairofphasescreens. In thespace-variantcorrection
shown in Fig. 3(e), all three ball bearings have a uniformly
tight focus. Furthermore, secondary reflections from the
neighboring ball bearings, which are physically present,
are clearly visible between the two lower ball bearings,
although previously undetectable in the uncorrected case.
The details of the train, including the spokes on thewheels
and other fine features, are apparent only with this
multiple-plane phase-screen correction.

We repeated this experiment after removing the ball
bearings, imaging only the toy train. The experimental
setup remained the same for both imaging scenarios.
The absence of bright, sharp glints in the object makes
it more difficult for the image sharpening algorithm.
As previously mentioned, we used the modified sharp-
ness metric of Eq. (2). The algorithm was able to correct
the anisoplanatic errors to produce a much sharper im-
age, shown in Fig. 3(f), despite having no strong point
scatterers.

We have successfully demonstrated anisoplanatic cor-
rection of two static phase screens in a laboratory digital
holography experiment using an image sharpening algo-
rithm. The corrected images were much sharper than
the best single-plane correction case, even when the ob-
ject contained no prominent point scatterers. We found it
was necessary to add a term to the sharpness metric to
avoid oversharpening of the image by demagnification.
The approach is applicable to correcting any number of
phase screens and should be applicable to a continuous
3D volume of turbulence, although its performance will
undoubtedly suffer with an increasing number of un-
known phase parameters. Further research will be
needed to determine the number of, and complexity of,
phase screens that can be successfully corrected for a gi-
ven type of object (we expect it to depend on the object’s
space-bandwidth product, contrast, and spatial structure,
for example) and signal-to-noise ratio.

We thank Richard Marron for producing the phase
screens used in these experiments.
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Fig. 3. Comparison of (a), (b) isoplanatic correction across
the entire array, (c), (d) isoplanatic correction over a smaller
region of the image, indicated by dashed line and (e), (f) aniso-
planatic correction of phases in both the planes of Screens A
and B. Figures cropped to show 530 × 650 pixels (left column)
and 535 × 575 pixels (right column) of the entire 1024 × 1024
array. Images scaled and saturated to bring out details of the
dim portions of the objects in addition to bright glints.
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