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ABSTRACT

Searching sounds by text labels is often difficult, as text labels can-
not always provide sufficient information for the sound content.
Previously we proposed an unsupervised system called IMISOUND
for sound search by vocal imitation. In this paper, we fur-
ther propose a Convolutional Semi-Siamese Network (CSN) called
IMINET. IMINET uses two towers of Convolutional Neural Net-
works (CNN) to extract features from vocal imitations and sound
recordings, respectively. It then adopts a fully connected network
to predict the similarity between vocal imitations and sound record-
ings. We propose three different configurations of the CSN by
choosing different weight sharing strategies between the two tow-
ers. We also propose late fusion of the retrieval results of IMINET’s
different configurations and those of IMISOUND as a baseline. Ex-
periments show significant improvements of the retrieval perfor-
mance from the IMISOUND baseline to the fusion of IMINET’s
different configurations, and to different fusions between IMINET
and the IMISOUND baseline.

Index Terms— Vocal imitation, information retrieval, convo-
lutional Siamese network, metric learning

1. INTRODUCTION

Vocal imitation is a common human behavior that uses vocal or-
gans to mimic sounds. It is an effective way to convey ideas that are
difficult or insufficient to describe with languages in human com-
munication. These difficulties may be due to the language barrier
between the communicating parties, or due to the fact that certain
sounds do not have a definite semantic meaning such as computer-
synthesized sound effects. In many scenarios, vocal imitation also
augments language descriptions and makes the concepts being con-
veyed more vivid. For example, audiences of the National Public
Radios Car Talk show [1] call in to describe symptoms of their ve-
hicles by imitating the sounds caused by mechanical or electrical
failures to seek advice. These imitations make the conversations
more effective and fun.

Designing computer systems that can recognize vocal imitation
for sound search [2, 3] extends human-computer interaction and has
broad applications in multimedia retrieval, music production, secu-
rity and surveillance, and biomonitoring. Current large-scale sound
libraries such as freesound.org are indexed by text labels. These text
labels, however, often do not convey enough details of the sound,
and even if they do, memorizing them is difficult. Vocal-imitation-
based search allows users to search sounds based on details not de-
scribed by text labels. This is especially useful for large-scale li-
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braries where many different sounds share the same text labels and
search for target sounds in long recordings.

There are two main challenges in designing vocal-imitation-
based sound search systems: feature representation and matching
algorithms. Feature representations of vocal imitations and real
sounds need to be robust to different aspects (e.g., pitch, timbre,
rhythm) that humans emphasize in different imitations for different
sounds. They also need to consider differences between imitations
and real sounds due to the physical constraints of the human vo-
cal system. The matching algorithm needs to work with the feature
representations to discern target sounds from irrelevant ones for a
given query. In [4, 5], we proposed an unsupervised system for
sound search by vocal imitation called IMISOUND. We employed a
Stacked Auto-Encoder (SAE) to learn feature representations from
training vocal imitations and applied the same representation for
both imitation queries and sound candidates. We then calculated
their similarity through Kullback-Leibler (K-L) divergence [6], Dy-
namic Time Warping (DTW) [7], and the cosine distance. The fea-
ture representation and matching algorithm in IMISOUND, how-
ever, were designed separately.

In this paper, we propose another neural network model called
IMINET for sound search by vocal imitation that jointly optimizes
feature learning and the matching algorithm. As shown in Figure
1, IMINET is a Convolutional Semi-Siamese Network (CSN) that
contains 1) two Convolutional Neural Network (CNN) towers for
feature learning for vocal imitations (query) and sound recordings
(candidate) respectively; and 2) a Fully Connected Network (FCN)
for feature learning that classifies the query-candidate feature con-
catenations into positive and negative pairs. Different weight shar-
ing strategies between the two convolutional towers are proposed,
resulting in different versions of IMINET. Through this joint opti-
mization, feature representations learned by the convolutional lay-
ers are better tuned for the FCN’s metric learning. Experiments
show that different versions of IMINET achieve comparable or
higher sound search performance than IMISOUND. When retrieval
results from these versions are fused, IMINET clearly outperforms
IMISOUND. By fusing outputs of IMINET and IMISOUND, the
retrieval performance is further boosted significantly.

2. RELATED WORK

Query by vocal imitation falls into the task of Query by Example
(QEB) [8]. QEB has been applied to sound related applications
like query by humming [9], query by beat boxing [10], cover song
recognition [11], and spoken document retrieval [12]. However,
little work has been reported on sound search by vocal imitation.

Roma and Serra [13] designed a system that allows users to
search sounds on freesound.org by recording audio with a micro-
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phone, but no formal evaluation was reported. Blancas et al. [2]
built a supervised system using hand-crafted features by the Timbre
Toolbox [14] and an SVM classifier. A vocal imitation query was
classified to a class and sounds in that class were retrieved. The
major limitation of supervised systems, however, is that they cannot
retrieve sounds that do not have training imitations. Helén and Vir-
tanen [15] designed a query by example system for generic audio.
Hand-crafted frame-level features were extracted from both query
and sound samples and the query-sample pairwise similarity was
measured by probability distribution of the features. In our previ-
ous work [3], we first proposed a supervised system using a Stacked
Auto-Encoder for automatic feature learning and an SVM for imi-
tation classification. Considering the limitation of supervised sys-
tems, we then proposed an unsupervised system called IMISOUND
[4]. The SAE was adopted for feature extraction and various dis-
tances were adopted for query-sample similarity measure.

In another aspect, Siamese network was first proposed by
Bromley et al. [16] for signature verification. Since then, it has been
successfully applied to many image/video tasks such as face verifi-
cation [17] and image recognition [18]. More recently, Bertinetto
et al. [19] proposed a fully-convolutional Siamese network for ob-
ject tracking in videos. Han et al. [20] proposed the MatchNet
for patch-level image matching, a two tower structure with convo-
lutional layers for feature extraction and fully connected layers for
metric learning. However, little work has been reported in the au-
dio domain. Chen and Salman [21] proposed a regularized Siamese
deep network to extract speaker-specific information from MFCCs.

3. THE IMINET MODEL

The IMINET model is a Convolutional Semi-Siamese Network
(CSN). The overall structure is shown in Figure 1. The two towers
of convolutional layers receive a vocal imitation query and a sound
candidate as their input, respectively, and learns feature represen-
tations. These features are then concatenated and fed into a Fully
Connected Network (FCN) for metric learning. The final output of
the IMINET is a probability indicating whether the two inputs are of
the same concept (positive pair) or not (negative pair). The IMINET
network structure is built using Keras v2.0.3 [22].

3.1. Preprocessing

Both the vocal imitations and sound recordings are first downsam-
pled to 16 kHz. A 6-octave (50-3200 Hz) Constant-Q Transform
(CQT) is then employed to calculate their spectrograms using the
MATLAB CQT toolbox [23]. The CQT uses 12 bins in each octave
and a hop size of 26.25 ms. Considering the fixed size input for con-
volution in the two towers, imitation and recording CQT spectro-
grams are truncated to 129 frames. Spectrograms shorter than 129
frames are zero-padded. Therefore, the CQT spectrograms have a
dimensionality of 72*129 (frequency bins * time frames). The rea-
sons to use CQT instead of linear-frequency spectrograms are two
fold: 1) the log-frequency scale in CQT better corresponds to hu-
man auditory perception; 2) the representation is more compact for
the ease of network training.

3.2. Convolutional layers for feature learning

Each tower of the Siamese network is a Convolutional Neural Net-
work (CNN) with 4 convolutional layers. The parameters are shown
on the upper right side in Figure 1. Both towers receive a 72*129

Figure 1: The proposed IMINET structure.

sized CQT spectrogram as input. Both Conv1 and Conv2 have 12
filters with a receptive field of 3*3, and followed by a Rectified Lin-
ear Unit (ReLU) activation function. They are then each followed
by a 2*4 (both shape and stride) max-pooling layer with 2 in fre-
quency and 4 in time. For Conv3 and Conv4, each has 6 filters with
ReLU activations, but no pooling layer follows.

Besides sharing the same architecture, Siamese networks usu-
ally tie the parameters of the two towers, i.e., the two inputs pass
through the exactly same networks for feature learning. This is suit-
able when the two inputs share many traits in common, i.e., image
matching [20]. In our work, however, vocal imitations lie in a much
more restricted sound space than general sound recordings, due to
the physical constraints of the human vocal system. Conceptually,
vocal imitations and sound recordings should pass through two dif-
ferent feature learning networks. Therefore, in IMINET we propose
three configurations when designing the convolutional towers:

(1) Tied: The two towers share the exactly same weights and
biases in all layers.

(2) Untied: The two towers do not share weights and biases
at all, although their structures are the same. This allows the two
towers to be tuned for their input domains independently.

(3) Partially tied: The weights and biases in the two towers are
not shared for Conv1 and Conv2 layers, but are shared for Conv3
and Conv4 layers. The rationale behind this design is that layers
close to the input should be tuned to adapt to the input’s unique char-
acteristics and extract surface-level features that are closely related
to the specific input domain, while deeper layers should behave like
“grandmother cells” [24] that extract more complex and highly con-
ceptual features [25] that are shared across input domains.

As in both untied and partially tied configurations, the symme-
try between the two towers are less strict, we call such structures
semi-Siamese networks.

3.3. Fully connected layers for metric learning

After the features from the two towers are extracted, they are flat-
tened and concatenated. Then they are fed into a 3-layer Fully Con-
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nected Network (FCN). There are 432 and 32 neurons in FC1 and
FC2, respectively, where the ReLU activation function is adopted.
To avoid overfitting, we use 20% dropout on both FC1 and FC2.
FC3 has only one neuron which uses the sigmoid activation function
to squash the output value between 0 and 1. This value is viewed as
the probability indicating whether the imitation-recording pair is a
positive pair (i.e., correct match).

The FCN can be viewed as a metric learning network that learns
the similarity between vocal imitations and sound recordings from
positive and negative training pairs. Compared to common dis-
tance/similarity measures such as Euclidean distance or cosine dis-
tance, this metric/similarity is learned together with the feature rep-
resentations of the vocal imitations and sound recordings, likely
leading to a better retrieval performance.

3.4. Training

Training the network requires positive and negative pairs of vo-
cal imitations and sound recordings. We combine vocal imitations
with the original sound recordings that they imitate into positive
pairs, and with other sound recordings as negative pairs. We adopt
Adaptive Moment Estimation (Adam) optimization algorithm [26]
to minimize the loss function of binary cross-entropy between the
probability output and the ground-truth label, where 1 and 0 denotes
positive and negative pairs, respectively. The learning rate is 0.001,
β1 and β2 are 0.9 and 0.999, respectively, ε is 1e-8. The batch size
is 128. Early stopping based on validation loss with patience of 5
epochs is employed for training termination.

3.5. Sound retrieval

Once IMINET is trained, it can be used to search sounds for a vocal
imitation query. To do so, we pair the imitation query with each
sound candidate in the library and use IMINET to calculate its like-
lihood of being a positive pair. Let the likelihood for the i-th sound
candidate be Lcsn(i). We then rank all sound candidates by their
likelihood from high to low and return the top ones to the user.

It is noted that although IMINET is trained in a supervised way,
its use for sound retrieval is totally unsupervised. In other words,
IMINET needs not to be trained on imitation-sound pairs of a cer-
tain sound concept for it to be used to retrieve that sound concept.
This is similar to unsupervised sound retrieval systems that use pre-
defined distance/similarity measures [4, 5, 15].

3.6. Late fusion

Inspired by ensemble learning [27], we consider to fuse the retrieval
results of the three configurations of IMINET by multiplying their
outputs (i.e., likelihood values):

Lfusion(i) = Ltied(i) ∗ Luntied(i) ∗ Lpartial(i), (1)

where Ltied(i), Luntied(i), and Lpartial(i) are the pairing likeli-
hood between the query and the i-th sound candidate, by tied, un-
tied, and partially tied models, respectively.

We also consider to fuse the retrieval results of IMINET with
those of IMISOUND [5]. As described before, IMISOUND uses a
two-hidden-layer Stacked Auto-Encoder (SAE) [28] to extract fea-
tures for a vocal imitation and a sound candidate. It then calculates
the cosine distance between their feature representations. To fuse

this result with that of IMINET, we convert the distance to a likeli-
hood through a softmax function:

Lsae(i) =
e−D(i)∑N

n=1 e
−D(n)

, (2)

where D(i) is the cosine distance between the vocal imitation and
the i-th sound candidate; N is the total number of sound candidates
in the library. Then the fusion between IMINET and IMISOUND
can be done by multiplying their likelihood values:

Lfusion(i) = Lcsn(i) ∗ Lsae(i). (3)

IMINET and IMISOUND have different structures and training
objectives. In particular, IMINET learns feature representations in
a supervised way with the goal of helping discriminate positive and
negative pairs, while IMISOUND learns features in an unsupervised
way which aims at a good reconstruction of the input. In addition,
IMINET learns the similarity between vocal imitations and sound
recordings from training data, while IMISOUND uses a pre-defined
distance measure. Therefore, it is expected that they perform differ-
ently on the same imitation-sound pair and fusing their results may
improve the retrieval performance.

4. EXPERIMENTS

4.1. Dataset

We adopt VocalSketch Data Set v1.0.4 [29] in our experiments. This
dataset contains 120 sounds with distinct concepts and 10 vocal im-
itations of each recording obtained from different Amazon Mechan-
ical Tuckers. The sounds and imitations are 3-second long on aver-
age. The sounds fall into 4 categories, namely Acoustic Instruments
(AI), Commercial Synthesizers (CS), Everyday (ED), and Single
Synthesizer (SS). The number of sounds in these categories is 40,
40, 120, and 40, respectively. We choose half of the sounds of each
category (i.e., 20, 20, 60, and 20 from AI, CS, ED, SS, respectively)
and all of their imitations to compose a dataset to train and validate
the IMINET. We use the other half sounds and their imitations to
test the IMINET. Therefore, training and testing materials do not
share any sounds nor imitations.

For the 120 sounds used for training and validation, we choose
7 imitations of each sound to form 120 * 7 = 840 positive pairs
and 840 negative pairs to train the IMINET. Positive pairs are pairs
of an imitation and its target sound. Negative pairs are created by
randomly pairing an imitation with an irrelevant sound. We use the
rest 3 imitations of each sound to compose 120 * 3 = 360 positive
pairs and 360 negative pairs to validate the IMINET.

We evaluate IMINET sound search performance within each
category of the remaining 120 sounds and their imitations. By
taking one vocal imitation from the AI category for example, it is
paired with all the 20 candidate sound recordings to form 20 pairing
test samples. In total there are 10 * 20 = 200 pairing test samples
in the AI category. To get statistically reliable results, we train the
IMINET 10 times with different initializations and evaluate their
sound search performance.

4.2. Evaluation measure

Same as our previous work, we employ Mean Reciprocal Rank
(MRR) [30] to evaluate the search performance in each category:

MRR =
1

Q

Q∑
i=1

1

ranki
, (4)
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Table 1: MRR (mean ± std) comparisons of various IMINET configurations with the baseline system.

Configuration Acoustic Instr. Comm. Synthesizers Everyday Single Synthesizer

Baseline IMISOUND 0.425 ± 0.015 0.311 ± 0.007 0.126 ± 0.003 0.373 ± 0.012

Proposed Untied 0.377 ± 0.019 0.318 ± 0.020 0.154 ± 0.014 0.325 ± 0.020
Proposed Partial 0.384 ± 0.027 0.304 ± 0.015 0.154 ± 0.015 0.340 ± 0.031
Proposed Tied 0.401 ± 0.028 0.327 ± 0.019 0.158 ± 0.012 0.380 ± 0.018
Proposed Untied + Partial + Tied 0.438 ± 0.015 0.343 ± 0.020 0.175 ± 0.012 0.382 ± 0.013

Proposed Untied + IMISOUND 0.470 ± 0.025 0.356 ± 0.011 0.168 ± 0.010 0.402 ± 0.022
Proposed Partial + IMISOUND 0.496 ± 0.018 0.346 ± 0.025 0.173 ± 0.014 0.417 ± 0.025
Proposed Tied + IMISOUND 0.504 ± 0.014 0.355 ± 0.016 0.171 ± 0.009 0.452 ± 0.020
Proposed Untied + Partial + Tied + IMISOUND 0.520 ± 0.020 0.371 ± 0.013 0.188 ± 0.007 0.447 ± 0.012

where ranki is the rank of the target sound among all sounds in the
same category for the i-th vocal imitation query; Q is the number of
imitations in each category. MRR ranges from 0 to 1 with a higher
value indicating a better sound retrieval performance. For example,
an MRR of 0.5 suggests that, on average, the target sound is ranked
the second among all sounds in the category, while an MRR of 0.25
suggests that, on average, the target sound ranks the fourth. We
report the average MRR and standard deviation across 10 runs of
the system. We compare with our previous IMISOUND system [5].

4.3. Experimental results

Table 1 shows performance comparisons of different configura-
tions of the proposed IMINET, different fusing strategies, and the
IMISOUND baseline [5]. Several interesting observations can be
made. First, from untied to partially tied to tied configurations of
IMINET, the MRR increasing trend is observed in all categories.
We also observe the similar trend when these configurations are
fused with IMISOUND. This is unexpected, as we thought that par-
tially tied or untied configuration could better account for the differ-
ences between vocal imitations and sound recordings and result in
better retrieval performance. A possible explanation could be that
the number of parameters is reduced in the tied configuration, which
makes the network easier to train considering the small amount of
training data. This may suggest that data scarcity is a bottleneck
hindering the potential exploitation of more complicated models.

Second, the best performing IMINET configuration, tied, out-
performs IMISOUND on two categories (Commercial Synthesizers
and Everyday), underperforms on the Acoustic Instrument category,
and achieves comparable performance on the Single Synthesizer
category. An unpaired t-test shows that the MRR improvement is
statistically significant for Commercial Synthesizers (p = 1.17e-2)
and Everyday (p = 6.15e-6) at the significance level of 0.05.

Third, by fusing different configurations of IMINET, the MRR
is better than each configuration itself. The MRR improvements for
all categories except Signal Synthesizer are statistically significant
(Acoustic Instruments p = 3.08e-2, Commercial Synthesizers p =
2.70e-4, and Everyday p = 8.30e-8), at the significance level of 0.05.
This is because under different weight constraints, each configura-
tion tends to learn its unique features. We believe that these features
are complementary to some extent, explaining why the fused model
outperforms every single configuration.

Fourth, by late fusion of the IMISOUND with each IMINET
configuration, the MRR is boosted significantly. The lowest MRR
after late fusion comes from Untied + IMISOUND combination, but
it still significantly outperforms both IMISOUND and Untied, at

the significance level of 0.05. In the Acoustic Instruments category,
IMISOUND gets an MRR of 0.425. This means that on average, the
target sound is ranked between the 2nd and the 3rd. By combining
IMISOUND with Untied CSN, the MRR is increased by 10.6%. For
the rest 3 categories, the MRR is also increased by 14.5%, 33.3%,
and 7.8%, respectively. This observation verifies our hypothesis
earlier, that thanks to the intrinsic differences between IMISOUND
and IMINET on both network structure and training objective, their
retrieval results are likely to be complimentary and fusing them can
improve the performance significantly.

Finally, we can achieve the highest MRR in general by fusing
all configurations of IMINET together as well as IMISOUND. In
the Acoustic Instruments category, the MRR is as high as 0.520.
The Everyday sound category has the lowest MRR of 0.188, but
still improves significantly from IMISOUND’s MRR of 0.126. It
suggests that the target sound is ranked between the 5th and 6th
on average, among the 60 sound candidates in that category. By
conducting the unpaired t-test, we found salient MRR improvement
comparing with IMISOUND: Acoustic Instruments p = 8.41e-10,
Commercial Synthesizers p = 3.72e-9, Everyday p = 1.67e-12, and
Single Synthesizer p = 2.51e-11, at the significant level of 0.001.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a Convolutional Semi-Siamese Network
(CSN) called IMINET to search sounds by vocal imitation from a
sound library in an unsupervised manner. It uses two towers of Con-
volutional Neural Networks (CNN) to extract features from vocal
imitations and sound recordings, respectively, and then uses a Fully
Connected Network (FCN) to predict the similarity between the im-
itation and the sound. We proposed three different configurations of
the CSN by choosing different weight sharing strategies between
the two towers. We also proposed late fusion of the retrieval re-
sults of IMINET’s different configurations and those of a baseline
system named IMISOUND. Experiments show significant improve-
ments of the retrieval performance from the IMISOUND baseline
to the fusion of different configurations of IMINET, and to differ-
ent fusions between IMINET and the IMISOUND baseline. For
future work, we would like to implement data augmentation of the
CSN model to alleviate the data scarcity problem. We also would
like to combine Recurrent Neural Networks (RNN) with Siamese
Networks together to model the temporal evolution of both vocal
imitations and sound recordings. Finally, we would like to conduct
subjective studies for our system.
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“Signature verification using a ‘siamese’ time delay neural
network,” in Proc. Advances in Neural Information Process-
ing Systems (NIPS), 1994, pp. 737–744.

[17] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity
metric discriminatively, with application to face verification,”
in Proc. Computer Vision and Pattern Recognition (CVPR),
2005 IEEE Conference on, 2005, pp. 539–546.

[18] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neu-
ral networks for one-shot image recognition,” in Proc. the
32nd International Conference on Machine Learning (ICML),
2015.

[19] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and
P. H. Torr, “Fully-convolutional siamese networks for object
tracking,” in Proc. European Conference on Computer Vision
(ECCV), 2016, pp. 850–865.

[20] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg,
“Matchnet: Unifying feature and metric learning for patch-
based matching,” in Proc. Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, 2015, pp.
3279–3286.

[21] K. Chen and A. Salman, “Extracting speaker-specific infor-
mation with a regularized siamese deep network,” in Proc.
Advances in Neural Information Processing Systems (NIPS),
2011, pp. 298–306.

[22] F. Chollet et al., “Keras,” https://github.com/fchollet/keras,
2015.

[23] C. Schörkhuber and A. Klapuri, “Constant-Q transform tool-
box for music processing,” in Proc. the 7th Sound and Music
Computing Conference, 2010.

[24] C. G. Gross, “Genealogy of the ‘grandmother cell’,” The Neu-
roscientist, vol. 8, no. 5, pp. 512–518, 2002.

[25] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolu-
tional deep belief networks for scalable unsupervised learning
of hierarchical representations,” in Proc. the 26th annual in-
ternational conference on machine learning, 2009, pp. 609–
616.

[26] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[27] D. W. Opitz and R. Maclin, “Popular ensemble methods: An
empirical study,” The Journal of Artificial Intelligence Re-
search, pp. 169–198, 1999.

[28] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313, no.
5786, pp. 504–507, 2006.

[29] M. Cartwright and B. Pardo, “Vocalsketch: Vocally imitating
audio concepts,” in Proc. the 33rd Annual ACM Conference
on Human Factors in Computing Systems, 2015, pp. 43–46.

[30] D. R. Radev, H. Qi, H. Wu, and W. Fan, “Evaluating web-
based question answering systems,” Ann Arbor, vol. 1001, p.
48109, 2002.

308


