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L Basic Tasks

Classification and detection of environmental sounds
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Deep learning based approaches

Deep learning advantages Current solutions
m Learn features m Vary intensity and speed !'!
automatically m Pitch shift, etc
m High nonlinearity m Importance weighting !
m Success in various Drawbacks
domains

m All data treated equally

Deep learning disadvantages m Redundancy in training

m Data demanding

' D. Amodei et al, Deep speech 2: End-to-end speech recognition in english and
mandarin, ICML2016.

2 J. Salamon et al, Deep convolutional neural networks and data augmentation for
environmental sound classification, SPL2016.

3 8. Sivasankaran et al, Discriminative importance weighting of augmented training
data for acoustic model training, ICASSP2017.
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L Problem we want to solve

Problem we want to solve

Reduce training data
%’ m Make the training

procedure more efficient
m Less power consumption

Les m Less storage required

Power Consumption
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Our approach

Good
Ones

Undertying Dynamically select those useful
Boundary augmented samples with the
learned metric
Bad Gad m Train a metric for selection

Ones

m Brute-force augmentation
m Filter out bad samples
m Train the model
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L Data Preprocessing

Data preprocessing
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log-mel spectrograms

m Data: 44.1kHz

m Apply hann window
m Window: 1024

m Without overlap

m 128 bands

m 0 Hz to 22050 Hz

m 128 adjacent frames (2.97
seconds)
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Network structure

Network Structure
layer | out-size filters non-linear | regularize
Input | 128x128
convl | 124x124 | (5x5), 24, (1, 1) RelLU Batch Norm
pool1 31x62 42),(4,2) - -
conv2 | 27x58 | (5x5),48,(1,1) RelLU Batch Norm

pool2 6x29 4 2), (4, 2) - -

conv3 2x25 (5x5), 48, (1, 1) RelLU Batch Norm
full4 64 - RelLU Dropout: 0.5
fulls 10 - Softmax | Dropout: 0.5

Table: Conv filters: “(freq bands x time frames), filters, (freq stride,
time stride)”.
Pooling layers: “(freq bands, freq stride), (time frames, time stride)”
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Data augmentation

Deformations for audiol Augmentation schemes
m TS: Time stretch m Baseline: Brute-force
m PS: Pitch shift augmentation
m DRC: Dynamic range m Baseline:

Class-conditional
augmentation

m Proposed: Metric-based
augmentation

compression
m BG: Background noise

m All: All deformations
combined

1 J. Salamon et al, Deep convolutional neural networks and data augmentation for
environmental sound classification, SPL2016.
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Class-conditional augmentation

Single deformation applied Class-conditional
augmentation
R Jp—— m Apply single deformation
car_hom % ==
== i m For each class, know the
= - beneficial deformations
[ ="
D% m For each class, apply all
:E% the beneficial deformations
—_— m Train the model with the
= augmented data
street_music =
—
Al classes E
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Proposed augmentation scheme

Stage1: Learn the metric Stage2: Select data
Loss
i Maintain
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Stagei: Learn the metric

Loss function

9
L({(le i }/ 1 Z +Zexp _fo/)) (1)
i=1 j#i

where {(x1,x]), (X2, X3), ..., (Xxc, X;)} are C pairs of examples
from the C different classes, i.e., their labels satisfy y; = y/ and
yi # y; Vi # |, f; is the output of the network’s last fully
connected layer when we feed x; as the input.
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Stage2: Select data

Similarity function

f(x)TF(x")
GO - (x|

S(x,x') =

kNN

Ya = kNN(a, Drrain; f) (3)

where, ais the augmented sample with label y; Dy, is the
training set; We accept aif y, agrees with y, or we discard it
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L Dataset and Evaluation

Dataset and Evaluation

UrbanSound8K Evaluation
m 10 classes m Classification accuracy
m 8732 clips m 10-fold cross validation
m Durations up to 4 Ensemble
seconds m Given test fold, train nine models

m Average outputs of nine models
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Brute-force augmentation
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Figure: (a): Confusion matrix of the brute-force method!'!;
(b): Differences between the confusion matrices with and without
brute-force augmentation.
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Proposed method: acceptance ratio comparison
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Accuracy comparison

m Make training procedure more efficient

m Reduce training data
—|— m Maintain the same performance
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Conclusions

m Brute-force augmentation causes training redundancy
m Fine-grained strategy needed
m Metric-based selection is effective in reducing training data
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