
SEE AND LISTEN: SCORE-INFORMED ASSOCIATION OF SOUND TRACKS TO PLAYERS
IN CHAMBER MUSIC PERFORMANCE VIDEOS

Bochen Li, Karthik Dinesh, Zhiyao Duan, and Gaurav Sharma

University of Rochester, Department of Electrical and Computer Engineering

ABSTRACT

Both audio and visual aspects of a musical performance, especially
their association, are important for expressing players’ ideas and for
engaging the audience. In this paper, we present a framework for
combining audio and video analyses of multi-instrument chamber
music performances to associate players in the video to the individ-
ual separated instrument sources from the audio, in a score-informed
fashion. The instrument sources are first separated using a score-
informed source separation techniques. The individual sources are
then associated with different players in the video by correlating the
onset instants of their aligned score tracks with the players’ motion
detected using optical flow. Experiments on 19 musical pieces with
varying polyphony show that the proposed method obtains the cor-
rect association for 17 pieces, and an accuracy of 89.2% of the as-
sociation of all individual tracks. The approach enables novel music
enjoyment experiences by allowing users to target an audio source
by clicking on the player in the video to separate/enhance it.

Index Terms— Multi-modal music analysis, motion analysis,
source separation, source association, audio-score alignment

1. INTRODUCTION

Music is not just an art of sound. The visual aspects of musical
performances play an important role in expressing performers’ ideas
and emotions and in engaging the audience in live concerts and mu-
sic videos. With the popularization of video streaming services,
more people like to see and listen to musical performances at the
same time. The coordination between the two senses enables a richer
and more enjoyable experience. Current Music Information Re-
trieval (MIR) research, however, focuses mainly on the audio modal-
ity of musical performances, ignoring the visual aspects.

The analysis of visual aspects of musical performances can sig-
nificantly advance MIR research. Challenging tasks such as instru-
ment playing activity detection [1] and music transcription [2] in
polyphonic music can be much easier to tackle by analyzing the vi-
sual aspects of the performance. It also opens up new frontiers in
MIR research such as performance expressiveness analysis [3], fin-
gering investigation [4], and conductor following [5].

A key problem in MIR is source separation and association. Sep-
aration is to split the audio mixture into sound source signals, while
association is to match sound sources with players. When the visual
modality is available, source association connects the audio and vi-
sual modalities, and is essential for leveraging the visual information
to analyze sound sources. On the application side, one can envision
an augmented video streaming service that allows users to click on a
player in the video and isolate/enhance the corresponding source of
the audio and to also display auxiliary information about the player
and the performance. Such association can also help music editors
to remix audio sources and recompose video scenes.
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Fig. 1. Framework of the proposed system. Separated sources are
associated with players in the video, encoded with different colors.

In this paper, we address the source association problem in video
recordings of multi-instrument music performances by synergistic
combination of analysis of the audio and video modalities. The
key idea and contribution in this work lies in recognizing that sound
sources corresponding to individual instruments exhibit strong tem-
poral interdependence with motion observed in the video in spatial
regions that contain the corresponding instrument players. Moti-
vated by this interdependence, we propose a framework for combin-
ing source separation via audio analysis and motion video analysis to
associate players in the video with corresponding audio sources. For
the work we present here, we focus specifically on classical chamber
music performances, where a score is typically available, allowing us
to use the score to inform the analysis and the association. Our sys-
tem framework is illustrated in Fig. 1. The lower half of Fig. 1 illus-
trates the score-informed source separation, which is adapted from
our prior work [6]. The MIDI score is first aligned with the audio
mixture (thus the video as well) and then used to guide the sepa-
ration of audio sources. The upper part of the figure illustrates the
video analysis and the exploitation of temporal interdependence to
achieve the association between score tracks (thereby audio sources)
and players in the video.

While our framework is general, for the initial demonstration
that we present here, we focus primarily on chamber music with
string instruments, where we can clearly motivate our choice of mo-
tion features and demonstrate the intuition for the association. For
motion analysis in this setting, we employ a state-of-the-art opti-
cal flow technique [7] combined with a principle axes projection to
capture the predominant motion of each string player as a 1D sig-
nal that we refer to as the principal motion velocity curve. We then
find the bijection between the players and the score tracks that max-
imizes the coincidence between players bowing motion onset in the
video, identified by zero crossings of the principal motion velocity
curve, and the score tracks’ note onsets. This simple method for
matching associations is based on the observation that many notes in
string instrument performances start with a bowing stoke. We eval-
uate the proposed method on 19 audio-visual musical performance
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Fig. 2. Audio-score alignment which naturally results in video-score
alignment. The alignment path (green line) is searched within a fixed
range around the diagonal of the distance.

recordings, each containing at most one non-string instrument. The
method is effective and correctly estimates the association between
the separated sound sources and the players in the 16 video pieces,
with 89.2% of individual tracks are correctly associated.

Results obtained from this work were previously featured in a
demonstration in [8] (without an accompanying paper). This pa-
per describes the technical approach and presents quantitative results
from systematic experiments. In the following, we first briefly de-
scribe the audio analysis modules (audio-score alignment and audio
source separation) in Section 2. We then describe in detail the video
analysis modules that achieve source association through the bowing
motion analysis of string players in Section 3.

2. AUDIO ANALYSIS

The main goal of audio analysis is to align the score with the perfor-
mance. Since audio has been naturally synchronized with video in
video recordings, the alignment between audio and score naturally
results in the alignment between video and score as well, which is
necessary for the player-source association problem in Section 3.3.

We adopt a commonly used offline Dynamic Time Warping
(DTW) approach [9] based on the chroma representation [10]. We
calculate a 12-D chroma feature vector sequence for both audio and
score. We then calculate the Euclidean distance between each pair
of the audio and score chroma vectors to derive a local distance cost
matrix, as shown in Fig. 2, and use dynamic programming to search
for the alignment path with the smallest overall cost. To speed up
the computation, we only search alignment paths within 5 seconds
around the diagonal of the distance matrix [11]. We also require the
paths to be monotonic as in [9].

Another goal of audio analysis is to separate audio sources. The
separated sources, together with the player-source association iden-
tified in Section 3, allows users to isolate/enhance sound sources
of the players that they select in the video. With the score avail-
able and aligned well with the audio, score-informed source separa-
tion usually achieves better separation results. Various approaches
to score-informed source separation have been proposed, including
Non-negative Matrix Factorization [12, 13, 14], Gaussian Mixture
Model [15], and adaptive instrument model [16]. We adopt the
pitch-based approach of [6]. It first estimates the actually performed
pitches around score-notated pitches in each frame, and then build
harmonic masks that consider different overlapping harmonics cases
to separate sources. Note that this score-informed source separation
module does not serve for player-source association problem in this
paper, as the association is handled between video and score tracks
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Fig. 3. A video frame (top-left), detected players in white and their
high motion regions in green (top-right), and the optical flow vectors
(bottom).

in Section 3. In future work, characteristics such as vibrato in the
separated sources could also be used to associate with the fine mo-
tions of players in the video.

3. VIDEO ANALYSIS

The goal of the video analysis modules is to associate score tracks
(hence sound sources) with players in the video. In musical per-
formances, there is often a natural correlation between a player’s
motion (fingers, hands, body) and the music content (notes, beats,
phrases). This correlation is especially prominent for string instru-
ments, as many notes are started by a bow stroke, that is, many note
onsets can be matched to onsets of bow strokes. We extract the bow-
ing motion of string instrument players via optical flow estimation,
and then match bow stroke onsets with note onsets in the aligned
score tracks to achieve source association.

3.1. Optical Flow Estimation

Optical flow is a powerful approach to compute pixel-level motion
velocities in a motion field of an image sequence [17]. We adopt a
state-of-the-art method proposed by Sun et al. [7] that ranked first
on the Middlebury optical flow benchmark [18] at the time of pub-
lication. For the audio-visual source association we need to char-
acterize the bowing motion of the string players which often shows
a high motion magnitude than other kinds of motion. For this, we
first calculate the optical flow vectors for each pixel for the entire
video sequence. We then sum the magnitude of the flow vectors
across all frames on each pixel. This gives us a 2-D motion magni-
tude function of the video scene. We approximate this function us-
ing the Gaussian Mixture Model (GMM), with the assumption that
each Gaussian component corresponds to one player. This provides
a rough detection of the players, as shown in the white region of Fig.
3. Then we obtain a high motion region by computing a histogram
of the 2-D motion magnitude function values within each player and
selecting pixels with the values higher than two standard deviations
above the mean, as shown in the highlighted green region in Fig. 3.
Optical flow estimation result is also displayed as vectors.

3.2. Bowing Motion Capture

To capture the bowing motion of each player, we average the es-
timated motion velocities of all pixels in the high motion region
to obtain a global motion vector in each video frame as u(n) =
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Fig. 4. Global motion vectors (dots) across all frames for the two
players, showing different principal motion directions (green lines).
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Fig. 5. Principal motion velocity curve χ(n) for the two players with
aligned note sequences from the two corresponding score tracks.
Dash lines show prominent correlations between their onsets.

[ux(n), uy(n)]T , where n is the frame index. Fig. 4 shows the dis-
tribution of all the global motion vectors in the 2-D plane throughout
all frames of the video of the two players in the example shown in
Fig. 3. Note that for string instruments, bowing is mainly a 1-D
motion. To investigate the principal motion direction of the bow-
ing actions, we perform principal component analysis (PCA) on the
global motion vectors and use the eigenvector ũ = (ũx, ũy)T to
represent the principal direction, plotted as the green lines in Fig. 4.

We then project the global motion vectors u(n) onto the princi-
pal direction to define a principal motion velocity curve χ(n) as

χ(n) =
u(n)T ũ

‖ũ‖ . (1)

This helps to suppress motions along other directions which might be
due to the irrelevant body swings and instrument movements. Fig. 5
shows the principal motion velocity curves χ(n) of the two players.

3.3. Video-Score Source Association

Figure 5 also plots the notes in the corresponding score tracks of
the two players, which have been aligned to the music performance
during audio-score alignment. Looking at the vertical dash lines, we
find that most note onsets occur around the zero crossing points of
χ(n), which denotes the time instants of bowing direction changes,
i.e., onsets of bow strokes. Exceptions are the legato bowing tech-
nique where a sequence of notes are played in a single bow stroke.

To reliably obtain bow stroke onsets, we firstly detect all the zero
crossing points Z of χ(n). We then calculate the moving average
of the magnitude of the principal motion velocity curve χ̄(n) using a
sliding window with a radius of 5 frames. A zero-crossing of χ(n) is
more likely to represent a real bow stroke onset if the motion velocity
magnitude around it is high. Based on this idea, we define the bow
stroke onset likelihood curve f(n) as

f(n) =

(∑
m∈Z

χ̄(m) · δ(n,m)

)
∗ N (n; 0, σ2), (2)

where δ(n,m) is the Kronecker delta function that equals to 1 when
n = m and equals to 0 otherwise. The expression in the parentheses
denotes an impulse train located at the zero crossings of the princi-
pal motion velocity curve χ(n), modulated by the average velocity
magnitude χ̄(n). It is then convolved with a Gaussian smoothing
function N (n; 0, σ2) to tolerate timing errors of the zero crossings.
The standard deviation σ is set to 3 frames.

As described above, the stroke onset function f(n) often shows
a good correspondence with the note onset activities for string play-
ers. We use a binary impusle train g(n) to represent the note onset
activities for each player, where each impulse represents a note on-
set from score tracks. To associate players in the video with score
tracks, we match the stroke onset functions of all players with note
onset functions of all score tracks and consider all their permuta-
tions. We calculate a matching score for each permutation. To define
the matching score, we need to consider two kinds of mismatches be-
tween stroke onset functions and note onset functions: 1) note onsets
not matching with stroke onsets due to legato bowing, and 2) stroke
onsets not matching with note onsets due to irrelevant motion such
as large body swing. Therefore, we define two matching functions
M−p,q and M+

p,q to pair the stroke onset function of the p-th player
fp(n) with the note onset function of the q-th score track gq(n), and
use their geometric mean as the final matching function:

M−p,q = fp(n)T gq(n)/
∑
m gq(m)

M+
p,q = fp(n)T gq(n)/

∑
m fp(m)

Mp,q =
√
M−p,q ·M+

p,q,

. (3)

where M−p,q resembles the recall rate of note onsets if we view the
stroke onset function as an estimate of note onset activities, while
M+
p,q resembles the precision rate.

For N players and N score tracks, there are N ! bijective asso-
ciations (permutations). Let σ(·) be one association, then the p-th
player will be associated with the σ(p)-th score track. We define an
association score as the product of all pair-wise matching scores:

Sσ =

N∏
p=1

Mp,σ(p), (4)

The association σ that maximizes Sσ is selected. Although this can
be done more efficiently by the Hungarian algorithm [19], we simply
enumerate all associations considering the small value of N .

4. EXPERIMENTS

We evaluate the proposed score-informed audio-visual association
approach on 19 pieces from the URMP dataset1 [20] including 5
duets, 4 trios, 7 quartets, and 3 quintets. The 19 pieces were selected
with a criterion that each piece contains no more than one non-string

1http://www.ece.rochester.edu/projects/air/projects/datasetproject.html



Metadata Association Measures

No. Instrument Type Piece Length
(mm:ss)

Polyphony -
(No. permutations)

No. of Correctly
Associated Sources

Rank of
Correct Association Metric Ratio

1 Vn. Vc. 01:03 2 - (2) 2 1 1.454
2 Vn1. Vn2. 00:46 2 - (2) 2 1 1.689
3 Fl. Vn. 00:35 2 - (2) 2 1 1.036
4 Tp. Vn. 03:19 2 - (2) 2 1 3.203
5 Ob. Vc. 01:44 2 - (2) 2 1 2.519
6 Vn1. Vn2. Vc. 02:12 3 - (6) 3 1 1.821
7 Vn1. Vn2. Va. 00:47 3 - (6) 3 1 1.048
8 Cl. Vn. Vc. 02:13 3 - (6) 3 1 1.247
9 Tp. Vn. Vc. 02:13 3 - (6) 3 1 1.289

10 Vn1. Vn2. Va. Vc. 00:50 4 - (24) 4 1 1.470
11 Vn1. Vn2. Va. Sax. 00:50 4 - (24) 4 1 1.142
12 Vn1. Vn2. Va. Vc. 01:25 4 - (24) 4 1 1.138
13 Vn1. Vn2. Va. Sax. 01:25 4 - (24) 2 5 0.769
14 Vn1. Vn2. Va. Vc. 02:54 4 - (24) 4 1 9.106
15 Vn1. Vn2. Va. D.B. 02:08 4 - (24) 4 1 1.330
16 Vn1. Vn2. Va. Vc. 02:08 4 - (24) 4 1 1.281
17 Vn1. Vn2. Va. Vc. D.B. 01:59 5 - (120) 5 1 1.438
18 Vn2. Vn2. Va. Sax. D.B. 01:59 5 - (120) 5 1 1.135
19 Vn1. Vn2. Va1. Va2. Vc. 03:45 5 - (120) 0 19 0.564

Table 1. Evaluation of the proposed player-score association method on 19 music performances. Abbreviations of instrument types are:
violin (Vn.), viola (Va.), cello (Vc.), bass (D.B.), flute (Fl.), oboe (Ob.), clarinet (Cl.), saxphone (Sax.), trumpet (Tp.).

instrument. Each piece was assembled (mixed for audio and com-
posed for video) from separately recorded but well coordinated per-
formances of individual instrumental tracks. The background of the
composed videos were replaced with a concert hall background as
shown in Figure 3. Audio is sampled at 48 KHz. Video frame rate is
29.97 fps and resolution is 1080P. Multi-track MIDI scores of these
pieces are also provided in the URMP dataset.

For audio analysis, we used a frame length of 42.7 ms and a
hop size of 9.3 ms for the Short-Time Fourier Transform (STFT).
Alignment paths are searched within 5 seconds around the diagonal
alignment path. For video analysis, we downsampled the resolution
to 240P. All parameters for optical flow were set the same as [7].

Table 1 shows the association results on the 19 pieces together
with their metadata. The number of possible permutations increases
with polyphony (2 for duets, 6 for trios, 24 for quartets, and 120 for
quintets) and the association becomes more difficult. Since this is the
first approach on this association problem, we do not have baseline
methods to compare with. To make the evaluation more meaningful,
we not only output the association that achieves the highest matching
score in Eq. (4), but also rank all permutations according to their as-
sociation score to see if the correct association, when it is not ranked
the first, fails gracefully or with a big gap.

We propose three measures to evaluate out method’s perfor-
mance on each piece: 1) The number of correctly associated sources,
2) the rank of the correct association among all possible permuta-
tions, and 3) the ratio between the association score of the correct
association and the highest association score of all wrong associa-
tions (named Metric Ratio in the table). This value will be≥ 1 if the
correct association is ranked the first by the proposed method, and a
higher value indicates a larger margin of the correct association over
all wrong ones. This value will be ≤ 1 if it is not ranked the first by
the proposed method, and a higher value indicates a smaller gap of
the correct association from the firstly ranked association.

We can see that for 17 out of the 19 pieces, all sources are cor-
rectly associated by the proposed method, i.e., the correct association

is ranked the first. Overall, 89.2% of all (58 out of 65) sources of all
the pieces are correctly associated. For many pieces like 2, 4-5, and
14, high metric ratios are achieved. Take the 14th piece as an exam-
ple, the ratio of 9.11 far exceeds 1. This is thanks to the alternated
entries of different instruments at the beginning, i.e., the Fugue style,
making the players’ motions quite different from each other.

Among all these results, the two pieces (No. 13 and 19) fail
to output the correct association at the first rank. The main reason
for the association error here in 13th piece, we argue, is the usage
of wind instrument, for which the prominent motion captured by
the proposed method is likely body swings (instead of finger move-
ments) that are not highly correlated with score note onsets. This
is also true for the 3rd piece, which almost fails with the metric ra-
tio close to 1. For the 19th piece, the correct association ranks the
19th out of 120 permutations even though they are all string instru-
ments. Further investigation reveals that it contains too much legato
bowing, where most note onsets cannot be matched with bowing
strokes. Note that the proposed method also almost fails on the 7th
piece where all are string instruments too. This is because the three
sources share very similar rhythmic patterns. For all of the above
pieces, we find that the correct association is difficult to identify even
for amateurish musicians.

5. CONCLUSIONS

We proposed a methodology for audio-visual source association by
synergistic analyses of the audio and video modalities and demon-
strated the methodology for the analysis of chamber music perfor-
mance videos. Specifically, we developed a score-informed ap-
proach to model the temporal interdependence between the aligned
score tracks of the instruments and the motion observed in the video
of the instrument players. Experiments showed a high success rate
on pieces with different polyphony. The technique enables novel
and richer music enjoyment experiences that allow users to iso-
late/enhance sound sources by clicking on the players in the video.
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