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Abstract. The presence of a corresponding talking face has been shown
to significantly improve speech intelligibility in noisy conditions and for
hearing impaired population. In this paper, we present a system that
can generate landmark points of a talking face from an acoustic speech
in real time. The system uses a long short-term memory (LSTM) network
and is trained on frontal videos of 27 different speakers with automat-
ically extracted face landmarks. After training, it can produce talking
face landmarks from the acoustic speech of unseen speakers and utter-
ances. The training phase contains three key steps. We first transform
landmarks of the first video frame to pin the two eye points into two
predefined locations and apply the same transformation on all of the fol-
lowing video frames. We then remove the identity information by trans-
forming the landmarks into a mean face shape across the entire training
dataset. Finally, we train an LSTM network that takes the first- and
second-order temporal differences of the log-mel spectrogram as input to
predict face landmarks in each frame. We evaluate our system using the
mean-squared error (MSE) loss of landmarks of lips between predicted
and ground-truth landmarks as well as their first- and second-order tem-
poral differences. We further evaluate our system by conducting subjec-
tive tests, where the subjects try to distinguish the real and fake videos
of talking face landmarks. Both tests show promising results.
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1 Introduction

Speech is a natural way of communication, and understanding speech is essen-
tial in daily life. The auditory system, however, is not the only sensory sys-
tem involved in understanding speech. The visual cues from a talker’s face and
articulators (lips, teeth, tongue) are also important for speech comprehension.
Trained professionals are able to understand what is being said by purely looking
at lip movements (lip reading) [9]. For ordinary people and the hearing impaired
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population, the presence of visual signals of speech has been shown to signif-
icantly improve speech comprehension, even if the visual signals are synthetic
[14]. The benefits of adding the visual speech signals are more pronounced when
the acoustic signal is degraded, due to background noise, communication channel
distortion, and reverberation.

In many scenarios such as telephony, however, speech communication is still
acoustical. The absence of the visual modality can be due to the lack of cameras,
the limited bandwidth of communication channels, or privacy concerns. One way
to improve speech comprehension in these scenarios is to synthesize a talking
face from the acoustic speech in real time at the receiver’s side. A key challenge
of this approach is to make sure that the generated visual signals, especially
the lip movements, well coordinate with the acoustic signals, as otherwise more
confusions will be introduced.

In this paper, we propose to use a long short-term memory (LSTM) network
to generate landmarks of a talking face from acoustic speech. This network is
trained on frontal videos of 27 different speakers of the Grid audio-visual corpus
[6], with the face landmarks extracted using the Dlib toolkit [13]. The network
takes the first- and second-order temporal differences of the log-mel spectra
as the input, and outputs the x and y coordinates of 68 landmark points. To
help the network capture the audio-visual coordination instead of the variation
of face shapes across different people, we transform all training landmarks to
those of a mean face across all talkers in the training set. After training, the
network is able to generate face landmarks from an unseen utterance of an unseen
talker. Objective evaluations of the generation quality are conducted on the LDC
Audiovisual Database of Spoken American English dataset [18], which will be
referred as the LDC dataset in the remaining of the paper. Subjective evaluation
is also conducted to ask evaluators to distinguish speech videos with ground-
truth and generated landmarks. Both the objective and subjective evaluations
achieve promising results. The code and pre-trained talking face models are
released to the community1

The remaining of the paper is structured as follows: Section 2 describes the
related work. Section 3 describes the data and pre-processing steps. The ar-
chitecture of the network is described in Section 4. Objective and Subjective
evaluations are presented in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Generating a talking head automatically has been a great interest in the research
community. Some researchers focused on text-driven generation [23, 22, 10, 3].
These methods map phonemes to talking face images. Compared to text, voice
signals are surface-level signals that are more difficult to parse. Besides, voices
of the same text show large variations across speakers, accents, emotions, and
the recording environments. On the other hand, speech signals provide richer

1 http://www.ece.rochester.edu/projects/air/projects/talkingface.html
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cues for generating natural talking faces. For text, any plausible face image
sequence is sufficient to establish natural communication. For speech, it must
be a plausible sequence that matches the speech audio. Therefore, text-driven
generation and speech-driven generation are different problems and may require
different approaches.

There exist a few approaches to speech-driven talking face generation. Early
work in this field mostly used Hidden Markov Models (HMM) to model the
correspondence between speech and facial movements [2, 4, 8, 7, 24, 20, 25]. One
of the notable early work, Voice Puppetry [2], proposed an HMM-based talking
face generation that is driven by only speech signal. In another work, Cosker
et al. [8, 7] proposed a hierarchical model that animates sub-areas of the face
independently from speech and merges them into a full talking face video. Xie
et al. [24] proposed coupled HMMs (cHMMs) to model audio-visual asynchrony.
Choi et al. [4] and Terissi et. al [20] used HMM inversion (HMMI) to estimate
the visual parameters from speech. Zhang et al. [25] used a DNN to map speech
features into HMM states, which further maps to generated faces.

In recent years, a few DNN-based approaches have also been proposed. Suwa-
janakorn et al. [19] designed an LSTM network to generate photo-realistic talking
face videos of a target identity directly from speech. Their system requires sev-
eral hours of face videos of the specific target identity, which greatly limits its
application in many practical scenarios. Chung et al. [5] proposed a convolu-
tional neural network (CNN) system to generate a photo-realistic talking face
video from speech and a single face image of the target identity. Compared to
[19], the reduction from several hours of face videos to a single face image for
learning the target identity is a great advance.

While end-to-end speech-to-face-video generation is very useful in many sce-
narios, the main limitation of this approach is the lack of freedom for further
manipulation of the generated face video. For example, within a generated video,
one may want to vary the gestures, facial expressions, and lighting conditions, all
of which can be relatively independent of the content of the speech. These end-
to-end systems cannot accommodate such manipulations unless they can take
these factors as additional inputs. However, that would significantly increase the
amount and diversity of data required for training the systems.

A modular design that separates the generation of key parameters and the
fine details of generated face images is more flexible for such manipulations. Ide-
ally, the key parameters should just respond to the speech content, while the fine
details should incorporate all other non-speech-content related factors. Pham et
al. [16] adopted a modular design: the system first maps speech features to 3D
deformable shape and rotation parameters using an LSTM network, and then
generates a 3D animated face in real-time from the predicted parameters. In
[17], they further improved this approach by replacing speech features with raw
waveforms as the input and replacing the LSTM network with a convolutional
architecture. However, compared to face landmarks used in our proposed ap-
proach, these shape and rotation parameters are less intuitive, and the mapping
from these parameters to a certain gesture or facial expression is less clear. In
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Fig. 1. Examples of extracted face landmarks from the training talking face videos.
Certain landmarks are connected to make the shape of the face easier to recognize.
The first row shows unprocessed landmarks of five unique talkers. The second row
shows their landmarks after outer-eye-corner alignment. The third row shows their
landmarks after alignment and the removal of identity information.

addition, the landmarks generated by our system are for a normalized mean face
instead of a certain target identity. This also helps remove factors that are not
directly related to the voice.

3 Proposed Method

In this section, we describe our method to generate talking face landmarks. First,
we extract face landmarks and align them across different speakers and transform
their shapes into the mean shape to remove the identity information. We extract
the first and second order temporal difference of the log-mel spectrogram and
use them as the input to our system. Finally, we train an LSTM network to
generate the face landmarks from the speech features.

3.1 Training Data & Feature Extraction

We employ the audio-visual GRID dataset [6] to train our system. There are
in total 16 female and 18 male native English speakers, each of which has 1000
utterances that are 3 seconds long. The sentences are structured to contain a
command, a color, a preposition, a letter, a digit, and an adverb, for example,
“set blue at C5 please”.

The videos are provided in two resolutions, low (360x288) and high (720x576).
In this work, we use the high-resolution videos. The videos use a frame rate of
25 frames per second (FPS), resulting in 75 frames for each video. The speech
audio signal is extracted from the video with a sampling rate of 44.1 kHz.

We extract 68 face landmark points (x and y coordinates) using the DLIB
library [13] from each frame for each video in the dataset. Examples are shown
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in the first row of Figure 1. We calculate 64 bin log-mel spectra of the speech
signal covering the entire frequency range using a 40 ms hanning window without
any overlap to match the video frame rate. We then calculate the first- and
second-order temporal differences of the log-mel spectra and use them as the
input (128-d feature sequence) to our network. We experimented using log-mel
spectrogram with and without its first- and second-order derivatives as input
to our network. The generated mouth for many speech utterances in these two
setups, however, were almost always open even in silent segments, and the lip
movements were less prominent than the current system. The first- and second-
order temporal differences of the log-mel spectrogram may show less variations
on the same syllable uttered by different speakers, and the mismatch problem is
less pronounced.

3.2 Face Landmark Alignment

Since the talking face may appear in different regions with different sizes in
different videos, we need to align them to reduce the complexity of training
data. To do so, we follow the procedure described in [15] to simply pin the two
outer corners of the eyes in the first frame of each video to two fixed locations,
(180, 200) and (420, 200) in the image coordinate system, through an 6 DOF
affine transformation. We then transform all of the landmarks in all video frames
with the same transformation. Note that we do not align each video frame using
their own affine transformation separately because we find that the eye-corner-
based alignment is sensitive to eye blinks, which often results in zoom in/out
effects of the transformed face shape. Also note that our approach assumes that
the head does not move significantly within a video, as otherwise, the same affine
transformation would not be able to align faces in different frames. The second
row of Figure 1 shows several examples of the aligned face landmarks.

3.3 Removing Identity Information from Landmarks

After alignment, faces of different speakers are of a similar size and general
location; however, their shapes are still different as well as their mouth locations.
This identity-related variation may pose challenges to the network for capturing
the relation between speech and lip movement, especially when the amount and
diversity of training data are small. Therefore, we propose to remove the identity
information from the landmarks before training the network.

To do so, we apply the following steps. First, we calculate the mean face
shape by averaging all aligned landmark locations across the entire training
set. Second, for each face landmark sequence, we calculate the affine transform
between the mean shape and the first frame of the sequence. Third, we calculate
the difference between the current frame and the first frame and multiply with
the scaling coefficients obtained from the second step with the result obtained
in the third step. Finally, we add the mean shape to results obtained in fourth
step to obtain the face landmark sequence that has no identity. The third row
of Figure 1 shows several examples of landmarks with the identity removed.
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Fig. 2. The LSTM network architecture for generating landmarks of a talking face
from the first and second order temporal differences of the log-mel spectrogram. hl

t are
the hidden layers, where t is the time step and l is the hidden layer index. yt are the
output face landmarks for the time step t.

3.4 LSTM Network

Our proposed network, as shown in Figure 2, uses four long short-term memory
(LSTM) [12] layers with a sigmoid activation function. At each time step, the
input to the network is the first and second order temporal differences of the log-
mel spectra of the current and the previous N frames. This provides short-term
contextual information. The output is the predicted the x and y coordinates of
face landmarks of the current frame (if no delay is added) or a previous frame (if
a delay is added as described below). The reason for adding delay is because lips
often move before the sound is produced. With a little delay, the network is able
to “hear into the future” and can better prepare for those lip movements. The
generated lip movements tend to be smoother. The amount of delay we introduce
is between 1 (40 ms) and 5 frames (200 ms). This turns out to be enough for
good generation results and is still tolerable in real-time speech communication.

During training, we use dropout between each layer and between recurrent
connections, with a rate of 0.2. We use Adam optimizer to train our network.
The training sequences are all 75 frames long. We set the batch size to 128
sequences and the learning rate to 0.001. Our network minimizes the following
mean squared error (MSE) objective function JMSE ,

JMSE = 1
N

N∑
t
‖st − ŝt‖2 , (1)

where s and ŝ are the x and y coordinates of ground-truth (GT) and predicted
(PD) face landmarks sequences, respectively. N is the number of samples.

Finally, the predicted landmarks are further processed in order to fix the eye
corner points to fixed points as described in Section 3.2, which produces more
stable talking face landmarks.
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Fig. 3. Pair-wise comparison between ground-truth landmarks (black solid lines) and
generated landmarks (red dotted lines) on unseen talkers and sentences. The second
image shows a failure case for “oh” sound.

Table 1. Objective evaluation results for different system configurations. The models
are named according to the amount of delay and contextual information. For example,
“D40-C5” describes a model trained with 40 ms delay and 5 frames of context. The
lower value means better results, where the ideal result is zero.

RMSE RMSE First Diff RMSE Second Diff

D0-C3 0.0954 0.0045 0.0073

D0-C5 0.0945 0.0042 0.0071

D40-C3 0.0932 0.0039 0.0068

D40-C5 0.0921 0.0032 0.0065

D80-C3 0.0946 0.0044 0.0072

D80-C5 0.0944 0.0043 0.0069

Due to causality constraints, the bidirectional LSTM network is not consid-
ered in our experiments. We have also experimented with fully connected ar-
chitecture instead of LSTM. However, the resulting face landmarks often show
sudden jumps between frames, which looks unnatural. This is due to not having
temporal connections in the architecture.

4 Experiments

We conduct our objective and subjective evaluations on a totally different audio-
visual dataset, the LDC dataset [18]. It contains 10 female and 4 male speakers,
where each speaker provides 94 samples, totaling to 1316 utterances. The dura-
tion of the videos is arbitrary, and the resolution of the samples are 720x480.
Since the frame rate of the videos is higher than the Grid dataset used to train
our system, we resampled the videos to the same frame rate of 25 FPS. The
vocabulary of the LDC dataset is much larger than that of the Grid dataset.
There are various words and sentences from TIMIT sentences [11], Northwest-
ern University Auditory Test No. 6 [21], and Central Institute for the Deaf (CID)
Everyday Sentences [1]. The audio stream is provided at 48 kHz sampling rate,
which we down-sampled to 44.1 kHz. Figure 3 shows examples of ground-truth
and generated face landmarks in the first and second row, respectively. Examples
of generated videos are publicly accessible2.

2 http://www.ece.rochester.edu/projects/air/projects/talkingface.html
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Fig. 4. Subjective evaluation results. The mean accuracy score and its standard devi-
ation are averaged over all subjects. The mean confidence scores and their standard
deviations are averaged over all subjects and videos.

4.1 Objective Evaluation

We report the root-mean-squared error (RMSE) results between the ground-
truth (GT) and predicted (PD) face landmarks according to Equation 1. The
landmarks scale are between 0 and 1, therefore RMSE value of 0.01 approxi-
mately equivalent to 1% error. We also report the RMSE of the first and second
order temporal differences of the GT and PD face landmarks to assess the move-
ment. We report the results in Table 1. These results serve as a way of model
selection. The best model according to these results is the model that has 40 ms
delay and 5 frames of context information (D40-C5). We selected this model to
conduct the subjective evaluations, which are described in the next section.

4.2 Subjective Evaluation

We conducted subjective tests to determine if our system can generate realistic
face landmarks. 17 naive volunteer evaluators who are graduate students at the
University of Rochester participated in the test. The test presented 25 real land-
mark videos and 25 generated landmark videos in a randomized order to each
evaluator and asked the evaluator to label whether each presented video was real
or fake. Each video was presented twice in the randomized video sequence. The
real landmark videos were created from randomly selected LDC videos. Land-
marks were extracted and aligned, and the identity information was removed,
according to Section 3. Fake videos were generated from the audio signals of an-
other 25 randomly selected LDC videos. The GT landmarks were noisy; hence
we also added Gaussian noise to the PD landmarks to make them look more like
the GT landmarks. In addition to a binary decision, the evaluators were asked
to report their confidence level of each decision, between 0 and 100 percent.

The mean accuracy score of the evaluators are shown in Figure 4, along with
the overall mean confidence score and the mean confidence score for the correctly
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and incorrectly predicted samples. The results show that the evaluators struggled
to distinguish real and generated samples, as the accuracy is 42.01% which is
even below chance (50%). Another interesting observation of this test is that the
mean confidence score for accurately determined samples is lower than that for
inaccurately determined samples. This suggests that the evaluators had a higher
classification accuracy when they were more cautious. Another outcome is that
the mean confidence score on answers for generated samples is more than the
confidence score on answers for the ground truth samples.

5 Conclusion

In this work, we present a method to generate talking face landmarks from
speech. We extract face landmarks from the Grid corpus, align them across
different speakers, and transform their shapes into the mean shape to remove
the identity information. The LSTM network predicts the face landmarks from
the first and second order temporal differences of the log-mel spectrogram from
any arbitrary voice. The network can produce face landmarks that look natural
for the given speech input. The main limitation of this network is that it cannot
produce “oh” and “oo” sounds right. We plan to balance the phonetic content
of the dataset to enable the network to produce all phonemes correctly in our
future work. We will evaluate the system against noise, and improve it to obtain
a noise-resilient system in our future work. We report objective and subjective
evaluation results that are promising. We release the code and example videos
to the community.
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