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Abstract—Speech super-resolution or speech bandwidth ex-
pansion aims to upsample a given speech signal by generating
the missing high-frequency content. In this paper, we propose a
deep neural network approach exploiting the adversarial training
ideas that have been shown effective in image super-resolution.
Specifically, our proposed network follows the Generative Adver-
sarial Networks (GAN) setup, where the generator network uses
a convolutional autoencoder architecture with 1D convolution
kernels to generate high-frequency log-power spectra from the
low-frequency log-power spectra of the input speech. We propose
to use both the reconstruction loss and the adversarial loss for
training, and we employ a recent regularization method that
penalizes the gradient norms of the discriminator to stabilize the
training. We compare our proposed approach with two state-of-
the-art neural network baselines and evaluate these methods with
both objective speech quality measures and subjective perceptual
and intelligibility tests. Results show that our proposed method
outperforms both baselines in terms of both objective and sub-
jective evaluations. To gain insights of the network architecture,
we analyze key parameters of the proposed network including
the number of layers, the number of convolution kernels, and
the relative weight of the reconstruction and adversarial losses.
Besides, we analyze the computational complexity of our method
and the baselines and discuss ways for phase estimation. We
further develop a noise-resilient version of the proposed approach
by training the network with noisy speech inputs. Objective
evaluation validates the noise-resilient property on unseen noise
types.

Index Terms—speech super-resolution, artificial bandwidth
expansion, generative adversarial networks, 1D convolutional
neural networks, speech processing

I. INTRODUCTION

Deep neural networks (DNNs) have been outperforming
traditional methods in various classification and regression
tasks, and speech processing is not an exception. For speech
recognition, enhancement, emotion recognition, and speaker
identification/verification, state-of-the-art methods are based
on DNNs.

An interesting problem in speech processing is to expand
the bandwidth of speech signals by generating the missing
high frequencies (i.e., increasing the waveform resolution).
This problem is named artificial speech bandwidth expansion
or Speech Super-Resolution (SSR) in the literature. In this
paper, we tackle this problem and refer it SSR.

SSR is beneficial for speech communication over low-
bandwidth channels. An SSR module can be integrated into
receiver-end devices to enhance the resolution of transmitted
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low-resolution signals. One study shows that users prefer a
wider frequency range in communication [1]. Other studies
show that the narrowband communication is challenging for
the hearing impaired population [2], and artificially expanding
the bandwidth up to 8 kHz leads to improved speech recog-
nition rates for Cochlear Implant (CI) users [3]. Furthermore,
speech synthesis systems can also benefit from employing a
computationally light-weight SSR module after synthesizing
low-resolution speech. This is because the computational cost
of speech synthesis drastically increases as the sampling rate
increases, preventing a real-time high-resolution synthesis on
edge computing devices. Also, speech synthesis systems, once
trained, are not straightforward to change the sampling rate on
the fly.

In this paper, we propose a novel neural network framework
that leverages adversarial training for SSR, and utilize a recent
regularization method that stabilizes the adversarial training.
We employ a sequence-to-sequence convolutional autoencoder
network that accepts Log Power Spectrogram (LPS) as input
and yields the corresponding high-frequency range LPS. We
use 1D kernels in the convolutional layers that operate along
the time axis of the spectrogram. The training process contains
two major steps. First, we train our network using only a
reconstruction loss for a few epochs as the initialization. Then,
we switch to the adversarial loss in addition to the weighted
reconstruction loss.

We train our network on the Centre for Speech Technol-
ogy Research (CSTR) Voice Cloning Toolkit (VCTK) Cor-
pus [4] and evaluate it on an entirely disjoint dataset to
show the robustness against unseen speakers and recording
conditions, namely the Wall Street Journal (WSJ0) corpus
[5]. We compare with [6], [7] baselines. The objective and
subjective evaluations show that the resulting enhanced time
domain signals yield better results than the baseline methods.
We further analyze our network by changing the network
parameters, namely the number of layers and filters in the
autoencoder, and the reconstruction loss weight parameter, and
report the objective scores. Besides, we discuss the stability
of GAN training for different regularization methods and
compare phase estimation methods. Furthermore, we compare
the computational complexity of our method and the baselines.
We also propose a method to train the network against the
noise, and we analyze it against the unseen non-stationary
noise types. In addition, we conducted a listening test to verify
the intelligibility of the generated samples. Some examples of
synthesized super-resolution speech are publicly available1.

In summary, our contributions in this work are as follows:
• We apply the generative adversarial network frame-

work to speech super-resolution and synthesize the high-

1http://www.ece.rochester.edu/projects/air/projects/SSRGAN.html
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resolution speech spectrogram directly with the network.
• We use a regularization method [8] to address the failure

modes encountered during GAN training, and effectively
stabilize it.

• We obtain a computationally light-weight generator com-
pared to the baselines due to the usage of 1D kernels in
the convolutional layers.

The rest of the paper is organized as follows: in Section
II, we describe the existing works on audio and speech
super-resolution, and outline Generative Adversarial Networks
(GANs). Section III describes the system overview, the neural
network architectures, and the loss functions. In Section IV,
we describe the datasets employed for training and evaluation,
and how we prepared the data for training and inference, we
describe the objective and subjective evaluation methods and
results, and we analyze the network. We conclude the paper
in Section V.

II. RELATED WORK

A. Artificial Speech Bandwidth Expansion

Speech Super-Resolution (SSR) is studied widely by the
research community under the name of artificial speech band-
width expansion [9], [10], [11], [6]. In [9], Park et al. used
Linear Predictive Coding (LPC) coefficients, pitch, and power
that were extracted from the narrowband signal, and modeled
the mapping between narrowband and wideband parameters
using a Gaussian Mixture Model (GMM). Chennoukh et al.
[12] proposed a method that extends the bandwidth using Line
Spectral Frequencies (LFS), applied on LPC coefficients. Seo
et al. [11] proposed a GMM model for maximum a posterior
estimation of the wideband spectrum from the narrowband.
This method also considers sentence-level temporal dynamics
to synthesize wideband speech. Jax et al. [13] proposed a
method to estimate the gain and the shape of the spectral enve-
lope of the wideband using a Hidden Markov Model (HMM).
Song et al. [14] showed that the Baum-Welch re-estimation
algorithm outperforms the method proposed by Jax et al. [13].
They also showed that the GMM-based methods are a special
case of the HMM-based methods, while their performances
are comparable. Abel et al. [15] proposed to use DNNs for
high band spectral envelope estimation, and compared with
GMM and HMM-based baselines. They showed that DNNs
outperform the baselines.

While some works focused on predicting the wide-band
spectral envelope, others focused on directly estimating the
missing data points [16], [17], [6], [7]. In [16], the au-
thors used a latent component analysis and Expectation-
Maximization (EM) algorithm to estimate missing frequencies,
similar to Non-negative Matrix Factorization (NMF). Sun et
al. [17] cast the bandwidth extension problem as a convex
optimization problem and employed NMF to estimate the
missing frequencies. In one of the notable works, Li et al.
[6] proposed a DNN to predict the log-power spectrum of the
wideband. They used 32 ms window size and 16 ms hop size
when extracting LPS features from the input narrowband. The
hidden layers were pre-trained using the Restricted Boltzmann

Machine (RBM). Their network accepts nine frames of nar-
rowband LPS and predicts a single frame of wideband LPS.
Since phase information is still missing, they flip the phase of
the low-frequency band as that of the high-frequency band to
reconstruct the time domain signal. They trained and evaluated
their method on the Wall Street Journal (WSJ0) Corpus. They
showed that their method yields better results compared to the
GMM baseline in both objective and subjective evaluations.

Kuleshov et al. [7] proposed an end-to-end super-resolution
method that takes the raw waveform as input and outputs the
super-resolution waveform. They employed 1D convolution
layers and formed an auto-encoder with concatenating skip
connections, which are similar to skip connections but instead
of adding the feature maps together, they are concatenated.
Before being fed to the network, the low-resolution waveform
is upsampled to match the sampling rate of the target super-
resolution signal. This upsampled input is also added to the
network output. A Mean-Squared Error (MSE) loss function is
used for training. Compared with neural methods working with
time-frequency representations, one significant advantage of
this time domain approach is that no special module is needed
to estimate the signals’ phase. However, it is computationally
very expensive.

B. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [18] have been
employed to generate highly realistic images, videos and
speech signals. In essence, GANs contain two neural net-
works, a generator, and a discriminator. The generator tries
to generate fake but realistic data, while the discriminator
tries to distinguish between the real and fake data. When the
training converges, the generator is able to generate data that
lie on the real data manifold, and the discriminator cannot tell
the fake from real data. There are variants of GANs, which
improve the generation capability or add controls over the
generated distributions. Deep Convolutional GAN (DCGAN)
[19] can generate realistic images, where both the generator
and discriminator architectures are based on convolutional
neural networks. The conditional GANs [20] are another
family of GANs where the generator and discriminator accepts
a condition input and enables control over the generated
distribution.

Although GANs are powerful, they suffer from instabilities
during training [21], which lead GANs not to converge and
make them yield poor results. Therefore, researchers steered
towards finding better training methods for GANs [22], [23],
[24], [8], [21]. Wasserstein GAN (WGAN) [22] is one of the
regularized GAN family members that employs the Wasser-
stein divergence instead of the Jensen-Shannon divergence and
maintains the Lipschitz constraint by clipping the weights.
In an improved version of WGAN [23], instead of weight-
clipping, Gulrajani et al. proposed a Gradient-Penalty (GP) to
satisfy the Lipschitz constraint. In the proposed method, the
data point between a real and generated distributions is drawn,
and the norm of the gradient for this data point is penalized
for not having a unit norm. For WGAN and WGAN-GP, the
critic (discriminator) is usually updated for a few iterations
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before alternating to updating the generator, which makes
the training computationally intense. Another regularization
technique is to add instance noise, which is typically chosen
as Gaussian noise, to the input of the discriminator [24].
Mescheder et al. [21] show that instance noise is indeed useful
for GAN training, and leads GANs to converge. Roth et al.
[8] derived a zero-centered GP regularizer that is inspired from
the instance noise. Mescheder et al. [21] proposed two similar
but simplified versions of Roth et al.’s regularizer, one of them
only penalizes the generated data distribution, while the other
one only penalizes the real data distribution. In this work, we
choose to penalize both the real and generated distribution;
therefore we use the regularizer proposed by Roth et al. [8].

GANs have been successfully applied to image and video
super-resolution. Ledig et al. [25] confirmed that reconstruc-
tion loss based single image super-resolution systems yield
blurry results. By using an adversarial training loss, they
showed that their Super-Resolution Generative Adversarial
Network (SRGAN) yields sharper, superior results that lie on
the data manifold. GANs also benefit Video Super-Resolution
(VSR). Lucas et al. [26] showed that their GAN based VSR
system outperforms the current state-of-the-art VSR systems.
These studies inspired us to investigate the application of
GANs to SSR, where we work with spectrograms that are
similar to images or video frames.

It is noted that Li et al. [27] has proposed a GAN-based SSR
approach recently. They employed a fully connected neural
network (generator) with two hidden layers to predict the Line
Spectral Frequencies (LSF) and speech energy of the high
band (HB) from LSF, delta LSF and speech energy of the
low band signal. They used a fully connected discriminator to
distinguish fake parameters from real parameters. They then
used the EVRC-WB framework [28] and a synthesis filterbank
to synthesis high-resolution speech signals from the predicted
speech parameters. Although our approach is similar to [27] in
the sense that they are both applications of GANs in SSR, one
of the key differences is that we directly generate the speech
spectrograms, while [27] generates speech parameters (LSF
+ energy) and synthesize speech from those parameters with
another synthesis framework. Another novelty of our work is
that we use a recently proposed regularizer [8] to stabilize
GAN training. Furthermore, our generator and discriminator
architectures contain convolutional layers, while [27] uses only
fully connected layers.

III. PROPOSED SSR SYSTEM

A. System Overview

We propose a neural network approach with adversarial
training to tackle the Speech Super-Resolution (SSR) problem.
Before we introduce the network architecture and training
processes, we think it is helpful to first explain how the whole
SSR system runs during test time, treating the network as a
black box. This process is shown in Figure 1. Let x be the
time domain waveform of the narrowband speech that we want
to increase the time resolution. First, the Short-Time Fourier
Transform (STFT) is applied to x with parameter settings
described in Section IV-D. The Log-Power Spectrogram (LPS)
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Fig. 1: Overview of the proposed SSR system during test
time. The Log-Power Spectra (LPS) XNB and the phase
spectrogram XP are calculated from the input narrowband
waveform x through Short-Time Fourier Transform (STFT).
XNB is fed to the speech super-resolution generative adversar-
ial network (SSR-GAN) to obtain the estimated high-frequency
range LPS X̂WB , which is then concatenated with the original
narrowband LPS. The phase of the high-frequency range is
artificially produced by flipping and repeating the narrowband
phase XP and adding a negative sign. For fractional super-
resolution factors, the last repeat is truncated to match the
frequency range. Finally, the estimated wideband LPS and
artificial phase are used to reconstruct the time-domain signal
ŷ by Inverse STFT (ISTFT) and overlap-add.

XNB and the phase spectrogram XP are computed from
X , and XNB is fed to the proposed generator network, or
namely the Speech-Super Resolution Generative Adversarial
Network (SSR-GAN) to estimate the high-frequency range
LPS, X̂WB . The original narrowband and the predicted high-
frequency range are concatenated to obtain the estimated
wideband LPS XSR. In order to avoid discontinuities at the
concatenation [6], we also predict the highest C frequency
bins of the narrowband spectrogram, where C is called the
offset parameter. During concatenation, the top C frequency
bins are removed from the narrowband spectrogram.

Since we do not estimate the phase of the high frequencies,
we follow Li et al. [6] to create an artificial phase by flipping
the narrowband phase and reverting the sign. For the 2x super-
resolution version, we concatenate this flipped phase with the
narrowband phase to obtain an artificial phase X̂P of the
entire wideband signal. For the 4x super-resolution version,
we repeat the flipped phase three times. For fractional super-
resolution factors, the last repeat is truncated to match the
frequency range. Our method could be improved by predicting
the phase from the magnitude spectrogram; however, this is a
challenging problem itself [29].

Finally, inverse STFT is applied to the complex spectrogram
calculated from the estimated wideband LPS XSR and artifi-
cial phase X̂P , and the time domain signal ŷ is reconstructed
using the overlap-add method.

B. Network Architecture
In this section, we explain the generator and discriminator

architectures. The generator is fully convolutional, while the
discriminator contains convolutional layers followed by two
Fully Connected (FC) layers. The architectures are shown in
Figure 2.

For the generator network, we employ a common bottleneck
autoencoder architecture described in [7]. The generator is a



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 4

Fig. 2: The proposed network architectures for the generator
(middle) and the discriminator (right). Each rectangular block
is a convolutional layer with structures color coded and
detailed on the left subfigure. The generator is an autoencoder
with concatenating skip connections, predicting the high-
frequency range of the input narrowband magnitude spectro-
gram. It is then concatenated with the original low-frequency
range to generate the full wideband magnitude spectrogram.
The input to the discriminator is the full wideband spectrogram
of either a real sample or a generated sample. We do not
use batch normalization in the discriminator. Notations: BN -
batch normalization layer, FC - fully connected layer, LReLU
- LeakyReLU activation, and PShuffle - pixel shuffle or sub-
pixel layer, LPS - log-power spectrogram.

sequence-to-sequence model that accepts the narrowband LPS
with T time steps and outputs the high-frequency range LPS
with T time steps.

In the generator network, we use a Batch Normalization
(BN) layer after each convolutional layer and before the
activation. BN allows the network to converge faster and
allows higher learning rates to be used for training. We use
sub-pixel (or pixel shuffle) layers introduced in [30], which
is proved useful for image and video super-resolution. The
main idea behind the sub-pixel layers is to compute more
feature maps on the convolution layer and resize them into
an upsampled data. Readers are referred to see [30] for more
details about sub-pixel layers. We use leaky rectified linear
units (LeakyReLU) as the activation with a slope of 0.2, except
for the output layer, where we use linear activation.

The discriminator network accepts the concatenated nar-
rowband and high-frequency range LPSs as input, where
the high-frequency range LPS could be generated by the
generator network or coming directly from the data distribu-
tion. Including the narrowband to the discriminator’s input is
essentially conditioning the input high-frequency range LPS
on the narrowband LPS, similar to conditional GANs [31]. The
discriminator contains three convolutional layers as shown in
Figure 2. Different from the generator, we do not employ BN
layers in the discriminator. Using BN in the discriminator leads

to instabilities during training, especially if the discriminator
loss is regularized [8], [21]. The convolutional layers are
followed by two FC layers. We use LeakyReLU activation
with a slope of 0.2 in all layers, except for the output layer,
where we use a linear activation function. The details of both
network architectures are shown in Table I.

C. Loss Functions

In this section, we describe the training objectives of the
generator and the discriminator. First, we train our network
using a reconstruction loss as initialization for several epochs.
This process lets the generator to produce the “mean” results,
which are overly smooth. Then, we switch to using both the
reconstruction loss and an adversarial loss (GAN loss). Using
GAN loss produces sharper and more detailed LPSs. We use
a parameter to weight these two losses in the generator’s
objective function. In the following, we explain the details
for each loss function.

1) Reconstruction Loss: There are a few candidates for
the reconstruction loss. The most common distance functions
are L1-norm and L2-norm, or namely, Mean Absolute Error
(MAE) and Mean Squared Error (MSE). Our initial testing
showed that using Log-Spectral Distance (LSD) (or Log-
Spectral Distortion) function as our training objective yield
slightly better results for the SSR task. The LSD measures
the distance between two spectrograms in decibels, and it is
mathematically defined as follows:

lLSD =
1

L

L∑
l=1

√√√√ 1

K

K∑
k=1

[XHR(l, k)−XSR(l, k)]2, (1)

where XHR and XSR are the ground truth and estimated
LPS, respectively K is the number of frequency bins. LSD
is used widely for evaluating SSR methods objectively. In this
work, we use it as both the reconstruction loss and an objective
evaluation metric. LSD is essentially the average L2 distance
of LPS across time frames.

2) Adversarial Loss: The original generative adversarial
network (GAN) is a two player, zero-sum (minimax) game
between a generator and a discriminator. The generator’s job
is to generate realistic data that can fool the discriminator
into classifying it as real data, while the discriminator’s job
is to distinguish the real and fake data apart. When this game
reaches a Nash equilibrium, the generator is able to produce
realistic data that the discriminator cannot tell from real data.
In the SSR context in this paper, this two-player game can be
defined as follows:

min
θ

max
ψ

EP[logDψ(XHR)] + EQ[log(1−Dψ(Gθ(X
NB)))],

P : XHR ∼ p(XHR)

Q : XNB ∼ p(XNB)
(2)

where XHR is the high resolution data (real data), XNB

is the narrowband data. Gθ(·) is the generator and Dψ(·)
is the discriminator, where θ and ψ represent their trainable
parameters. P is the distribution of real data and Q is the
distribution of the narrowband data. This formulation assumes
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TABLE I: Detailed parameters of the proposed network architecture. The number of channels and hidden units, filter sizes,
strides, activations and output shapes are shown for each layer in the generator and discriminator networks. K and N are the
narrowband and the high-frequency range LPS dimensions along the frequency axis, respectively. K is 129 and 65 for 2x and
4x super-resolution scales, respectively. N is 141 and 199 for 2x and 4x super-resolution scales, respectively.

Net Layer Activation Filter No. Filter Size Stride BN Sub-Pix Output Shape
Generator Input - - - - - - 32×K

Conv LeakyReLU 256 (7, 1) (2, 1) Yes No 16× 256
Conv LeakyReLU 512 (5, 1) (2, 1) Yes No 8× 512
Conv LeakyReLU 512 (3, 1) (2, 1) Yes No 4× 512
Conv LeakyReLU 1024 (3, 1) (2, 1) Yes No 2× 1024
Conv LeakyReLU 512 (3, 1) (1, 1) Yes Yes 4× 512
Conv LeakyReLU 512 (5, 1) (1, 1) Yes Yes 8× 512
Conv LeakyReLU 256 (7, 1) (1, 1) Yes Yes 16× 256
Conv LeakyReLU N (7, 1) (1, 1) Yes Yes 32×N
Conv LeakyReLU N (9, 1) (1, 1) No No 32×N

Discriminator Input - - - - - - 32× (K +N)
Conv LeakyReLU 1024 (7, 1) (2, 1) No No 16× 1024
Conv LeakyReLU 1024 (5, 1) (2, 1) No No 8× 1024
Conv LeakyReLU 1024 (3, 1) (2, 1) No No 4× 1024
Flatten 4096
FC LeakyReLU 2048 No 2048
FC Sigmoid 1 No 1

the generator contains the concatenation of narrowband LPS
and high-frequency LPS. This equation can be simplified as
follows:

min
θ

max
ψ

EP[logϕR] + EQ[log(1− ϕF )], (3)

where ϕR and ϕF are the discriminator output for real and
fake data, respectively.

In practice, unregularized GANs are usually unstable during
training, depending on the task at hand, and do not always
converge [21]. To stabilize the GAN training, we add a
penalty on the weighted gradient-norms of the discriminator
as described in [8]. The regularization term is described as:

Ω = EP[(1− ϕR)2‖OφR‖2] + EQ[ϕ2
F ‖OφF ‖2], (4)

where φ = σ−1(ϕ), and σ is the sigmoid activation used
in generating the output of the discriminator. Note that the
gradients are computed on φ, before the sigmoid activation,
which yields more robust gradients [8]. We add this term
into the traditional GAN loss and obtain the loss for the
discriminator as follows:

lDIS = EP[logϕR] + EQ[log(1− ϕF )]− γ

2
Ω, (5)

where γ is the weight for the regularization term.
The generator loss is defined as the weighted sum of the

reconstruction loss and the adversarial loss. We minimize the
following function:

lGEN = EQ[− log(Dψ(Gθ(X
NB)))] + λlLSD, (6)

where lLSD is the loss function described in Equation (1) and
λ is the weighting factor for the LSD loss.

IV. EXPERIMENTS

In this section, first, we describe the data used in this
study and how we prepared the data for network training.
Next, we describe the objective metrics used for evaluating
our method. Then, we show the results of our experiments
and analyze our network architecture by changing parameters.
Next, we investigate our network’s resilience to background

Generator
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Fig. 3: The adversarial training procedure for the proposed
method. The generator contains the concatenation of narrow-
band LPS and high-frequency LPS.

noise, propose a training method to make the network robust
against noise. Finally, we conclude this section by describing
and presenting the results of a subjective evaluation of our
method.

A. Datasets

The CSTR Voice Cloning Toolkit Corpus (VCTK), which
is originally designed for training Text-to-Speech (TTS) syn-
thesis systems, was used to train our network. There are
a total of 109 English speakers with different accents. The
recordings are 16-bit WAV files with 48 kHz sampling rate and
contain clear speech. Each speaker utters 400 sentences, where
the sentences are either taken from newspaper articles, the
International Dialects of English Archive’s Rainbow passages
or an elicitation passage that aims to identify the speaker’s
accent. We split this dataset into training and validation sets,
where we randomly chose six speakers for the validation set
and use the rest for the training set.

We employed another dataset for evaluation that has differ-
ent speakers and different recording conditions than the VCTK
corpus, in order to evaluate the generalization capability of
our network. This is the Wall Street Journal (WSJ0) corpus,
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where the speakers read the Wall Street news articles plus
spontaneous dictations. The sampling rate of the recordings is
16 kHz. The recordings contain natural background noise. We
randomly selected 5000 samples (around 12 hours) within this
dataset for the objective evaluations.

We applied a low-pass filter and downsampled the high-
resolution signals to obtain their parallel low-resolution signals
for training and testing. We describe the details of this pre-
processing applied to VCTK and WSJ0 datasets in Sec-
tion IV-D.

B. Objective Metrics

To evaluate our method and compare it with the baselines,
we employed LSD defined by Equation (1), Segmental Signal-
to-Noise Ratio (SegSNR) [32], and Perceptual Evaluation of
Speech Quality (PESQ) [33] objective metrics, which are
widely used for SSR and speech enhancement literature. LSD
measures the similarity between two spectrograms in decibels
and defined in Equation (1), where a lower value is better.
SegSNR is the signal-to-noise (SNR) ratio, averaged over
segments of audio samples. It is defined as:

SegSNR =
1

L

L∑
l=1

10log

∑N
n=1[x(l, n)]2∑N

n=1[x(l, n)− x̂(l, n)]2
, (7)

where L is the number of segments, and N is the number
of data points in the utterance. A higher value of SegSNR is
better.

PESQ measures speech quality and it is standardized by the
International Telecommunication Union Telecommunication
Standardization Sector (ITU-T). It is widely used in industry
to assess the quality of telephony speech and in research fields
such as speech enhancement. PESQ ranges from -0.5 to 4.5,
where higher values correspond to better speech quality.

C. Baseline Methods

We chose two state-of-the-art methods described in Section
II as comparison baselines. The first baseline is an FFT-based
method [6], which we name as BL1 through the rest of the
paper. The neural network architecture of BL1 is a DNN
with three hidden layers with 2048 hidden units per hidden
layer. The network accepts nine STFT frames, including four
past and four future frames, and generates a single STFT
frame. The objective function of this network is MSE. We
implemented BL1 as described in the original paper, except
that we used VCTK corpus for training in order to fairly
compare all methods. Since this work only considers 2x SSR,
we did not implement 4x SSR version of this work.

The second baseline is a waveform-based method [7], which
we name as BL2 through the rest of the paper. Similar to
ours, this network is a convolutional autoencoder, although our
network is applied to spectrograms instead of waveforms. An-
other difference is that their network has an additive residual
connection between the input and output of the network. The
number of filters of the convolutional encoder layers is 128,
256, 512, and 512, and is 512 for the bottleneck layer. The
decoder has twice the number of filters in the encoder layers

but in reverse order. The size of filters of the convolutional
encoder layers is 65, 33, 17, and 9, and is 9 for the bottleneck
layer. The size of filters in the decoder layers are the same as
the encoder but in reversed order. Their network is trained with
the MSE objective function. For implementation, we used the
code provided by the authors directly to generate results for
both 2x and 4x SSR, using the hyperparameters described in
their paper. To ensure fairness, we used the exact same data we
used for our method during training and testing the baselines.

D. Pre-Processing

For our method, we applied the band-limited sinc interpola-
tion method described in [34] to the high-resolution signal and
obtained the downsampled signal. We computed the short-time
Fourier transform (STFT) on both low and high-resolution
signals, with 32 ms window size and 8 ms hop size. We applied
the log and power operations to these spectrograms to obtain
log-power spectra (LPS). We chopped up the utterances into
T timesteps and form our dataset with narrowband and high-
frequency range LPS pairs.

Similarly, for BL1, we followed the same steps. However,
we followed their original implementation, and instead of 8
ms hop size, we used 16 ms hop size.

For the pre-processing for BL2, we used the author’s code,
which is available online. The low-resolution signals were
created by applying an order 8 Chebyshev type I low-pass
filter and downsampling the high-resolution signals. The low-
resolution signals were upsampled to match the size of the
high-resolution signals using cubic upscaling as the input to
their neural network. The samples were chopped into patches
with the length of 6000 in the high-resolution space (0.375
seconds), which is the same for 2x and 4x scales.

E. Implementation Details of Proposed Method

We implemented our system in Tensorflow [35]. We used
mini-batches during training, and we set the mini-batch size
to 64. We trained our network using only the LSD loss for
50 epochs, and then switched to LSD plus GAN loss for 100
epochs. We decided the number of epochs empirically. We still
use LSD loss during GAN training, which keeps the output
around the mean distribution as discussed in [25]. The number
of time-steps T of our input and output spectrograms is 32.
We used a learning rate of 10−4 when training the network
using only LSD loss, and we used a learning rate of 10−5 for
both the generator and discriminator when training the network
using LSD plus GAN losses. We chose lower learning rate
during GAN training to further stabilize it. The λ value is set
to 0.5. We used Adam optimizer [36] to train our generator
and RMSProp optimizer [37] to train the discriminator. The
K variable shown in Table I is 129 for 2x experiments and 65
for 4x experiments. The frequency offset value is calculated
according to the following formula:

C = floor(
K

10
) + 1, (8)

where K is the number of frequency bins in the input spec-
trogram. The N variable shown in Table I is 141 and 199 for
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(a) 2x SSR results

(b) 4x SSR results

Fig. 4: Spectrogram examples for 2x and 4x, shown in (a) and (b), respectively. The samples are randomly selected from the
WSJ0 corpus (unseen speakers). The first row in each Figure shows the ground truth high-frequency range spectrograms. The
second and third rows show the generated high-frequency range spectrograms of the proposed network trained with only the
LSD loss (second rows) and with both LSD and GAN losses (third rows).

TABLE II: The objective evaluation results for 2x and 4x
SSR experiments. The bolded values show the best results.
Our method (SSR-GAN) outperforms the baselines for all
metrics. LSD HF shows the LSD value calculated only for the
high-frequency range, where LSD Full shows the LSD value
calculated for the whole spectrogram.

Scale Method LSD HF
(dB)

LSD Full
(dB)

SegSNR
(dB) PESQ

2x

BL1 [6] 9.32 7.06 15.73 4.21
BL2 [7] 10.56 7.64 14.96 4.19

SSR-LSD 8.60 6.09 17.58 4.25
SSR-GAN 8.20 5.95 19.64 4.32

4x
BL2 [7] 16.20 14.96 8.24 2.89

SSR-LSD 14.10 12.42 11.78 3.26
SSR-GAN 12.90 10.24 13.01 3.40

2x and 4x super-resolution scales, respectively. The γ variable
shown in Equation (5), which weighs the regularization term
for the discriminator, is set to 2. Please note that we did
not use decaying on this parameter as in the original work
[8]. We normalized the input and output LPSs to have zero
mean and unit variance. We calculated these statistics from the
training data and applied them during inference. We reverted
the normalization when we calculate the LSD loss during
training since calculating LSD on normalized data does not
make sense perceptually.

F. Results

Objective evaluation results are shown in Table II. The
table shows the high-frequency LSD values (LSD HF), full-
range frequency LSD values (LSD Full), SegSNR values and
PESQ values for the baseline methods, our neural network
trained with only the LSD loss (denoted as SSR-LSD) and that
with the full loss SSR-GAN. SSR-GAN method outperforms
the baselines in both 2x and 4x SSR tasks with a good
margin in terms of all of the three objective evaluation metrics.
The improvement of our method, compared to BL2, is more
pronounced in the 4x setting.

Figure 4 (a) and (b) show the example spectrograms,
where the first row is the ground truth high-frequency range
spectrogram, the second row is the high-frequency range
spectrograms obtained from the SSR-LSD, and the third row
shows SSR-GAN results, for 2x and 4x, respectively. Note
that the LPSs on the second rows are overly smooth. After
the GAN training, the resulting LPSs are sharper, containing
fine details and usually, more energy. Generating more energy,
in addition to generating fine details, leads to slightly better
objective measures as seen in Table II. Nevertheless, the
difference between the objective results for SSR-LSD and SSR-
GAN are somewhat close compared to the baselines, especially
for LSD metrics. We believe that the benefit of adversarial
training is more evident for the subjective evaluations, which



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 8

0
2
4
6
8

10
12
14
16
18
20

LSD HF (DB) LSD FULL (DB) SEGSNR (DB)
4

4.1

4.2

4.3

4.4

4.5

PESQ

1 Layer 2 Layers 3 Layers 4 Layers

(a) 2x

0
2
4
6
8

10
12
14
16
18
20

LSD HF (DB) LSD FULL (DB) SEGSNR (DB)
3

3.1

3.2

3.3

3.4

3.5

PESQ

1 Layer 2 Layers 3 Layers 4 Layers

(b) 4x

Fig. 5: Objective evaluation results are presented for changing
the number of layers in the encoder and decoder of the
generator network. The results for 2x and 4x scales are shown
in (a) and (b), respectively. The four sets of bars show LSD
HF, LSD Full, SegSNR, and PESQ values, respectively.

we discuss in Section IV-I.

G. Architecture and Parameter Analysis

In this section, we analyze our network by changing the
number of hidden layers and the number of filters to see how
they influence the objective evaluation results.

1) Number of Hidden Layers: Our proposed generator con-
tains three encoder layers, followed by a bottleneck layer, three
decoder layers, an upsampling layer, and an output layer. Note
that the encoder and decoder layers are symmetric. We varied
the number of layers in the encoder and decoder and reported
the objective evaluation results in Figure 5. The results show
that the network with three layers generally achieves the best
performance across all of the objective metrics, although the
differences between the three layers and four layers are rather
small for the 2x scale. The network with one or two layers,
however, achieves significantly worse performance. We believe
that the networks with one or two layers perform worse due to
underfitting, i.e., the capacity of these networks is not sufficient
to learn patterns in the training corpus. As for the four-layer
configuration, the performance slightly drops compared to
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Fig. 6: Objective evaluation results are presented for changing
the number of filters of the generator network. The results for
2x and 4x scales are shown in (a) and (b), respectively. Half
and Double means that the number of filters shown in Table
I has been halved and doubled, respectively. The four sets of
bars show LSD HF, LSD Full, SegSNR, and PESQ values,
respectively.

three layers, which suggests that the increased capacity leads
to overfitting. Considering the computational cost and slight
performance differences between three layers and four layers,
the three-layer configuration is preferred in our experiments.

2) Number of Filters: Next, we investigated the effect
of varying the number of filters on our generator network.
We investigated two other configurations in addition to the
original configuration shown in Table I. The first configuration
is called Half, where the number of filters of the original
configuration is halved. The second one is called Double and
has twice the number of filters of the original configuration.
The results are shown in Figure 6. The results show that
the configuration Half performs worse than the original in
terms of objective measures, although the difference is not
significant. This is a good option for systems with limited
resources, where the number of filters can be halved in order
to reduce the computational costs. Again, we suspect that
the Half configuration suffers from underfitting due to the
reduced capacity. For the Double configuration, increased
computational complexity does not translate much into the
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Fig. 7: Objective evaluation results are presented for different
loss weight parameters (λ) and for SSR-LSD for comparison.
The results for 2x and 4x scales are shown in (a) and (b),
respectively. The four sets of bars show LSD HF, LSD Full,
SegSNR, and PESQ values, respectively.

performance gain compared to the original. Interestingly, for
4x scale, Double yields slightly better results for LSD HF and
LSD FULL metrics, but overall, yields slightly lower speech
quality. We believe that this is due to overfitting.

3) Loss Weight Parameter (λ): We analyzed the impact
of changing the loss weight parameter λ. Increasing the
value of λ increases the weight of the reconstruction loss.
In this experiment, we used the following λ values: 0.01,
0.1, 0.5 (default), 1, and 10. The results for 2x and 4x scale
experiments are shown in Figure 7. As the λ value increases
the objective results get closer to the SSR-LSD results. On the
other hand, decreasing λ from the default value of 0.5 leads to
a degradation in generation quality. Since GAN loss becomes
dominant, the generator produces speech-like spectrogram
shapes that are unintelligible. In conclusion, we chose λ = 0.5
since it seemed a good balance between generating sharp and
intelligible results.

H. Noise Analysis

In real-world applications, the incoming speech signal has
a high chance of containing background noise. Therefore, we

TABLE III: Objective evaluation results for noise analysis.

Scale Noise Type Method LSD HF (dB)

2x

Babble SSR-GAN 14.63
NR-SR-GAN 10.23

Factory SSR-GAN 13.47
NR-SR-GAN 9.97

Motorcycle SSR-GAN 14.24
NR-SR-GAN 10.08

4x

Babble SSR-GAN 17.35
NR-SR-GAN 14.12

Factory SSR-GAN 16.78
NR-SR-GAN 13.56

Motorcycle SSR-GAN 17.16
NR-SR-GAN 13.84

further analyze our method against unseen time-varying noise
types in this section. We trained our network against noise,
by creating a dataset, where the narrowband signal is mixed
with noise types in -6, -3, 0, 3, 6 and 9 dB SNR. We call
this version of our network noise resilient SSR-GAN (NR-SSR-
GAN). The network tries to predict the clean high-frequency
range LPS from corrupted narrowband LPS. We employed
the noise data from [38] for training. For evaluation, we
used unseen noise types that were not present during training.
Specifically, we used babble and factory noises described in
[39] and a motorcycle noise described in [40]. We report the
high-frequency range LSD results for samples that are mixed
with 0 dB signal-to-noise ratio (SNR) testing noises using our
base network model (SSR-GAN) and NR-SSR-GAN in Table
III. The results suggest that noise resilient version of SSR-
GAN can yield better scores against all three test noise types
than the original SSR-GAN. The most challenging noise type
is babble noise, followed by motorcycle noise and lastly, the
factory noise.

I. Subjective Evaluations

1) Perception Test: We conducted subjective evaluations to
test if our method is successful regarding human perception.
In our evaluations, we used a MUSHRA (MUltiple Stimuli
with Hidden Reference and Anchor) test [41]. We compiled
two test sets, one for 2x scale and one for 4x scale, where each
of them contains 10 different tuples of signals with 5 signals
in each tuple. These 5 signals included the narrowband signal
(anchor), ground-truth high-resolution signal (reference), pre-
dicted super-resolution signals of our methods (SSR-LSD and
SSR-GAN), BL1 for 2x scale, and BL2 for 4x scale. We wanted
to limit the test time for each subject within 30 minutes;
therefore we only used samples generated from one baseline
method for each experiment. Before starting the experiments,
each volunteer was trained by listening to 10 pairs of low and
ground-truth high-resolution samples that were not contained
in the testing tuples. After training, the testing utterances were
presented to the volunteers in tuples, and within a tuple, the
samples were presented randomly. The volunteers assigned
a score between 0 and 100 for each utterance, where 0
corresponds to the low-resolution signal, and 100 corresponds
to the high-resolution signal. We recruited 20 volunteers,
where each of them evaluated 100 utterances (50 per 2x
and 4x scales). During the test, the evaluators could listen
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Fig. 8: The subjective evaluation results (MUSHRA test) for
2x and 4x scales are shown in (a) and (b), respectively. The
error bars show the 95% confidence intervals.

to each utterance as many times as they wanted, and could
listen to the reference signal (high-resolution signal) anytime.
In MUSHRA experiments, the utterance tuples for which the
evaluator failed to identify the hidden reference signal should
be excluded. In our experiments, all evaluators successfully
identified the hidden reference signal for all tuples.

The 2x scale experimental results are shown in Figure 8
(a). The ground-truth high-resolution speech has an average
score of 90.31, which is followed by the SSR-GAN with an
average score of 75.19%. The SSR-LSD achieves a score of
57.63%. The low-resolution signal and BL1 has low scores,
which are 17.7% and 36.6%, respectively. A paired t-test
shows that the SSR-GAN score are statistically better compared
to those of SSR-LSD and BL1 at the significance level of 0.01
(p = 10e-43).

Figure 8(b) shows MUSHRA test results for the 4x scale.
The results show that the 4x experiments are more challenging
compared to 2x experiments. The gap between the high-
resolution score and the SSR-GAN is around 41%. SSR-GAN
can still outperform the baseline method and has slightly more
than 50% score. A paired t-test shows that the SSR-GAN
results are statistically better compared to the SSR-LSD and
BL2 results at the significance level of 0.01 (p = 10e-36).

Although SSR-GAN only slightly outperforms SSR-LSD in

TABLE IV: The intelligibility test results. The mean and
standard deviation (std) of word error rate (WER) is shown
for the 2x and 4x scale experiments using SSR-GAN.

Scale Method WER mean (%) WER std (%)

2x low-res 1.64 1.36
SSR-GAN 1.48 1.28

4x low-res 4.27 2.86
SSR-GAN 3.82 2.12

objective evaluation, their subjective evaluation results show a
wider gap and the evaluators clearly preferred SSR-GAN over
SSR-LSD. This outcome confirms the benefit of using the GAN
loss for the SSR task.

2) Intelligibility Test: To rule out the possibility that the
proposed SSR-GAN approach generates high-quality speech
like sounds that are actually incomprehensible, we further
conducted a listening test to check the intelligibility of the
generated high-resolution speech. We employed the TIMIT
dataset [42] for this test since it is distinct from our training
dataset and the transcriptions of the sentences are available.
As a baseline, we included the low-resolution samples into
this test. We randomly selected 10 utterances with the low-
resolution and selected 10 different utterances generated by
SSR-GAN per 2x and 4x scales, totaling 40 sentences. We em-
ployed 20 volunteers among University of Rochester Graduate
students, each of which evaluated all 40 sentences. During the
experiments, the evaluators were presented each sample twice
and were asked to transcribe the words.

Table IV shows the mean and standard deviation of the word
error rate (WER) between the ground-truth and evaluators’
transcription. The error rates for the 2x scale experiment are
1.48% and 1.64% for SSR-GAN and low-resolution signal (8
kHz sampling rate), and for the 4x scale experiment, they are
3.82% and 4.27% for SSR-GAN and low-resolution signal (4
kHz sampling rate). The 2x scale experiments have a lower
error rate compared to 4x scale experiments since 8 kHz
speech signals are more comprehensible than 4 kHz speech
signals. Since SSR-GAN error rates are slightly lower than
the low-resolution signal error rates, it can be concluded
that the proposed SSR method does not impair the speech
intelligibility.

J. Stability of GAN Training

In this study, we have considered different types of GANs
and regularization techniques for stabilizing their training pro-
cessing for SSR. We started from exploring the vanilla GAN
[18]. After training it for a few epochs, it became unstable
and produced nonsensical results. We observed similar issues
for the WGAN [22] and the least-squares GAN [43]. Next,
we explored GANs with regularization. WGAN-GP [23] and
a GAN with instance noise regularization [24] produced more
meaningful (spectrograms that looked like speech) yet not
intelligible results. Finally, the regularization method sug-
gested by Roth et al. [8] stabilized the GAN training, and
led to the results obtained in this work. The regularizer [8]
introduces a term that penalizes the weighted gradient-norm
of the discriminator, leading to overcome the phenomenon
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TABLE V: Computational complexity in terms of floating
point operations per second (FLOPS), FLOPS per generating
1 second of speech and number of parameters for the baselines
(BL1 and BL2) and the proposed SSR-GAN method.

Scale Method
Number of
Parameters

Computational
Complexity

(FLOPS)

FLOPS per
1 second
of speech

2x
BL1 [6] 11.2 M 45.1 M 2.9 B
BL2 [7] 56.4 M 76.2 B 202.7 B

SSR-GAN 14.6 M 154.0 M 616.0 M

4x BL2 [7] 56.4 M 76.2 B 202.7 B
SSR-GAN 16.0 M 190.5 M 762.0 M

called mode collapsing effectively. Furthermore, it is a simple
modification over the traditional GAN implementation and
is computationally efficient compared to other regularization
schemes.

K. Phase Estimation

In this work, we simply flipped the phase of the low-
resolution signal as the phase of the high-frequency range
of the SSR output. To improve our results, we considered
Griffin-Lim algorithm [44] to estimate the phase of the high-
range frequencies. However, the results contained artifacts,
namely musical noise, and compared to flipped-phase we used
in our experiments, they were not satisfactory. We think it is
beneficial to share this finding with the research community.
In addition, some example samples reconstructed with Griffin-
Lim algorithm are shared in the link we provided. Future
research directions to improve our results include estimating
the phase using a deep learning approach or directly estimating
the raw waveform.

L. Computational Complexity

We compare the computational performance of our method
with the baselines using two metrics: floating point operations
per second (FLOPS) and the number of trainable parameters.
To obtain the FLOPS for each network, we employed Tensor-
flow’s profiler.

Table V shows these values for 2x and 4x configurations
of our method and the baselines. Please note that for BL2,
the scale does not influence the computational complexity,
since the input is always up-sampled to the target resolution.
From values in the 2x scale, it can be observed that the fastest
network during run time is BL1, followed by our method. It is
important to highlight that BL1 generates a single frame, while
BL2 and our method generate multiple frames. Therefore, we
calculated the FLOPS value for generating 1 second of speech
for each of these methods and concluded that our method has
the lowest complexity.

V. CONCLUSION

We introduced a novel method for speech super-resolution
using adversarial training and sequence-to-sequence modeling.
To stabilize the GAN training, we employed a regularization
method that penalizes the discriminator’s gradient norms. Our
generator architecture is a bottleneck encoder-decoder, while

our discriminator architecture contains a convolutional decoder
followed by fully connected layers. We used 1D kernels in the
convolutional layers to reduce the computational complexity.
The proposed method was evaluated for 2x (8 kHz to 16
kHz) and 4x (4 kHz to 16 kHz) scale super-resolution. We
showed that our method outperforms the two state-of-the-
art baseline methods in terms of objective metrics. We also
conducted a subjective intelligibility evaluation, which showed
that our method can score closely to the ground-truth high-
resolution signal for the 2x scale, and can perform decently
for the 4x scale. In additional experiments, we introduced
a training method to increase the system’s resilience against
non-stationary, unseen noise types for real-world applications.
Future directions include the estimation of phase information
for better super-resolution quality.
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