SVDD 2024

The Inaugural Singing Voice Deepfake Detection Challenge

You Zhang¹, Yongyi Zang¹, Jiatong Shi², Ryuichi Yamamoto³, Tomoki Toda³, Zhiyao Duan¹

Background

Singing Voice Deepfakes are raising public and industry concerns.

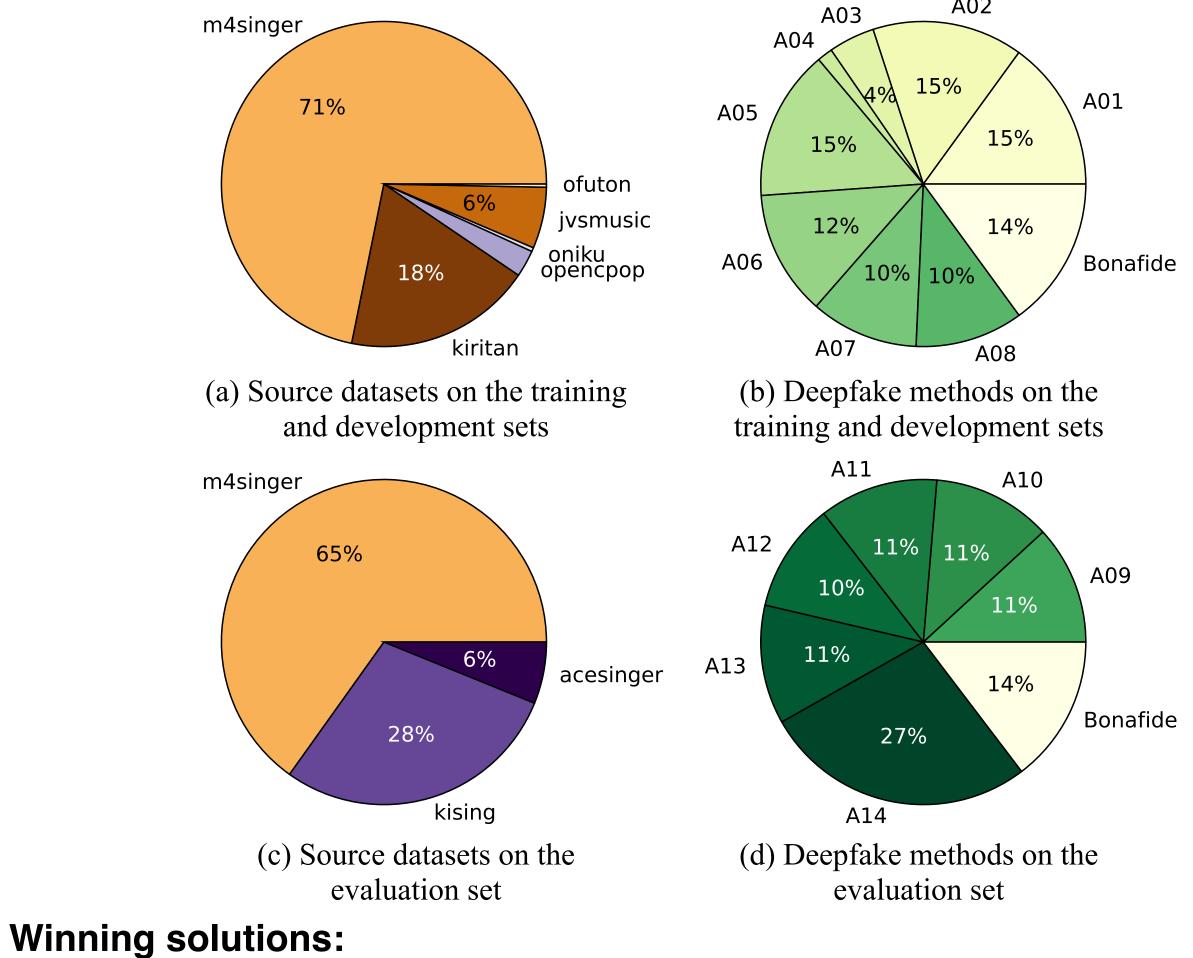
abc NEWS	Video	Live	Shows ~	Elections	538	Shop	•••	Q	
-----------------	-------	------	---------	-----------	-----	------	-----	---	--

Al songs that mimic popular artists raising alarms in the music industry

"I think artists should be more afraid," one producer says.

By Nathan Smith, Emily Lippiello, and Ivan Pereira November 3, 2023, 2:44 PM

() X ⊠ Ø

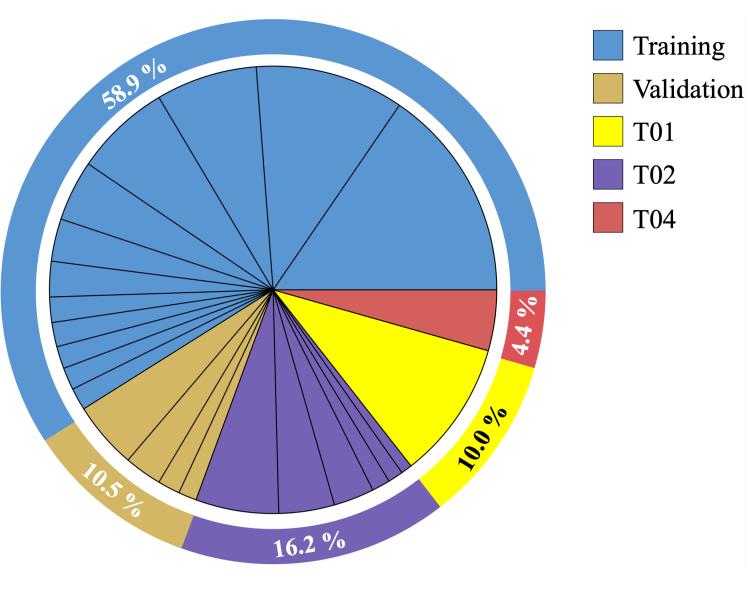

The New York Times

CtrSVDD: Controlled Singing Voice Deepfake Detection

CtrSVDD Dataset [2]

47.64 hours of bonafide vocals from open-source singing datasets 260.34 hours of deepfake vocals using 14 synthesis methods

Overview of source datasets and deepfake methods distribution [2]


Will A.I. Replace Pop Stars?

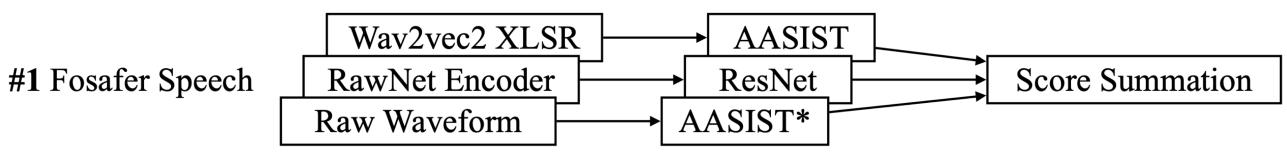
An A.I.-generated track with fake Drake and the Weeknd vocals went viral. Would you listen to a song sang by a computer?

WildSVDD: Singing Voice Deepfake Detection in the Wild

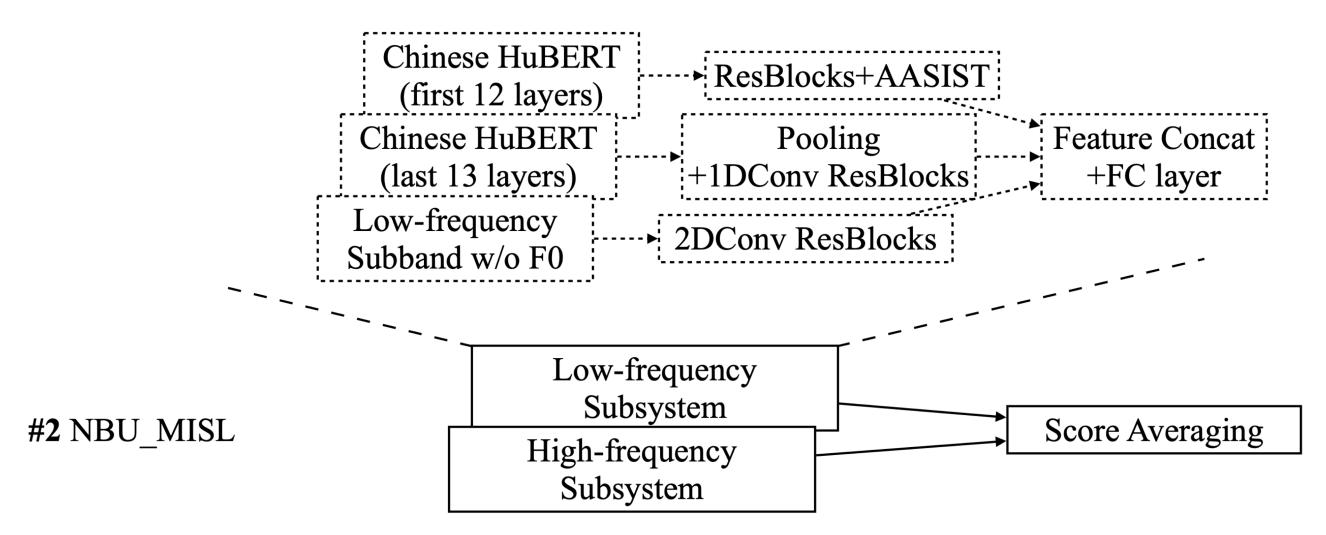
Datasets collected from media platforms

Previous work: **SingFake** [1] proposed the novel task of SVDD, presented the SingFake dataset, and identified several challenges.

WildSVDD: An expanded SingFake with newly collected data Participants can freely split the development set from the training set. Test A: Unseen singers, similar to T02 in SingFake Test B: Unseen musical context, same as T04 in SingFake


[1] Zang, Y., Zhang, Y., Heydari, M., & Duan, Z. (2024). Singfake: Singing voice deepfake detection. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 12156-12160).

REFERENCES


[2] Zang, Y., Shi, J., Zhang, Y., Yamamoto, R., Han, J., Tang, Y., ... & Duan, Z. (2024). CtrSVDD: A **Benchmark Dataset** and Baseline Analysis for **Controlled Singing** Voice Deepfake Detection. Proc. Interspeech (pp. 4783-4787).

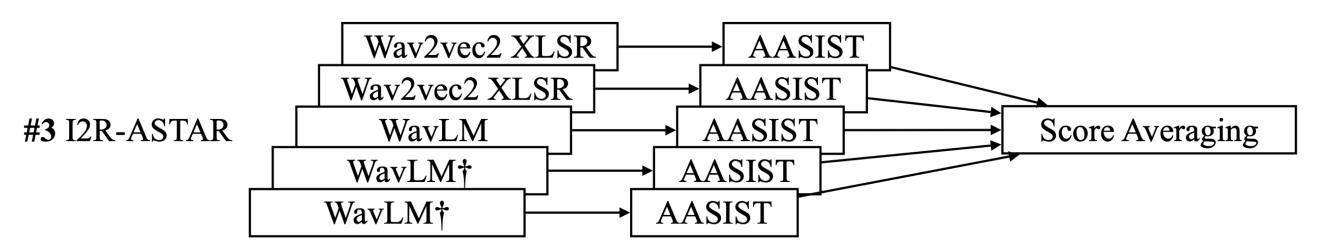
[3] Jung, J. W., Heo,

Illustration of the top-4 ranked system submissions for the CtrSVDD track

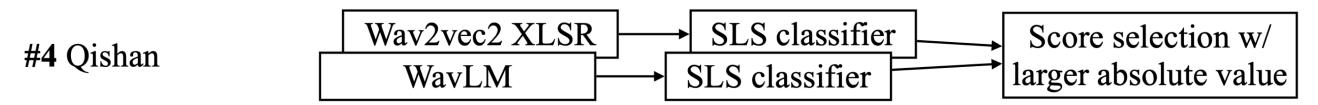
Data note: No data augmentation was used. Additional datasets were incorporated.

WildSVDD Baselines

AASIST [3] with various front-ends


Front-end	WildSVDI	D Test A	WildSVDD Test B					
	Mixtures	Vocals	Mixtures	Vocals				
Raw Waveform	10.50	8.48	16.85	14.91				
Spectrogram	27.93	20.55	30.97	24.41				
Mel-Spectrogram	29.27	27.35	32.18	30.78				
MFCC	17.78	19.14	22.92	23.31				
LFCC	22.60	23.25	26.82	26.94				
Wav2vec2 XLS-R	9.57	6.09	21.45	24.09				

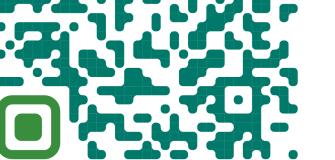
Acknowledgments



H. S., Tak, H., Shim, H. J., Chung, J. S., Lee, B. J., ... & Evans, N. (2022). AASIST: Audio antispoofing using integrated spectrotemporal graph attention networks. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6367-6371).

Data note: Augmented with HiFi-GAN vocoded audio. No additional datasets were incorporated.

Data note: Augmented with RawBoost variations. No additional datasets were incorporated.



Data note: No data augmentation was used. No additional datasets were incorporated.

Challenge results: Overview of the top-8 ranked submission results

Resources														
	Paper	Team Name	Results (w/o	ACESinger)	er) Results (overall)		Per-Attack EER					Per-Dataset EER		ACESinger (A14)
Website			EER (%)	Rank	EER (%)	Rank	A09	A10	A11	A12	A13	KiSing	M4Singer	
		Fosafer Speech	1.65	1	4.32	1	0.23	0.06	0.37	4.19	0.07	2.66	1.69	49.67
		NBU_MISL	2.00	2	8.41	19	0.13	<u>0.11</u>	0.94	5.17	<u>0.10</u>	8.98	<u>2.07</u>	50.02
		I2R-ASTAR	2.22	3	4.86	3	0.65	0.51	$\overline{2.49}$	4.57	0.64	6.01	2.16	50.02
		Qishan	2.32	4	<u>4.45</u>	2	1.02	0.69	2.54	4.42	0.76	2.82	2.32	50.05
		Breast waves	2.73	5	5.38	5	1.50	0.76	2.03	6.14	0.88	3.56	2.84	50.44
		MediaForensics	2.75	6	5.83	8	0.56	0.38	3.90	4.45	1.02	10.56	2.56	49.91
		beyond	2.99	7	5.68	7	0.45	0.26	4.56	4.37	0.85	9.12	2.85	49.53
		Star	3.31	8	5.21	4	1.64	0.19	1.11	7.30	0.23	1.79	3.51	49.70

