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Abstract As an essential approach to understanding

human interactions, emotion classification is a vital com-

ponent of behavioral studies as well as being important in

the design of context-aware systems. Recent studies have

shown that speech contains rich information about emo-

tion, and numerous speech-based emotion classification

methods have been proposed. However, the classification

performance is still short of what is desired for the algo-

rithms to be used in real systems. We present an emotion

classification system using several one-against-all support

vector machines with a thresholding fusion mechanism to

combine the individual outputs, which provides the

functionality to effectively increase the emotion classifi-

cation accuracy at the expense of rejecting some samples as

unclassified. Results show that the proposed system out-

performs three state-of-the-art methods and that the

thresholding fusion mechanism can effectively improve the

emotion classification, which is important for applications

that require very high accuracy but do not require that all

samples be classified. We evaluate the system performance

for several challenging scenarios including speaker-inde-

pendent tests, tests on noisy speech signals, and tests using

non-professional acted recordings, in order to demonstrate

the performance of the system and the effectiveness of the

thresholding fusion mechanism in real scenarios.

Keywords Emotion classification � Support vector
machine � Thresholding fusion � Noisy speech

1 Introduction

Emotions are a primary form of communication in humans

and carry the potential to convey a wealth of informa-

tion (Scherer 2005). In particular, human speech contains

rich information for effectively conveying emotions and

communicating wants, needs, and desires. The richness of

human speech for understanding emotions within human

interactions has motivated researchers to explore the area

of emotion classification based on speech (Black et al.

2013; Batliner et al. 2006).

Existing methodologies for assessing behavioral data for

emotions are based largely upon using trained observa-

tional coders who manually decode different parameters in

the speech signal according to some prescribed crite-

ria (Kerig and Baucom 2004). This is very time intensive

and requires hours of training as well as methods to ensure
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that coders are accurate and consistent with one

another (Bakeman 1997). Furthermore, such procedures

are costly from a time and financial standpoint and have the

potential to be subjective and error-prone. While prosodic

features are easy to capture, and thus have been widely

used in automatic emotion classification, mining useful

emotion information solely from prosodic features is still a

challenging task, and the classification accuracy is still not

adequate (Bitouk et al. 2010; Rachuri et al. 2010).

Therefore, improved emotion classification methods are

needed, and a thorough analysis of the emotion classifi-

cation accuracy under real scenarios is necessary, such as

where modalities are captured in noisy environments.

Speech has been used in conjunction with other modalities

such as text (Lee and Lee 2007; Bellegarda 2013; Goyal

et al. 2010), body gestures, and facial expressions to build

multi-modal models for emotion classification (Özkul

et al. 2012; Wu et al. 2013; Huisman et al. 2013), but in

this paper we focus on emotion classification based solely

on vocal features.

There are a variety of applications that use speech-based

emotion classification. Ticket reservation systems employ

emotion detection to recognize annoyed or frustrated cus-

tomers and respond accordingly (Ang et al. 2002). Call

centers employ emotion classification to prioritize impa-

tient customers (Gupta and Rajput 2007; Lee and Nar-

ayanan 2005). Warning systems have been developed to

detect aggressive driving (Al Machot et al. 2011) or to

keep the driver alert (Schuller et al. 2004). In the health-

care field, emotion classification is used by clinicians for

assessment or treatment of patients with psychological

disorders or conditions that create emotional difficulties,

such as autism or depression (Tacconi et al. 2008; Cowie

et al. 2000). Speech-based emotion sensing technologies

have been implemented on mobile devices, such as

smartphones, for behavioral studies (Rachuri et al. 2010;

Chang et al. 2011) or patient monitoring (Yang et al.

2013). Emotion attribute can also be used for speaker

recognition (Bao et al. 2007) or emotional speech synthe-

sis (Qin et al. 2006; Barra-Chicote et al. 2010; Steidl et al.

2012; Kawanami et al. 2003).

The emotion classification system used in this paper

extracts the speech signal’s fundamental frequency, energy

and other speech features, and the widely employed sup-

port vector machine (SVM) learner is used for one-against-

all (OAA) classification for each emotion. To improve the

classification performance, we use the thresholding fusion

mechanism proposed in Vapnik (1998), which fuses con-

fidence scores from multiple OAA classifiers by comparing

the highest confidence score with a pre-set threshold to

determine whether to classify the sample or reject it. The

goal in utilizing a thresholding fusion mechanism is to

increase the accuracy of the classification system at the

expense of unclassified samples. In many of the applica-

tions for speech-based emotion classification described

above, the cost of a mis-classification is high, and hence it

is better to achieve high classification reliability of the

samples (e.g., 3 s segments of the speech) that are classified

rather than trying to classify all samples.

Initial results using this system were presented in our

previous work (Yang et al. 2012), which, however, we

subsequently found contained erroneous results due to an

issue with the voice feature data that was used in the

classification. In this work, we have corrected the problem

and also changed the SVM kernel function to be radial

basis function (RBF), instead of the hybrid kernel proposed

in Yang et al. (2012). We added mel-frequency cepstral

coefficients (MFCCs) and speaking rate to the speech

feature set. Additionally, feature selection and over-sam-

pled methods were used to further improve the classifica-

tion performance. More thorough evaluations and

discussions are presented in this work as well.

Our method achieves a decision-level correct classifica-

tion rate of 80 % for six emotions using the LDC

dataset (Liberman et al. 2002) spoken by actors and

actresses, and 45 % on a noisy dataset spoken by ordinary

speakers using the UGA dataset (Bridge 2016). Our system

outperforms a state-of-the-art method proposed in Rachuri

et al. (2010), which achieves a decision-level correct clas-

sification rate of 71 % for classifying five emotions based

on the same LDC dataset. Our system allows defining a

confidence threshold level to improve the performance at

the expense of rejecting more samples as unclassified. As an

example, the decision-level correct classification rate can be

increased to 93 and 56 % when half of the samples are

rejected as unclassified for the aforementioned LDC dataset

and UGA dataset, respectively. This can be contrasted with

results from a human user study presented in (Eskimez

et al. 2016), in which naive coders on Amazon Mechanical

Turk were asked to classify the emotions in the LDC

dataset. Results from this test show that naive human coders

cannot improve their classification accuracy by rejecting

samples where they are not confident in their decision.

Hence, this proposed system can potentially replace humans

in classifying emotions in scenarios where humans cannot

be easily trained. The MATLAB code for our emotion

classification system is available on the University of

Rochester Wireless Communications and Networking

Group’s website (Bridge 2016).

The contributions of this work are:

• We build upon our preliminary work (Yang et al. 2012)

to construct a complete and effective speech-based

emotion classification system, by employing more

features (e.g., MFCC and speaking rate) and adding

three performance enhancement strategies (i.e., speaker
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normalization, training using over-sampled datasets,

and feature selection). We also conduct a thorough

comparison with state-of-the-art methods and a sys-

tematic analysis of system components in different

scenarios (e.g., general tests and gender dependent

tests).

• We employ the thresholding fusion mechanism pro-

posed in Vapnik (1998) to further improve the emotion

classification accuracy at the expense of rejecting some

speech samples. We illustrate that this strategy will be

beneficial in many practical situations.

• We investigate the emotion classification performance

for real scenarios including speaker-independent tests,

tests on noisy speech signals, and tests using a dataset

with non-professional acted emotions.

The rest of the paper is organized as follows. Section 2

provides a brief survey of two components of a speech-

based emotion classification system, i.e., speech features

and classifiers. Section 3 describes our proposed emotion

classification system, including the thresholding fusion

method and three performance enhancement strategies.

Section 4 explains the speech datasets and evaluation

metrics used in this work. Extensive experimental results of

the system using different databases and different scenarios

are presented in Sect. 5. Finally, Sect. 6 concludes the

paper.

2 Related work

A speech-based multiclass classification system consists of

two components: a set of speech features to extract from

the speech signals of the dataset and a classifier to classify

the speech signals based on their extracted features.

Therefore, we survey existing emotion classification tech-

niques according to these two aspects.

2.1 Speech features

An important issue in the design of a speech-based emotion

classification system is the extraction of suitable features

that efficiently characterize different emotions and perform

consistently, regardless of the speaker.

For speech analysis applications, such as emotion clas-

sification, speech recognition, and speaker recognition, a

number of speech features have been commonly used. In

the time domain, popular prosodic features are energy,

speaking rate, duration, and zero crossing rate. In the fre-

quency domain, spectral features represent vocal cord and

vocal tract system characteristics. For example, the authors

of Goudbeek et al. (2009) found that emotions with high

arousal, such as anger and happiness, result in higher mean

values of the first formant frequency in all vowels, whereas

emotions with positive valence, such as happiness and

pride, result in higher mean values for the second formant

frequency. Some spectral features, such as MFCCs and

perceptual linear predictive (PLP) coefficients, are derived

on the concept of logarithmically spaced filter banks mat-

ched to the human auditory system. Additionally, it is

stated in (Kwon et al. 2003) that fundamental frequency

(F0) and energy are closely related to emotion classifica-

tion. Some other commonly used spectral features include

energy slope, and log frequency power coefficients

(LFPC). The difference, delta, and acceleration values of

these features are also used to capture the temporal

dynamics of the speech signals.

For speech-based emotion classification studies in par-

ticular, different sets of features are used. The work pro-

posed in Rachuri et al. (2010) uses PLP coefficients as

speech features. Speech features F0, intensity, first formant

frequency, voice quality measures, and MFCCs are used

in Bitouk et al. (2010). A new speech feature called

weighted frequency is proposed in Sethu et al. (2008),

which is representative of the spectral region containing the

most energy. Besides weighted frequency, the speech fea-

tures used in Sethu et al. (2008) include zero crossing rate,

F0, and energy. Long-term spectro-temporal features are

used for emotion classification in Wu et al. (2009). Some

psychology and behavior studies also adopt speech features

such as F0, energy, and speaking rate (Bänziger et al.

2014; Sauter et al. 2010; Scherer 2003). The set of features

that we use in our system is presented in Sect. 3.1.

2.2 Emotion classifiers

For multiclass emotion classification systems, commonly

used generative classifiers include Naive Bayes and

Gaussian Mixture Models (GMM) (Rachuri et al. 2010;

Sethu et al. 2008; Yun and Yoo 2012), for which the fea-

ture distributions for each emotional state are modeled. An

extended version of GMM for emotion classification was

proposed by Tang et al. (2009) by introducing a boosting

algorithm for a reliable and accurate estimation of the

class-conditional GMM. Commonly used discriminative

classifiers, which do not employ any probability density

modeling, include support vector machines (SVM) (Bitouk

et al. 2010; Ling et al. 2010; Zhang et al. 2013; Xia and

Liu 2012), k-nearest neighbors (kNNs), multi-layer per-

ceptron (MLP), and decision tree. Sequential classifiers,

such as Hidden Markov Model (HMM) based classifiers,

have been used as well due to the advantage of reflecting

the temporal dynamics of the speech features by using the

state transition probability (Schuller et al. 2003).
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3 Emotion classification system

In this section, we present our multiclass SVM system for

speech-based emotion classification. In order to improve

the classification performance, we use three enhancement

strategies: speaker normalization, feature selection, and

using over-sampled datasets for OAA SVM training. The

effectiveness of using these strategies is investigated in

Sect. 5.2. A thresholding fusion mechanism is also used,

which provides the functionality to effectively increase the

classification accuracy at the expense of rejecting some

samples as unclassified.

3.1 Speech features

We divide each speech utterance into 60 ms segments with

10 ms time shifts, and only extract speech features for the

voiced segments. The following describes what features are

used and how they are extracted:

• Fundamental frequency (F0) We use the noise-resilient

BaNa F0 detection algorithm (Yang et al. 2014) to

extract the F0 values.

• Energy We calculate the energy for each segment by

taking the summation of all the squared values of the

samples’ amplitudes.

• Difference of F0 and difference of energy The differ-

ence of F0 or energy values between two neighboring

segments. More fluctuations may indicate active emo-

tions, such as happiness or anger.

• Frequency and bandwidth for the first four formants

We use the linear predictive coding method for formant

calculation.

• MFCCs We use the VOICEBOX toolkit (voi) to find

the 12 MFCCs for each speech frame.

• Speaking rate measured in the number of syllables per

second. We use the method described in Jong and

Wempe (2007).

Since speaking rate is measured on each speech utterance,

and the other features are measured on each 60-ms frame,

we calculate five statistics: the mean, maximum, minimum,

range, and standard deviation for each feature vector

except speaking rate, resulting in 24� 5þ 1 ¼ 121 attri-

butes that are sent to the classifier.

3.2 Speaker normalization

The characteristics of speech features differ from person to

person, which increases the difficulties of speech-based

emotion classification and speech recognition related

research. For example, speaking with a higher tone, i.e., a

higher F0, is often a sign of active emotions, such as happy

or anger. However, some speakers’ average F0 is higher

than others’.

As we intend to analyze emotion independent of the

speaker, speaker normalization is used as an enhancement

strategy to reduce inter-speaker variability and increase the

classification accuracy (Schuller et al. 2007). Speaker

normalization aims to narrow the difference in speech

features between speakers, and only retain the differences

between emotion categories. Speaker normalization was

first introduced by Lee and Rose (1996) for frequency

warping procedures. Later on, speaker normalization

showed its benefits in the areas of both automatic speech

recognition (Shrawankar and Thakare 2013) and speech-

based emotion classification (Vlasenko et al. 2007).

The z-score normalization method (Farrús et al. 2007)

has been widely used to eliminate the difference between

speakers. We calculate the mean and standard deviation of

a specific feature across all frames of the utterances across

all the emotions for each speaker individually. Then, each

feature value is z-score normalized using the mean and

standard deviation.

3.3 Feature selection using mutual information

Feature selection techniques have been used in emotion

classification problems to reduce irrelevant or highly cor-

related features (Rong et al. 2009; Shafran 2005; Lee et al.

2002). Mutual information, as one of the techniques which

is calculated between each feature and the class label, has

been widely used since mutual information measures

arbitrary dependencies between random variables, which

makes it suitable for assessing the ‘‘information content’’

of features in complex classification tasks (Roberto 1994).

Compared with the wrapper or embedded feature

selection methods, filter feature selection methods such as

mutual information are less computationally intensive.

Also, compared with feature selection methods that use

orthogonal transformations, such as principal component

analysis (PCA), mutual information has two advantages.

First, the physical meanings of the selected features are

easy to interpret, whereas the features selected by PCA are

generated through orthogonal transformations, and thus it

is difficult to interpret their physical meanings. Second, the

user can choose not to capture redundant or irrelevant

features to save computational power and time if they use

mutual information. On the other hand, all the features

have to be captured before using PCA. Therefore, mutual

information is used in this work on the speaker-normalized

feature values to select the most relevant features as well as

to prevent the learner from overfitting. The MATLAB

implementation of mutual information that we use here is

from MathWorks (2007).
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3.4 OAA SVM multiclass emotion classification

We choose SVM as our classifier. Compared to generative

models such as GMM, SVM has been shown to have better

discrimination power (Ling et al. 2010). Compared to

other discriminative models such as linear regression, SVM

can use kernel functions to deal with linearly inseparable

data (Hsu et al. 2003).

Two approaches are commonly used to construct a

multi-class SVM classifier by combining results from a

number of ordinary binary SVMs: OAA, which constructs

one SVM per class to distinguish it from all the other

classes, and One Against One (OAO), which constructs one

SVM to distinguish each pair of classes. In this study, we

choose the OAA approach for the sake of a better classi-

fication accuracy. There are two main approaches to

combine these binary decisions from multiple OAA clas-

sification models, i.e., anding binary decisions (Vapnik

1995), or choosing the class with the largest confidence

value (Vapnik 1998). We use the latter approach in this

work to make sure that only one emotion is classified.

We use the default C parameter of the box constraint for

the soft margin in the SVM. The Radial Basis Function

(RBF) kernel is used, and the scaling factor r in the RBF

kernel is optimized to be 5. Sequential minimal optimiza-

tion (SMO) (Platt 1999) is used for a faster training of

SVM.

3.5 Over-sampled training set

Another performance enhancement strategy employed in

our emotion classification system is to use over-sampled

datasets for OAA classifier training using the SMOTE

method (Chawla et al. 2002). For multiclass classification

problems, there are three approaches to train each indi-

vidual OAA SVM classifier, i.e., using the raw uneven

datasets, over-sampling the minority class, and under-

sampling the majority class.

Take the ‘happy or not’ OAA classifier as an example.

To train the classifier using the raw uneven dataset, all

samples with happiness emotion are used as positive

samples, and all samples from the other five emotions are

used as negative samples. Studies show that the OAA

class-boundary learned by imbalanced datasets can be

severely skewed towards the positive class. As a result, the

false-negative rate can be excessively high (Wu and Chang

2003).

To train the classifier using an over-sampled dataset

using SMOTE (Chawla et al. 2002), m� 1 synthetic

samples are generated around each minority class training

sample in the feature space, where m denotes the number of

emotion classes. Since for the LDC dataset (Liberman

et al. 2002) we use in this paper, the numbers of samples

for different emotion classes are approximately the same,

the numbers of samples of the majority class and the

minority class are approximately the same after over-

sampling, resulting in a balanced training set for the OAA

SVM classifier.

To train the classifier using an under-sampled dataset,

all samples with happiness emotion are used as positive

samples, and the same number of randomly selected sam-

ples from the other five emotions are used as negative

samples.

3.6 Thresholding fusion mechanism

We extend our emotion classification system by adding a

thresholding fusion mechanism module (Vapnik 1998).

When the module is off, we always classify a sample to the

class with the highest confidence value, as described in

Sect. 3.4. When the module is on, however, we output the

class label only when the highest confidence exceeds a

certain threshold; otherwise, we reject classifying this

sample.

This thresholding fusion mechanism essentially avoids

classifying difficult samples in order to achieve high

accuracy in the samples that are classified. This will make

the system more robust in practice. As the system classifies

emotion at the utterance level, many times it is better to

classify fewer utterances with a higher accuracy than

classifying all utterances with many classification errors.

Let us consider the aggressive driver detection system as an

example. The system should take interventions or issue

warnings only if it is very confident that the driver is in a

very emotional state. Similarly, in a behavioral study, it is

more important to have reliable estimates of the partici-

pants’ emotional states during a few times rather than

continuous estimation that is less accurate. Therefore, uti-

lizing a rejection strategy is beneficial for many emotion

classification systems.

Figure 1 illustrates our emotion classification system. In

the learning phase, for each utterance, the extracted speech

features and the emotion labels are used to train each

individual OAA SVM model Xi, where i = 1, 2 ,…, m, and

m denotes the number of emotion classes. In the testing

phase, speech features of the testing utterance j are

extracted and then sent to each trained model Xi, resulting

in confidence value CXi
ðjÞ, where j = 1, 2 ,…, n, and n

denotes the number of testing utterances. Assuming that

model Xp yields the highest confidence measure for utter-

ance j, the confidence measure CXp
ðjÞ is then compared

against a user-controlled confidence threshold c to decide

whether to reject the sample as unclassified. We show in

Sect. 5.3 that setting the confidence threshold c to a higher

Int J Speech Technol (2017) 20:27–41 31
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value can result in a higher emotion classification accuracy.

However, more instances are left as unclassified.

4 Datasets and evaluation metrics

Before we present the experimental evaluation of our

emotion classification system, we explain the speech

datasets and the evaluation metrics used in this work.

4.1 LDC and UGA datasets

To train our emotion classification system as well as to test

its performance, we select two speech emotion analysis

datasets, which are the LDC dataset (Liberman et al. 2002)

and the UGA dataset (Bridge 2016). A few samples of the

speech utterances from the LDC and the UGA datasets are

available on the University of Rochester Wireless Com-

munications and Networking Group’s website (Bridge

2016), to provide readers with a better understanding of

these two datasets.

For English speech-based emotion analysis, for which

our system is designed, the LDC dataset (Liberman et al.

2002) is one of the standard benchmark datasets (Bitouk

et al. 2010; Rachuri et al. 2010). The advantage of using

this dataset is that the emotions generated by professionals

are expressed more explicitly compared to speech recorded

by ordinary people. An alternative is to use speech material

from movies (Hoque et al. 2006) or recordings of everyday

life. However, it is difficult to determine appropriate ref-

erence labels, since many natural utterances are emotion-

ally ambiguous.

The LDC dataset includes a collection of speech files

recorded by professional actors and actresses reading

semantically neutral-meaning utterances such as dates and

numbers spanning fourteen distinct emotion categories.

Each utterance is between one and two seconds in length.

Six emotions are selected in our emotion classification

study as in Bitouk et al. (2010): disgust, happiness, sad-

ness, anger, fear and neutral. There are three male speakers

and four female speakers in the LDC database. About

15–25 utterances are spoken by each speaker for every

emotion category, and there are 727 utterances in the LDC

dataset in total.

The UGA dataset contains utterances spoken by students

from the University of Georgia. Similar with the LDC

dataset, the utterances in the UGA dataset are also dates

and numbers. The same six emotions are acted by each one

of the 133 students, and 10,489 utterances are included in

the UGA dataset in total. Though more data can be used to

train the emotion classification system, the diverse ways of

expressing emotions by different speakers raises a chal-

lenge to the system as well. Also, people who are not actors

or actresses tend to convey their emotions in a more

implicit way, which makes it more difficult to classify

emotions based only on speech. Additionally, the data is

much noisier in the UGA dataset than it is in the LDC

dataset.

Fig. 1 Our emotion

classification approach using

OAA SVM with thresholding

fusion
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4.2 Evaluation metrics

Since different state-of-the-art emotion classification sys-

tems use different performance evaluation metrics, to

compare our system with these systems, we explain several

evaluation metrics as follows.

We define the ratio of unclassified instances over all

instances in the test set as rejection rate. We can vary the

rejection rate by tuning the threshold parameter c from

Fig. 1.

To measure the average classification performance for

all classified emotions after fusion, we define the metric

‘decision-level (DL) correct classification rate’ as:

DL- %correct ¼

Pm

i¼1

Dtpi

N
; ð1Þ

where Dtpi denotes the number of decision-level true

positive utterances for emotion i, m denotes the number of

emotion classes, and N denotes the total number of

utterances.

To evaluate the emotion classification performance for

each individual emotion, we use the metric ‘decision-level

(DL) recall for emotion i’, which is defined as:

DL- recallEmotioni ¼
Dtpi

Dtpi þ Dfni
; ð2Þ

where, as defined in Eq. (1), Dtpi and Dfni denote the

number of decision-level true positive and false negative

utterances, respectively, for emotion i.

The classifier-level (CL) accuracy is used to evaluate the

performance for each individual OAA classifiers. Note that

this value is not used for the final emotion classification,

which is derived after fusing the OAA binary decisions.

The ‘CL-accuracy’ for classifier Xi, i.e., for the classifica-

tion of an instance as ‘Emotion i or Not’ is defined as:

CL- accuracyXi
¼ Ctpi þ Ctni

N
; ð3Þ

where Ctpi and Ctni denote the number of classifier-level

true positive and true negative utterances for emotion i,

respectively. N denotes the total number of utterances.

5 Emotion classification performance

In order to analyze the performance of our OAA SVM-

based thresholding fusion emotion classification system,

we first compare the proposed full system with three state-

of-the-art studies when no data is rejected. Then we show

the effectiveness of using the three enhancement strategies

through evaluations. Additionally, the performance

improvement by using the thresholding fusion mechanism

is presented for a general test and gender-dependent tests.

Finally, the performance on more challenging scenarios is

evaluated, including a speaker-independent test, a test on

noisy speech samples, and a test on speech samples from

ordinary speakers. Unless noted otherwise, for each indi-

vidual testing scenario, we present our results using 80

selected features, a small feature set that still provides a

relatively high emotion classification accuracy.

5.1 Comparison with state-of-the-art systems

We first compare the performance of our emotion classi-

fication system with three state-of-the-art emotion classi-

fication methods that were also evaluated using the LDC

dataset for both training and testing. A summary of the

comparison of the systems is presented in Table 1. Unlike

SVM, the GMM classifier used in Rachuri et al. (2010)

and Sethu et al. (2008) is not a binary classifier. Therefore,

no over-sampling is needed, and thus we leave the entries

for these two reference system as N/A in Table 1. We

provide either decision-level emotion classification recall

or classifier-level emotion classification accuracy depend-

ing on what metrics were provided by the reference

systems.

5.1.1 Performance comparison for general test

In this general test, we use the data samples from the LDC

dataset through seven rounds of cross-validations. In each

round of cross-validation, six sevenths of the samples are

used for training, and the remaining one seventh of the

samples are used for testing. We do this in a round-robin

fashion seven times, and the test results are averaged over

all seven rounds.

The work in Rachuri et al. (2010) classifies five emo-

tions: anger, sadness, neutral, happiness and fear. In Ra-

churi et al. (2010), similar narrow emotions in the LDC

dataset are clustered to the above five broad emotion cat-

egories. For example, three narrow emotions, elation,

happiness, and interest, are grouped into a broad happiness

emotion category. However, in our study, only samples in

the narrow happiness category are used for happiness.

Decision-level recall values, as defined in Eq. (2), are used

to evaluate the emotion classification performance for each

emotion.

Figure 2 compares the decision-level recall for each

individual emotion for our system with that obtained by the

method in Rachuri et al. (2010). Since disgust is not

among the emotion categories evaluated in Rachuri et al.

(2010), we leave the result for disgust for the reference

system blank in the figure. We can see that our system
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outperforms the method in Rachuri et al. (2010) for four

emotions, i.e., anger, sadness, happiness, and fear.

Another method, proposed in (Bitouk et al. 2010), also

classifies the same six emotions as our work using the LDC

dataset. They use classifier-level (CL) accuracy, as defined

in Eq. (3), to evaluate the performance for each OAA

classifier in their system. Hence, in Fig. 3, we compare the

classifier-level emotion classification accuracy for our

system with that obtained by the method in Bitouk et al.

(2010) for each individual emotion. From Bitouk et al.

(2010), we use the results derived by using their best set-

ting, i.e., ‘combined features’, which is class-level spectral

features plus utterance-level prosodic features. We can see

in Fig. 3 that the classifier-level accuracy for our system

outperforms the results in Bitouk et al. (2010) for all

individual OAA classifiers.

5.1.2 Performance comparison for speaker independent

test

The authors in Sethu et al. (2008) classify five emotions:

anger, sadness, neutral, happiness, and boredom using the

LDC dataset. In Fig. 4, we compare the decision-level

recall for each individual emotion for our system with that

obtained by the method in Sethu et al. (2008). For Sethu

et al. (2008), we use the results obtained by using their best

feature set ‘ZEP?WF’ (including zero crossing rate,

energy, pitch, and weighted frequency). Since disgust and

Table 1 Comparison of our system and several state-of-the-art emotion classification systems that also use the LDC dataset

System Dataset Features Classifier Speaker

norm.

Over-

sampling

Feature

selection

Frame

length (ms)

Our system LDC F0, F0 difference, energy, energy

difference, frequencies and bandwidths

for F1–F4, speaking rate, MFCCs

SVM Yes Yes Yes 60

Rachuri et al. (2010) LDC 32 perceptual linear predictive

coefficients (static and delta values)

GMM No N/A No 30

Bitouk et al. (2010) LDC F0, F0 delta, F1, energy, energy delta,

jitter, shimmer, relative spectral energy

above 500 Hz, duration of voiced

segments, MFCCs and duration over

different phoneme regions

SVM Yes No Yes 25

Sethu et al. (2008) LDC Zero crossing rate, energy, F0, weighted

frequency

GMM Yes N/A No 40
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Fig. 2 Decision-level emotion classification recall (%) for each

individual emotion for our system without rejecting any samples and

the method in Rachuri et al. (2010), using the LDC dataset. Speaker

normalization, feature selection, and over-sampled training sets are

used
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Fig. 3 Classifier-level emotion classification accuracy (%) for each

individual emotion for our system without rejecting any samples and

the method in Bitouk et al. (2010), using the LDC dataset. Speaker

normalization, feature selection, and over-sampled training sets are

used
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fear are not among the emotion categories evaluated

in Sethu et al. (2008), we leave the results for disgust and

fear for the reference system blank in the figure. Com-

paring the results for the speaker-independent test in Fig. 4

with the results for the general test in Fig. 2, we can see

that our system performance drops greatly when no data

from the user has been used for training. Compared with

the results derived by Sethu et al. (2008), our system

provides higher decision-level recall values for sadness,

neutral, and happiness, but lower decision-level recall

values for anger.

5.2 The effectiveness of three enhancement

strategies

Our proposed system contains three performance

enhancement strategies, i.e., speaker normalization, feature

selection, and over-sampling the training set. In order to

gain a better understanding of the system, it is important to

analyze the effectiveness of each individual strategy on the

final system performance. In this section, we evaluate the

effectiveness of these three strategies. The LDC dataset is

used for both the training and testing through seven rounds

of cross-validations.

First, we compare the decision-level correct classifica-

tion rates, as defined in Eq. (1) with and without speaker

normalization when no data is rejected. All features are

used in this evaluation, and the training set is over-sampled

using SMOTE (Chawla et al. 2002), as described in detail

in Sect. 3.5. Due to the randomness in the synthetic sample

generation process in the SMOTE algorithm, we generate

the over-sampled training set for five different trials, and

the performance is calculated by averaging these five trials.

Results show that using speaker normalization achieves a

decision-level correct classification rate of 81.0 %, which

is slightly higher than the result without using speaker

normalization, which is 80.5 %.

Second, we evaluate the benefit of using feature selec-

tion. We compare the emotion classification performance

using the LDC dataset with a feature set chosen by mutual

information and a referenced feature set with randomly

selected features, respectively. Features are randomly

selected five times for the referenced feature set, and the

average results are calculated. An over-sampled dataset is

used for training, as explained in Sect. 3.5, and speaker

normalization is used.

Results show that using features selected by mutual

information achieves about 5 % points higher classification

rate than using randomly selected features when 20 fea-

tures are selected. This difference becomes smaller as the

number of selected features decreases. However, using

features selected by mutual information sometimes can

achieve a lower classification rate than using randomly

selected features. This is because the features are selected

independently from each other, and features are selected

only based on their mutual information to the class label.

Thus ‘‘the m best features are not the best m fea-

tures’’ (Peng et al. 2005). Therefore, using mutual infor-

mation cannot guarantee that the optimal feature set, which

provides the highest correct classification rate, is selected.

We calculate the correct classification rates using dif-

ferent numbers of selected features using the LDC dataset,

when all samples are classified. We find that using 80 out

of 121 selected features can already provide a relatively

high emotion classification rate, while one third of the

features are not used, which reduces the computational

complexity of the SVM classification.

To investigate which features are the most relevant to

emotion classification, we illustrate in Table 2 which fea-

tures are selected as the total number of features changes.

We can see that MFCCs account for the largest portion of

the selected features. Additionally, almost all energy and
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Fig. 4 Decision-level emotion classification recall (%) for each

individual emotion for our system without rejecting any samples and

the method in Sethu et al. (2008) for the speaker-independent test

using the LDC dataset. Speaker normalization, feature selection, and

over-sampled training sets are used

Table 2 The number of selected features for different sizes of the

feature set for the general test using the LDC dataset

Number of selected features 20 40 60 80 100 121

F0 and difference of F0 7 8 9 9 9 10

Energy and difference of energy 6 7 8 8 8 10

Formants 0 1 6 18 33 40

MFCCs 7 24 37 45 49 60

Speaking rate 0 0 0 0 1 1

The total number of features is 121. Speaker normalization and over-

sampled training sets are used
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F0 features are included in the selected feature set. For-

mants and speaking rate features are the last ones included

in the feature set as the total number of selected features

increases.

Finally, we compare the correct classification rates when

using the three sampling methods for generating the training

set as presented in Sect. 3.5, using all the features and speaker

normalization. Results show that using an over-sampled

dataset for OAA classifier training achieves a slightly higher

correct classification rate of 81.0 %, than using the raw

uneven dataset, which achieves a correct classification rate of

79.6 %. Due to the reduced number of samples in the under-

sampled training set, the under-sampling method achieves the

lowest classification accuracy of 75.1 %.

5.3 Performance evaluation using thresholding

fusion

In order to determine how much benefit is gained by using

thresholding fusion and thereby leaving some samples as

unclassified, we performed several tests. First, we evaluate

the performance as we increase the threshold and thus

increase the number of rejected samples using the entire

LDC dataset. Then, we examine the impact of the thresh-

olding fusion using gender-dependent tests, where only the

female (or male) samples from the LDC dataset are used

for training and testing.

5.3.1 General test

The LDC dataset is used for both the training and testing

through seven rounds of cross-validations. Figure 5 shows

the decision-level correct classification rate when we

change the rejection rate by tuning the confidence score

threshold c. 80 features are selected for this test. When

most of the testing data is rejected, very few samples are

left, and we cannot obtain a reliable classification perfor-

mance. Thus, we do not show the decision-level correct

classification rate when the rejection rate is above 80 %.

As we can see from Fig. 5, the decision-level correct

classification rate generally increases as a higher confi-

dence threshold is used, and hence, as more data is rejec-

ted. This number can be increased to 93 % when 50 % of

the data is rejected. Therefore, using the thresholding

fusion method can provide a more reliable emotion clas-

sification at the expense of leaving some data unclassified.

As discussed previously, this can be valuable for a number

of applications that provide actions based on the classifi-

cation outcome. For these applications, it is much more

important that the classification is accurate than it is to

classify every sample with a lower accuracy.

5.3.2 Gender-dependent tests

Speech features differ between male and female speakers.

For example, the F0 of speech varies from 40 Hz for low-

pitched male voices to 600 Hz for children or high-pitched

female voices (Huang et al. 2001). In order to illustrate

how gender affects the emotion classification performance,

we compare the results for gender-dependent tests with

those for the previous general test that uses both male and

female samples for both training and testing. For the gen-

der-dependent tests, cross-validation is performed on all

the samples for one gender for training and testing.

Figure 5 also shows the decision-level correct classifi-

cation rate with different rejection rates for the gender-

dependent tests on male and female speakers, respectively.

Note that the features are selected only based on male or

female speech utterances, and thus the top selected features

are not the same.

The gender-dependent emotion classification perfor-

mance for females is higher than that for males. Since the

number of samples for female speakers is larger than that

for male speakers in the LDC dataset, we have also tried

using the same number of samples for both genders to

train the model. Results are not shown in this paper, but

similar conclusions are obtained that the gender-depen-

dent test for females provides better results than those for

males. Another important result that we can see from this

data is that the thresholding fusion mechanism improves

the performance for males significantly, which is impor-

tant since the performance for males when the thresh-

olding fusion module is off is much lower than for

females.
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Fig. 5 Decision-level correct classification rate versus rejection rate

for the general test and the gender-dependent tests using the LDC

dataset with speaker normalization, feature selection, and over-

sampled training sets
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5.3.3 Comparing with naive human coders

As shown in the above tests, our proposed system can

increase the classification accuracy by rejecting to classify

utterances for which it is not confident. However, it is not

clear how well this system, which in many applications

would replace human classification of the emotion, com-

pares to a naive human coder performing the same emotion

classification task. Therefore, in our work in Eskimez et al.

(2016), we asked Amazon Mechanical Turk workers

(Turkers) to listen to speech samples from the LDC dataset

of emotions and classify them into six categories. There

were 138 unique Turkers that classified 7270 audio sam-

ples, with individual Turkers classifying between 10 and

100 audio samples.

If we compare the Turkers accuracy in classifying the

emotions when all samples are classified with the accuracy

when only those samples for which they were confident in

their classification are considered, we see very little dif-

ference in the accuracy values. The Turkers’ accuracy

increases from 60.4 % when no samples are rejected to

60.6 % when 20 % of the samples are rejected. This tells

us that humans are not able to accurately estimate their

performance and reliability on the emotion classification

task. Hence, we see that one clear advantage of an auto-

matic emotion classification system over human coders is

this ability to improve classification accuracy by rejecting

to classify some samples. In applications where not all

samples must be classified and the cost of misclassification

is high, this can be a valuable means to increase emotion

classification accuracy.

5.4 Performance evaluation for more challenging

scenarios

In this section, we analyze the performance of our system

in more challenging scenarios, namely when the speaker is

not included in the training set (speaker-independent test),

when the speech data is noisy, and using data from the

UGA dataset with non-professional acted emotions.

5.4.1 Speaker-independent test

Emotions are expressed in different ways by different

speakers, and the speech features for different speakers

vary as well. Thus, to get an idea of how our system per-

forms when it is used on a new speaker, we run a speaker-

independent test, where data from the tested speaker is not

used in the training phase.

For the speaker-independent tests, we use the same 80

features as the feature set used for the general test. Figure 6

shows the decision-level correct classification rate for the

speaker-independent tests using the LDC dataset with the

over-sampled training dataset and speaker normalization.

The legend denotes the initials of the seven speakers,

where the gender of the speakers is added after the initials

as ‘m’ for male speakers and ‘f’ for female speakers. We

also show the speaker-independent result averaged over all

seven speakers.

As shown in Fig. 6, the decision-level correct classifi-

cation rate increases from 47 % when no data is rejected to

65 % when 80 % of the data is rejected. Compared with the

general test results shown in Fig. 5, the decision-level

correct classification rate drops by about 33 % points when

no samples from the target speaker are included in the

training set. This shows the need for prior training with the

subjects to achieve a good performance in our emotion

classification system.

5.4.2 Test on noisy data

For emotion classification in real scenarios, noise is a

factor that inevitably needs to be considered when we

evaluate the system performance. We add babble and white

noise to the LDC speech signals to generate a noisy dataset.

The noise database we use is (Varga et al. 1992). A

moderate noise level, i.e., noisy data at 5 dB Signal-to-

Noise Ratio (SNR), is used for testing.

In order to classify emotions on noisy data, there are two

approaches to train the system: using clean data or noisy

data. In Fig. 7, we compare the results for both approaches

with the results for training and testing on clean data.

Results are shown for training on an over-sampled dataset

using feature selection and speaker normalization. We can
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Fig. 6 Decision-level correct classification rate versus rejection rate

for the speaker-independent test using the LDC dataset. Speaker

normalization, feature selection, and over-sampled training sets are

used
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see that for emotion classification on noisy data, it is more

effective to train the system using noisy data than using

clean data. Although speaker normalization helps to com-

bat the overall increase in energy for the noisy data, it does

not help with features in the frequency domain. When

trained with noisy data, the system can, on the other hand,

learn the spectral features for noisy speech. Therefore, we

can see from Fig. 7 that the decision-level correct classi-

fication rate does not drop too much for training and testing

on noisy data.

5.4.3 Test on UGA data

We also evaluate our emotion classification system on the

UGA dataset (Bridge 2016), in which different emotions

are acted by university students. As with the prior tests,

cross-validation is performed using the UGA dataset, and

the decision-level correct classification rates are shown in

Fig. 8 for the general test and the gender-dependent tests.

Speaker normalization, feature selection, and the over-

sampled training sets are used.

Although the UGA dataset contains many more samples

than the LDC dataset to train the system, the decision-level

correct classification rate for the UGA dataset is decreased

from 80 % for the LDC dataset to 45 % for the UGA

dataset for general tests with no data rejected. This drop in

performance is mainly due to the fact that the emotion

expressed in the UGA data is not very strong and explicit,

which makes it hard to effectively train the system. The

decision-level correct classification rate increases from 45

to 56 % when 50 % of the data is rejected as unclassified.

We can see that the decision-level correct classification rate

is increased by 24.4 of 45 % for the UGA dataset when the

rejection rate increases from 0 to 50 %. Compared with the

decision-level correct classification rate for the LDC

dataset shown in Fig. 5, in which this increase is only 16.2

of 80 %, we find that the thresholding fusion mechanism

may provide more benefit for more realistic scenarios.

Similar with the gender-dependent results for the LDC

dataset, the gender-dependent tests using the UGA dataset

provide better results for female speakers than for male

speakers. Also, since the UGA dataset contains 133

speakers, speaker normalization becomes important.

6 Conclusions and future work

In this paper, we present a speech-based emotion classifi-

cation system based on multi-class SVM and a thresholding

fusion mechanism. A full analysis is provided for different

test scenarios. A summary of the results are presented in

Table 3.

Results show that our system outperforms several state-

of-the-art methods. Also, the thresholding fusion mecha-

nism is proven to effectively increase the emotion classi-

fication accuracy, and the increase is more prominent for

non-professionally acted recordings. Naive human coders,

on the other hand, do not show a significantly higher

classification accuracy for their confident utterances versus

unconfident ones, showing an advantage of the threshold-

ing fusion mechanism of the proposed computer system. In

addition, the system performance drops for some more

realistic and challenging situations, but the overall results

are still acceptable. For emotion classification on noisy
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data, it is more effective to train the system using noisy

data than using clean data.

For future work, we will explore other noise-resilient

speech feature extraction methods in addition to F0

detection using the BaNa algorithm. Also, we are devel-

oping an Android implementation to extract the speech

features used in this paper, which are then sent to an online

server for emotion classification. Since the application only

sends the statistics of the speech features to the server for

processing instead of the entire speech utterance, the pri-

vacy of the user is better preserved and the bandwidth for

transmission is reduced.

Acknowledgments This research was supported by funding from the

National Institute of Health NICHD (Grant R01 HD060789). We

thank Dr. Jennifer Samp for obtaining the voice recordings from

students at the University of Georgia. We also thank Sefik Emre

Eskimez and Kenneth Imade for conducting the human user study

using Amazon Mechanical Turk.

References

Al Machot, F., Mosa, A. H., Dabbour, K., Fasih, A., Schwarzlmuller,

C., Ali, M., & Kyamakya, K. (2011). A novel real-time emotion

detection system from audio streams based on Bayesian

quadratic discriminate classifier for ADAS. In Nonlinear

Dynamics and Synchronization 16th Int’l Symposium on Theo-

retical Electrical Engineering, Joint 3rd Int’l Workshop on.

Ang, J., Dhillon, R., Krupski, A., Shriberg, E., & Stolcke, A. (2002).

Prosody-based automatic detection of annoyance and frustration

in human-computer dialog. In Proceeings of International

Conference on Spoken Language Processing (pp. 2037–2040).

Bakeman, R. (1997). Behavioral observation and coding. Handbook

of research methods in social psychology. Cambridge: Cam-

bridge University Press.

Bänziger, T., Patel, S., & Scherer, K. R. (2014). The role of perceived

voice and speech characteristics in vocal emotion communica-

tion. Journal of nonverbal behavior, 38(1), 31–52.

Bao, H., Xu, M. X., & Zheng, T. F. (2007). Emotion attribute

projection for speaker recognition on emotional speech. In

Procceedings of Interspeech (pp. 758–761).

Barra-Chicote, R., Yamagishi, J., King, S., Montero, J. M., & Macias-

Guarasa, J. (2010). Analysis of statistical parametric and unit

selection speech synthesis systems applied to emotional speech.

Speech Communication, 52(5), 394–404.

Batliner, A., Steidl, S., Schuller, B., Seppi, D., Laskowski, K., Vogt,

T., Devillers, L., Vidrascu, L., Amir, N., Kessous, L., &

Aharonson, V. (2006). Combining efforts for improving auto-

matic classification of emotional user states. In Proceedings of

the Fifth Slovenian and First International Language Technolo-

gies Conference.

Bellegarda, J. R. (2013). Data-driven analysis of emotion in text using

latent affective folding and embedding. Computational Intelli-

gence, 29(3), 506–526.

Bitouk, D., Ragini, V., & Ani, N. (2010). Class-level spectral features

for emotion recognition. Journal of Speech Communication,

52(7–8), 613–625.

Black, M. P., Katsamanis, A., Baucom, B. R., Lee, C. C., Lammert,

A. C., & Christensen, A. (2013). Toward automating a human

behavioral coding system for married couples’ interactions using

speech acoustic features. Speech communication, 55(1), 1–21.

Chang, K., Fisher, D., & Canny, J. (2011). AMMON: a speech

analysis library for analyzing affect, stress, and mental health on

mobile phones. In 2nd International Workshop on Sensing

Applications on Mobile Phones.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P.

(2002). SMOTE: synthetic minority over-sampling technique.

Journal of Artificial Intelligence Research, 16(1), 321–357.

Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey,
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