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Abstract—Soundprism, as proposed in this paper, is a com-
puter system that separates single-channel polyphonic music
audio played by harmonic sources into source signals in an online
fashion. It uses a musical score to guide the separation process.
To the best of our knowledge, this is the first online system that
addresses score-informed music source separation that can be
made into a real-time system.

The proposed system consists of two parts: 1) a score follower
that associates a score position to each time frame of the audio
performance; 2) a source separator which reconstructs the source
signals for each time frame, informed by the score. The score
follower uses a hidden Markov approach, where each audio frame
is associated with a 2-dimensional state vector (score position and
tempo). The observation model is defined as the likelihood of
observing the frame given the pitches at the score position. The
score position and tempo are inferred using particle filtering. In
building the source separator, we first refine the score-informed
pitches of the current audio frame by maximizing the multi-
pitch observation likelihood. Then, the harmonics of each source’s
fundamental frequency are extracted to reconstruct the source
signal. Overlapping harmonics between sources are identified and
their energy is distributed in inverse proportion to the square of
their respective harmonic number. Experiments on both synthetic
and human-performed music show both the score follower and
the source separator perform well. Results also show that the
proposed score follower works well for highly polyphonic music
with some degree of tempo variations.

Index Terms—Source separation, score following, online algo-
rithm, multi-pitch estimation.

I. INTRODUCTION

OR A ray of white light, a prism can separate it into

multiple rays of light with different colors in real time.
How about for sound? In this paper, we propose a computer
algorithm called “Soundprism” to separate polyphonic music
audio into source signals in an online fashion, given the
musical score of the audio in advance. There are many
situations where this algorithm could be used. Imagine a
classical music concert where every audience member could
select their favorite personal mix (e.g. switch between enjoying
the full performance and concentrating on the cello part) even
though the instruments are not given individual microphones.
A soundprism could also allow remixing or upmixing of
existing monophonic or stereo recordings of classical music,
or live broadcasts of such music. Such a system would also
be useful in an offline context, for making music-minus-one
applications for performers to play along with existing music
recordings.
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Unsupervised single-channel musical source separation is
extremely difficult, even in the offline case [1]. Therefore,
we consider the case where a musical score (in the form
of MIDI) is available to guide the source separation pro-
cess. Tens of thousands of MIDI scores for classical pieces
are available on the web at sources such as http://www.
classicalmidiconnection.com.

Source separation that is guided by a musical score is
called score-informed source separation. In this scenario, the
multi-source audio performance is faithful to the score with
possible variations of tempo and instrumentation. Existing
score-informed source separation systems either assumes the
score and audio are well-aligned [2], [3], or use Dynamic
Time Warping (DTW) to find the alignment [4], [S] before
separating sources using the pitch information provided by the
score. These are offline algorithms, since the DTW they use
needs to see the whole audio performance from start to end,
hence cannot be made in real time. There do exist some online
DTW algorithms [6], [7], but to date, no work has explored
using them to make an online source separation system.

In this paper, we address the score-informed source sepa-
ration problem (for music with only harmonic sources) in an
online fashion. An online algorithm is one that can process its
input piece-by-piece in a serial fashion, in the order that the
input (e.g. the audio stream) is fed to the algorithm, without
having the entire input available from the start. Similarly
to existing score-informed source separation methods, we
decompose the whole problem into two stages: 1) audio-
score alignment and 2) pitch-informed source separation. We
differ from existing work in that audio-score alignment is
done online and sources are separated in each 46-millisecond
audio frame as soon as the frame’s aligned score position is
determined.

In the first stage, we use a hidden Markov process model,
where each audio frame is associated with a 2-dimensional
state (score position and tempo). After seeing an audio frame,
our current observation, we want to infer its state. We use a
multi-pitch observation model, which indicates how likely the
current audio frame is to contain the pitches at a hypothesized
score position. The inference of the score position and tempo
of the current frame is achieved by particle filtering. In the sec-
ond stage, score-informed pitches at the aligned score position
are used to guide source separation. These pitches are first
refined using our previous multi-pitch estimation algorithm
[8], by maximizing the multi-pitch observation likelihood.
Then, a harmonic mask in the frequency domain is built
for each pitch to extract its source’s magnitude spectrum. In
building the mask, overlapping harmonics are identified and



their energy is distributed in reverse proportion to the square
of their harmonic numbers. Finally, the time domain signal
of each source is reconstructed by inverse Fourier transform
using the source’s magnitude spectrum and the phase spectrum
of the mixture. The whole process is outlined in Figure 1. To
the best of our knowledge, this is the first paper addressing
the online score informed source separation problem.
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Fig. 1. System overview of Soundprism.

The remainder of this paper is arranged as follows: Sec-
tion II presents the proposed online audio-score alignment
algorithm; Section III describes the separation process given
the score-informed pitches of each audio frame; Section IV
describes computational complexity of the algorithms. Exper-
imental results are presented in Section V and the paper is
concluded in Section VI.

II. REAL-TIME POLYPHONIC AUDIO-SCORE ALIGNMENT

The first stage of Soundprism is online polyphonic audio-
score alignment, where polyphonic music audio is segmented
into time frames and they are fed to the score follower in
sequence. Soundprism outputs a score position for each frame,
right after it is processed.

A. Prior Work

Most existing polyphonic audio-score alignment methods
use Dynamic Time Warping (DTW) [9]-[11], a HMM [12],
[13], a hybrid graphical model [14] or a conditional random
field model [15]. Although these techniques achieve good
results, they are offline algorithms, that is, they need the whole
audio performance to do the alignment.

Dannenberg [16] and Vercoe [17] propose the first two real-
time score followers, but both work for MIDI performance
instead of audio. There are some real-time or online audio-
score alignment methods [18]-[21]. However, these methods
are for monophonic (one note at a time) audio performances.
Two of these systems ( [20], [21]) also require training of the
system on prior performances of each specific piece before
alignment can be performed for a new performance of the
piece. This limits the applicability of these approaches to
pieces with preexisting aligned audio performances.

For polyphonic audio, Grubb and Dannenberg [22] adopt
string matching to follow a musical ensemble, where each

instrument needs to be recorded by a close microphone and
streamed into a monophonic pitch sequence. This method
will not work in the situation where the instruments are not
separately recorded, e.g. distance-miced acoustic ensembles.
Dixon [6] proposes an online DTW algorithm to follow piano
performances, where each audio frame is represented by an
84-d vector, corresponding to the half-wave rectified first-
order difference of 84 spectral bands. This onset-informed low-
level feature works well for piano performances, however, for
instruments with smooth onsets like string and wind it may
have difficulties.

Cont [23] proposes a hierarchical HMM approach to fol-
low piano performances, where the observation likelihood
is calculated by comparing the pitches at the hypothesized
score position and pitches transcribed by Nonnegative Matrix
Factorization (NMF) with fixed spectral bases. A spectral basis
is learned for each pitch of the specific piano beforehand.
This method might have difficulties in generalizing to multi-
instrument polyphonic audio, as the timbre variation and
tuning issues involved make it difficult to learn a general basis
for each pitch. In [24], Cont proposes a probabilistic inference
framework with two coupled audio and tempo agents to follow
a polyphonic performance and estimate its tempo. This system
works well on single-instrument polyphonic audio, but for
multi-instrument polyphonic audio more statistical results are
needed to evaluate the system’s performance. Nevertheless,
this is a state-of-the-art real-time score following system.

In this paper, we propose a novel on-line score follower
that can follow a piece of multi-instrument polyphonic audio,
without requiring training on prior performances of the exact
piece to be followed.

B. Our Model Structure
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Fig. 2. Tllustration of the state space model for online audio-score alignment.

We propose a hidden Markov process model, as illustrated
in Figure 2. We decompose the audio performance into time
frames and process the frames in sequence. The n-th frame
is associated with a 2-dimensional hidden state vector s,, =
(mn,vn)T, where x,, is its score position (in beats), v, is its
tempo (in Beat Per Minute (BPM)) and 7T denotes matrix
transposition. z,, is drawn from the interval containing all
score positions from the beginning to the end. v, is drawn
from the interval of all possible tempi [v!,v"], where the
lowest tempo v' is set to half of the score tempo and the
highest tempo v" is set to twice the score tempo. These values



were selected as broad limits on how far from the notated
tempo a musician would be likely to deviate. Note that the the
values of v! and v" can be chosen based on prior information
about the score. In addition, for multi-tempi pieces, v and
v" can be changed correspondingly when a new tempo is
encountered.

Each audio frame is also associated with an observation,
which is a vector of PCM encoded audio, y,,. Our aim is to
infer the current score position z,, from current and previous
observations y1, - - - ,¥,. To do so, we need to define a process
model to describe how the states transition, an observation
model to evaluate hypothesized score positions for the current
audio frame, and to find a way to do the inference in an online
fashion.

C. Process Model

A process model defines the transition probability from the
previous state to the current state, i.e. p(s,|s,—1). We use
two dynamic equations to define this transition. To update the
score position, we use

Tp = Tp-1+ l- Un—1 (1)

where [ is the audio frame hop size (10 milliseconds, in this
work). Thus, score position of the current audio frame is
determined by the score position of the previous frame and
the current tempo. To update the tempo, we use

if 2z € [xy—1,xy,] for some k
otherwise

Un—1 + Ny
Un—1

2

VUp =

where n, ~ N(0,02) is a Gaussian noise variable; zj is the
k-th note onset/offset time in the score. This equation states
that if the current score position has just passed a note onset
or offset, then the tempo makes a random walk around the
previous tempo according to a Gaussian distribution; otherwise
the tempo remains the same.

The noise term n, introduces randomness to our system,
which is to account for possible tempo changes of the per-
formance. Its standard deviation o, is set to a quarter of
the notated score tempo through this paper. We introduce the
randomness through tempo in Eq. (2), which will affect the
score position as well. But we do not introduce randomness
directly in score position in Eq. (1). In this way, we avoid
disruptive changes of score position estimates.

In addition, randomness is only introduced when the score
position has just passed a note onset or offset. This is because
it is rather rare that the performer changes tempo within a
note. Second, on the listener’s side, it is impossible to detect
the tempo change before hearing an onset or offset, even if
the performer does make a change within a note. Therefore,
changing the tempo state in the middle of a note is not in
accordance with music performance, nor does it have evidence
to estimate this change.

D. Observation Model

The observation model is to evaluate whether a hypothesized
state can explain the observation, i.e. p(y,|s,). Different
representations of the audio frame can be used. For example,

power spectra [25], auditory filterbank responses [26], chroma
vectors [10], spectral and harmonic features [9], [20], multi-
pitch analysis information [23], etc. Among these representa-
tions, multi-pitch analysis information is the most informative
one to evaluate the hypothesized score position for most fully-
scored musical works. This is because pitch information can
be directly aligned to score information. Therefore, inspired
by [23], we use multi-pitch observation likelihood as our
preferred observation model.

In the proposed score follower, the multi-pitch observation
model is adapted from our previous work on multi-pitch esti-
mation [8]. It is a maximum likelihood-based method which
finds the set of pitches that maximizes the likelihood of the
power spectrum. This ’universal’ likelihood model is trained
on thousands of isolated musical chords generated by different
combinations of notes from 16 kinds of instruments. These
chords have different chord types (major, diminished, etc.),
instrumentations, pitch ranges and dynamic ranges, hence the
trained likelihood model performs well in multi-instrument
polyphonic music pieces as shown in [8].

In [8], the frame of audio is first transformed to the fre-
quency domain by a Fourier transform. Then, each significant
peak of the power spectrum is detected and represented as
a frequency-amplitude pair (f;, a;). Non-peak regions of the
power spectrum are also extracted. The likelihood of the
power spectrum given a set of hypothesized pitches 8 =
{F0y,---,F0;} is defined in the peak region and non-peak
region respectively.

L£(0) = Lpeak region @) - Lnon-peak region (9) 3)

We assume spectral bins to be independent given the pitches,
hence the peak region and non-peak region are conditionally
independent. For the same reason, spectral peaks are also
conditionally independent in the peak region likelihood:

K
»Cpeak region(e) = H p (fkv ag |0) (4)

k=1

ACnon—peak region(a) ~ H H (1 -P (eh = 1|FO)) @)
Fo€O he{1---H}
Frn€Fup
where Fj, is the frequency of the predicted h-th harmonic
of Fy; ep is the binary variable that indicates whether this
harmonic is present or not; Jy, is the set of frequencies in the
non-peak region; and H is the largest harmonic number we
consider. Eq. (4) and (5) are further decomposed and their
parameters are learned from training chords. Lpeax region(@)
is larger for pitch estimates whose harmonics better explain
observed peaks; Luon-peak regim(O) is larger for pitch estimates
that better explain the observed non-peak region (i.e. have
fewer harmonics in the non-peak region). The two likelihood
models work as a complementary pair. Details of this approach
are described in [8].
In calculating the observation likelihood p(y,|s,) in our
score follower, we extract the set of all pitches at score position
2, and use it as 6 in Eq. (3). Then p(y,|s,) is defined as

C
— Ty (6)

p(ynlsn) = In £(8)



where C' is the normalization factor to make it a probability.

Note that we do not define p(y,|s,) = L(0) , because
it turns out that £(0) can differ by orders of magnitude for
different sets of candidate pitches drawn from the score. Since,
we combine the process model and observation model to
infer score position, this large variation in observation model
outputs can cause the observation model to gain too much
importance relative to the process model. For example, two
very close score position hypotheses would get very different
observation likelihood, if they indicate different sets of pitches.
However, the probabilities calculated from the process model
are not that different. Therefore, the posterior probability of
score position would be overly influenced by the observation
model, while the process model would be almost ignored.
If the observation model does not function well in some
frame (e.g. due to a pitch-estimation glitch), the estimated
score position may jump to an unreasonable position, although
the process model tends to proceed from the previous score
position smoothly. Eq. (6) compresses £(8). This balances the
process model and the observation model.

Note that in constructing this observation model, we do not
need to estimate pitches from the audio frame. Instead, we use
the set of pitches indicated by the score. This is different from
[23], where pitches of the audio frame are first estimated, then
the observation likelihood is defined based on the differences
between the estimated pitches and score-informed pitches. By
skipping the pitch estimation step, we can directly evaluate
the score-informed pitches at a hypothesized score position
using the audio observation. This reduces model risks caused
by pitch estimation errors.

Our observation model only considers information from
the current frame, and could be improved if considering
information from multiple frames. Ewert et al. [11] incorporate
inter-frame features to utilize note onset information and
improve the alignment accuracy. Joder et al. [15] propose
an observation model which uses observations from multiple
frames for their conditional random field-based method. In the
future we want to explore these directions to improve our score
follower.

E. Inference

Given the process model and the observation model, we
want to infer the state of the current frame from current and
past observations. From a Bayesian point of view, this means
we first estimate the posterior probability p(s,|Y1.,).then
decide its value using some criterion like maximum a pos-
terior (MAP) or minimum mean square error (MMSE). Here,
Y., = (y1, - ,yn) is a matrix whose each column denotes
the observation in one frame. Recall s,, = (xn,vn)T, where
x,, 18 score position (in beats), v,, is tempo (in Beat Per Minute
(BPM)) and T' denotes matrix transposition. By Bayes’ rule,
we have

p(sn|Y1n)
= Cnp()’n|sn)/p(sn‘sn—l)p(sn—l|Y1:n—1)dsn—1(7)

where y,,, Y1.n, S, and s, 1 are all random variables; s,, 1 is
integrated over the whole state space; C', is the normalization

factor. p(yn|s,) is the observation model defined in Eq. (6)
and p(sy|s,—1) is the process model defined by Eq. (1) and
(2).

We can see that Eq. (7) is a recursive equation of the
posterior probability p(s,|Y1.,). It is updated from the poste-
rior probability in the previous frame p(s;—1|Y1.,—1), using
the state transition probability p(s,|s,—1) and the observation
probability p(y.|s.). Therefore, if we can initialize p(s1|y1)
in the first frame and update it using Eq. (7) as each frame is
processed, the inference can be done online.

This is the general formulation of online filtering (tracking).
If all the probabilities in Eq. (7) are Gaussian, then we just
need to update mean and variance of the posterior in each
iteration. This is the Kalman filtering method. However, the
observation probability p(y,|s,) is very complicated. It may
not be Gaussian and may not even be unimodal. Therefore, we
need to update the whole probability distribution. This is not
easy, since integration at each iteration is hard to calculate.

Particle filtering [27], [28] is a way to solve this problem,
where the posterior distribution is represented and updated us-
ing a fixed number of particles together with their importance
weights. In the score follower, we use the bootstrap filter, one
variant of particle filters, which assigns equal weight to all
particles in each iteration.

1: Initialize M particles (2™, 0M) ... () (D),
where () = 1 and v\ ~ Uv!,v"].

2: Initialize x_y = x¢p = 1 and vy = notated score tempo

3: for n = 1 to the last frame N do

4 2 2@ 4 1.09 by Eq. (1)

50 if 2,9 <2z <x,_1 then

6: v «— v,_1 +n, by Eq. (2)
7. else

8: v )

9: end if

100 w® <« p(y,|(=@D,0v®)) by Eq. (6)
1 w® w5
12:  Sample particles with replacement according to w® to

get a new set of particles (M), o) ... (2(M) (D)),
13:  Output z,, = ;—;IE:E<") and v,, = R—'IELv(").
14: end for

Fig. 3. The bootstrap filter algorithm for score following. Here (x(i), v(i))
is the 4-th particle and w(?) is its importance weight. All the other variables
are the same as in the text.

Figure 3 presents the algorithm applied to score following.
In Line 1, M particles are initialized to have score positions
equal to the first beat and tempi assume a uniform distribution.
Line 3 starts the iteration through the frames of audio. At
this point, these particles represent the posterior distribution
p(sn—1Y1.n—1) of s,_1. From Line 4 to 9, particles are
updated according to the process model in Eq. (1) and (2) and
now they represent the conditional distribution p(s,,|Y1.n—1)
of s,,. In Line 10 and 11, the importance weights of particles
are calculated as their observation likelihood according to
Eq. (6), and then normalized to a discrete distribution. Then
in Line 12, these particles are resampled with replacement
according to their weights to generate a new set of M particles.



This is the key step of a bootstrap filter, after which the
new particles can be thought of having equal weights. These
particles now represent the posterior distribution p(s,|Y1.,)
of s,, and we output their mean as the score position and
tempo estimate in the n-th frame in Line 13.

In updating the tempo of each particle in Line 6, instead of
using its previous tempo v(), we use the previously estimated
tempo v,_1, i.e. the average tempo of all particles in the
previous frame. This practical choice avoids that the particles
become too diverse after a number of iterations due to the
accumulation of randomness of n,,.

The set of particles is not able to represent the distribution
if there are too few, and is time-consuming to update if there
are too many. In this paper, we tried to use 100, 1,000 and
10,000 particles. We find that with 100 particles, the score
follower is often lost after a number of frames. But with 1000
particles, this rarely happens and the update is still fast enough.
Therefore, 1000 particles are used in this paper.

Unlike some other particle filters, the bootstrap filter we
use does not have the common problem of degeneracy, where
most particles have negligible importance weights after a few
iterations [27], [28]. This is because the resampling step (Line
12 in Figure 3) in each iteration eliminates those particles
whose importance weights are too small, and the newly
sampled particles have equal weights again. This prevents the
skewness in importance weights from accumulating.

At each time step, the algorithm outputs the mean score
position from the set of particles as the estimate of the
current score position. Someone may suggest choosing MAP
or median, since the mean value may lie in a low probability
area if the distribution is not unimodal. However, we find that
in practice there is not much difference in choosing mean,
MAP or median. This is because the particles in each iteration
generally only cover a small range of the score (usually less
than 0.5 beat), and mean, MAP and median are close.

III. SOURCE SEPARATION IN A SINGLE FRAME

If the estimate of the score position of the current audio
frame is correct, the score can tell us what pitch (if any) is
supposed to be played by each source in this frame. We will
use this pitch information to guide source separation.

A. Prior Work

Existing score-informed source separation systems use dif-
ferent methods to separate sources. Woodruff et al. [4] work
on stereo music, where spatial cues are utilized together with
score-informed pitch information to separate sources. This
approach does not apply to our problem, since we are working
on single-channel source separation. Ganseman et al. [5] use
Probabilistic Latent Component Analysis (PLCA) to learn a
source model from the synthesized audio of the source’s score,
and then apply these source models to real audio mixtures. In
order to obtain good separation results, the synthesized audio
should have similar timbre to the source signal. However,
this is not the case in our problem, since we do not know
what instrument is going to play each source in the audio

performance. Raphael [2] trains a model to classify time-
frequency bins that belong to solo or accompaniment using
a labeled training set, then applies this model to separate the
solo from the mixture. This method, however, cannot separate
multiple sources from the mixture.

In [29], Li et al. propose a single-channel music separation
method when pitches of each source in the music is given.
They use a least-square estimation framework to incorporate
an important organizational cue in human auditory percep-
tion, common amplitude modulation, to resolve overlapping
harmonics. This approach achieves good results in separating
polyphonic musical sources, however, the least square estima-
tion is performed for harmonic trajectories in the spectrogram
hence it is not an online algorithm.

In the following, we develop a simple source separation
method, which works in an online fashion on polyphonic
music of unknown instruments.

B. Refine Pitches

The pitches provided by the score § = {F0q,---,F0;}
are integer MIDI pitch numbers. MIDI pitch numbers indicate
keys on the piano keyboard. Typically, MIDI 69 indicates the
A above Middle C. Assuming A440-based equal temperament
allows translation from MIDI pitch to frequency in Hz. The
resulting frequencies are rarely equal to the real pitches played
in an audio performance. In order to extract harmonics of
each source in the audio mixture, we need to refine them to
get accurate estimates = {F0y,---,F0;}. We refine the
pitches using the multi-pitch estimation algorithm as described
in [8], but restricting the search space in the Cartesian product
[L;[F0; — 50cents, F0; + 50cents|. The algorithm maximizes
the multi-pitch likelihood L(é) in Eq. (3) with a greedy
strategy, i.e. refining (estimating) pitches one by one. The set
of refined pitches 0 starts from an empty set. In each iteration,
the refined pitch that improves the likelihood most is added to
6. Finally, we get the set of all refined pitches. In refining each
pitch F0;, we search FO; in [F0; — 50cents, F0; 4+ 50cents]
with a step of 1Hz.

C. Reconstruct Source Signals

For each source in the current frame, we build a soft
frequency mask and multiply it with the magnitude spectrum
of the mixture signal to obtain the magnitude spectrum of
the source. Then we apply the original phase of the mixture
to the magnitude spectrum to calculate the source’s time-
domain signal. Finally, the overlap-add technique is applied to
concatenate the current frame to previously generated frames.
The sum of the masks of all the sources equals one in each
frequency bin, so that the sources sum up to the mixture.

In order to calculate masks for sources, we first identify
their harmonics and overlapping situations from the estimated
pitches. For each source, we only consider the lowest 20
harmonics, each of which covers 40Hz in the magnitude
spectrum. This width is assumed to be where the main lobe
of each harmonic decreases 6dB from the center, when we
use a 46ms Hamming window. These harmonics are then
classified into overlapping harmonics and non-overlapping



harmonics, according to whether the harmonic’s frequency
range is overlapped with some other harmonic’s frequency
range of another source.

All frequency bins in the spectrum can then be classified
into three kinds: a nonharmonic bin which does not lie in any
harmonic’s frequency range of any source, a non-overlapping
harmonic bin which lies in a non-overlapping harmonic’s
frequency range and an overlapping harmonic bin which lies
in an overlapping harmonic’s frequency range. For different
kinds of bins, masks are calculated differently.

For a nonharmonic bin, masks of all active sources are set
to 1/J, where J is the number of pitches (active sources)
in the current frame. In this way the energy of the mixture
is equally distributed to all active sources. Although energy
in nonharmonic bins is much smaller than that in harmonic
bins, experiments show that distributing the energy reduces
artifacts in separated sources, compared to discarding it. For a
non-overlapping harmonic bin, the mask of the source that the
harmonic belongs to is set to 1 and the energy of the mixture
is assigned entirely to it.

For an overlapping harmonic bin, the masks of the sources
whose harmonics are involved in this overlapping situation,
are set in inverse proportion to the square of their harmonic
numbers (e.g. 3 is the harmonic number of the third harmonic).
For example, suppose a bin is in a harmonic which is over-
lapped by J — 1 harmonics from other sources. Then the mask
of the ¢-th source in this bin is defined as

1/
ST 1/k2

where h is the harmonic number of the k-th source.

This simple method to resolve overlapping harmonics cor-
responds to the assumption that 1) overlapping sources have
roughly the same amplitude; 2) all notes have harmonics
amplitudes decay at 12dB per octave from the fundamental,
regardless of pitch and instrument that produced the note.
These assumptions are very coarse and will never be fulfilled
in the real world. One can improve upon these assumptions by
designing a more delicate source filter [30], interpolating the
overlapping harmonics from non-overlapping harmonics based
on the spectral smoothness assumption in each frame [31],
or the temporal envelope similarity assumption of different
harmonics of one note [32] or both [33]. Nevertheless, Eq.
(8) gives a simple and relatively effective way to resolving
overlapping harmonics as shown in experiments.
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IV. COMPUTATIONAL COMPLEXITY

Soundprism is an online algorithm that makes a Markovian
assumption. The score follower considers only the result of the
previous time-frame and the current spectrum in calculating its
output. Therefore the number of operations performed at each
frame is bounded by a constant value in terms of the number of
past frames. We analyze this constant in terms of the number
of particles M (on the order of 1000 in our implementation),
the number of spectral peaks in the mixture K (on the order
of 100), the number of sources J (typically less than 10), the
number of searching steps S in refining a score-informed pitch
(on the order of 1000 in our implementation) and the number

of harmonics H (20 in our implementation) in reconstructing
the source signals.

In the score following stage, Line 4-9 and 11-13 in Figure
3 all involve O(M) calculations. Line 10 involves M times
observation likelihood calculations, each of which calculates
a multi-pitch likelihood of the chord at the score position of
the particle. However, these M particles usually only cover a
short segment (less than 0.5 beats) of the score. Within the
span of a beat there are typically few note changes (16 would
be an extreme). Therefore there are usually a small number of
potential pitch sets to estimate the likelihood of (less than 16).
Therefore, we only need a few likelihood calculations, each
of which is of O(K + J) according to [8]. The number of
sources J is much smaller than the number of spectral peaks
K and can be ignored, so the score following stage requires
in total O(M + K) calculations.

In the separation stage, we first refine the J score-informed
pitches. This takes O(JS) times the number of multi-pitch
likelihood calculations, hence is of O(JSK). The reconstruc-
tion of source signals takes O(H?) to identify overlapping
situations and O(J) to calculate source signals. Therefore, in
total the complexity of Soundprism is O(JSK + H?+ M). In
order to reduce the complexity, we can use a smaller S with a
slight degradation of separation results (about 0.5dB in SDR
from S = 1000 to S = 100).

In our experiments, Soundprism is implemented in Matlab
and runs about 3 times slower than real time on a four-core
2.67GHz CPU under Windows 7.

V. EXPERIMENTS

A. Datasets

A musical work that we can apply Soundprism to must
have the following components: a MIDI score, and a single-
channel audio mixture containing the performance. In order to
measure the effectiveness of the system, we must also have the
alignment between MIDI and audio (to measure the alignment
system’s performance) and a separate audio recording for each
instrument’s part in the music (to measure source separation
performance).

In this work, we use two datasets, one synthetic and one
real. The synthetic dataset is adapted from Ganseman [34]. It
contains 20 single-line MIDI melodies made from random note
sequences. Each melody is played by a different instrument
(drawn from a set of sampled acoustic and electric instru-
ments). Each melody is 10 seconds long and contains about 20
notes. Each MIDI melody has a single tempo but is rendered to
11 audio performances with different dynamic tempo curves,
using Timidity++ with the FluidR3 GM soundfont on Linux.
The statistics of the audio renditions of each melody are
presented in Table I. “Max tempo deviation” measures the
maximal tempo deviation of the rendition from the MIDI.
“Max tempo fluctuation” measures the maximal relative tempo
ratio within the dynamic tempo curve.

We use these monophonic MIDI melodies and their audio
renditions to generate polyphonic MIDI scores and corre-
sponding audio performances, with polyphony ranging from 2



TABLE I
STATISTICS OF 11 AUDIO PERFORMANCES RENDERED FROM EACH
MONOPHONIC MIDI IN GANSEMAN’S DATASET [34].

Max tempo deviation 0% 10% 20% 30% 40% 50%
Max tempo fluctuation 1.00 1.20 143 1.71 2.06 2.50
Num. of performances 1 2 2 2 2 2

to 6'. For each polyphony, we generate 24 polyphonic MIDI
pieces by randomly selecting and mixing the 20 monophonic
MIDI melodies. We generate 24 corresponding audio pieces, 4
for each of the 6 classes of tempo variations. Therefore, there
are in total 120 polyphonic MIDI pieces with corresponding
audio renditions. Alignment between MIDI and audio can be
obtained from the audio rendition process and are provided
in [34]. Although this dataset is not musically meaningful,
we use it to test Soundprism on audio mixtures with different
polyphonies and tempi, which are two important factors in
following polyphonic music. In addition, the large variety
of instruments in this dataset lets us see the adaptivity of
Soundprism to different timbres.

The second dataset consists of 10 J.S. Bach four-part
chorales, each of which is about 30 seconds long. The scores
were MIDI downloaded from the internet’. The audio files
are recordings of real music performances. Each piece is
performed by a quartet of instruments: violin, clarinet, tenor
saxophone and bassoon. Each musician’s part was recorded
in isolation while the musician listened to the others through
headphones. Individual lines were then mixed to create 10
performances with four-part polyphony. We also created audio
files containing all duets and trios for each piece, totalling
60 duets and 40 trios. The ground-truth alignment between
MIDI and audio was interpolated from annotated beat times
of the audio. The annotated beats were verified by a musician
through playing back the audio together with these beats. We
note that, beside the general tempo difference between the
audio and MIDI pieces, there is often a fermata after a musical
phrase in the audio but not in the MIDI. Therefore, there are
many natural tempo changes in the audio while the MIDI has
a constant tempo. We use this dataset to test Soundprism’s
performance in a more realistic situation.

B. Error Measures

We use the BSS_EVAL toolbox [36] to evaluate the sepa-
ration results of Soundprism. Basically, each separated source
is decomposed into a true source part and error parts corre-
sponding to interferences from other sources and algorithmic
artifacts. By calculating the energy ratios between different
parts, the toolbox gives three metrics: Signal-to-Interference
Ratio (SIR), Signal-to-Artifacts Ratio (SAR) and Signal-to-
Distortion Ratio (SDR) which measures both interferences and
artifacts.

We use Align Rate (AR) as proposed in [38] to measure the
audio-score alignment results. For each piece, AR is defined

Note that sources in this paper are all monophonic, so polyphony equals
the number of sources.
Zhttp://www.jsbchorales.net/index.shtml

as the proportion of correctly aligned notes in the score. This
measure ranges from 0 to 1. A score note is said to be correctly
aligned if its onset is aligned to an audio time which deviates
less than 50ms from the true audio time. We note that MIREX?
uses average AR (called Piecewise Precision) of pieces in a
test dataset to compare different score following systems.

We also propose another metric called Average Alignment
Error (AAE), which is defined as the average absolute differ-
ence between the aligned score position and the true score
position of each frame of the audio. The unit of AAE is
musical beat and it ranges from O to the maximum number
of beats in the score.

We argue that AR and AAE measure similar but different
aspects of an alignment. Notice that AR is calculated over note
onsets in the audio time domain, while AAE is calculated
over all audio frames in the score time domain. Therefore,
AR is more musically meaningful and more appropriate for
applications like real-time accompaniment. For example, if an
alignment error of of a note is 0.1 beats, then the corresponding
alignment error in the audio time domain can be either 100ms
if the tempo is 60BPM or 33.3ms if the tempo is 180BPM,
which induce significantly different accompaniment percep-
tions. AAE, however, is more appropriate for applications like
score-informed source separation, since not only note onsets
but all audio frames need to be separated. In addition, AAE
is well correlated with the accuracy of score-informed pitches
given the typical lengths of notes in a piece of music, hence
helps analyze the main factor of source separation errors. For
example, suppose the shortest note is an eighth-note, then AAE
of 0.2 beats will indicate a high accuracy of score-informed
pitches, and the score following stage will not be the main
factor causing source separation errors.

In [38] there is another important metric called “latency”
to measure the time delay of an online score follower from
detecting to reporting a score event. We do not need this metric
since the score follower in Soundprism computes an alignment
right after seeing the input audio frame and the computation
time is negligible. Therefore, there is no inherent delay in the
score follower. The only delay from the audio frame being
performed to the aligned score position being output is the
frame center hop size, which is 10ms in this work.

C. Reference Systems

We compare Soundprism with four source separation refer-
ence systems. Ideally-aligned is a separation system which
uses the separation stage of Soundprism, working on the
ground-truth audio-score alignment. This removes the influ-
ence of the score follower and evaluates the source separation
stage only.

Gansemanl0 is a score-informed source separation system
proposed by Ganseman et al. [5], [34]. We use an implemen-
tation provided by Ganseman. This system first aligns audio
and score in an offline fashion, then uses a Probabilistic Latent
Component Analysis (PLCA)-based method to extract sources

3The Music Information Retrieval Evaluation eXchange (MIREX) is an an-
nual evaluation campaign for Music Information Retrieval (MIR) algorithms.
Score Following is one of the evaluation tasks. http://www.music-ir.org/mirex



according to source models. Each source model is learned
from the MIDI-synthesized audio from the source’s score.
For the synthetic dataset, these audio pieces are provided by
Ganseman. For the real music dataset, these audio pieces are
synthesized using the Cubase 4 DAW built-in synthesis library
without effects. Instruments in the synthesizer are selected to
be the same as the audio mixture, to make the timbre of each
synthesized source audio as similar as possible to the real
source audio. However, in real scenarios that the instruments of
the sources are not recognizable, the timbre similarity between
the synthesized audio and the real source cannot be guaranteed
and the system may degrade.

MPET is a separation system based on our previous work
on multi-pitch estimation [8] and tracking [35]. The system
obtains pitch estimates at each frame for each source after
multi-pitch estimation and tracking. Then the separation stage
of Soundprism is applied on these pitch estimates to extract
sources. Note that the score information is not utilized in this

system.
Oracle separation results are calculated using the
BSS_Oracle toolbox [37]. They are the theoretically,

highest achievable results of the time-frequency masking-
based methods and serve as an upper bound of source
separation performance. It is noted that oracle separation can
only be obtained when the reference sources are available.

We compare the score following stage of Soundprism with
Scorealign, which is an open-source offline audio-score align-
ment system4 based on the method described in [10].

D. Score Alignment Results

1) Synthetic Dataset: Table II shows the score alignment
results of Soundprism and Scorealign for different polyphony
on the synthetic dataset. It can be seen that Scorealign obtains
higher than 50% average Align Rate (AR) and less than
0.2 beats Average Alignment Error (AAE) for all polyphony,
while Soundprism’s results are significantly worse, especially
for polyphony 2. However, as polyphony increases, the gap
between Soundprism and Scorealign is significantly reduced.
This supports our claim that the score following stage of
Soundprism works better for high polyphony pieces.

TABLE 11
AUDIO-SCORE ALIGNMENT RESULTS (AVERAGE£STD) VERSUS
POLYPHONY ON THE SYNTHETIC DATASET. EACH VALUE IS CALCULATED
FROM 24 MUSICAL PIECES.

metric AR (%) AAE (beat)
polyphony | Soundprism  Scorealign | Soundprism  Scorealign
2 27.6+17.3  50.1£27.4 | 0.60+0.64  0.15+0.08
3 36.3+16.5  51.64+24.2 | 0.254020  0.1340.07
4 414137 5394233 0.21£0.09  0.15£0.09
5 47.0+18.7  60.8+20.1 0.24+0.10  0.16£0.09
6 49.8419.6  55.5423.8 0.3040.23  0.18£0.09

Table III indicates that the score following stage of Sound-
prism slowly degrades as the tempo variation increases, but
as quickly as Scorealign. For Soundprism on tempo variation
from 0% to 30%, AR are around 45% and AAE are around
0.25 beats. Then they degrades to about 30% of AR and 0.4

“http://sourceforge.net/apps/trac/portmedia/wiki/scorealign

TABLE III
AUDIO-SCORE ALIGNMENT RESULTS VERSUS TEMPO VARIATION ON THE
SYNTHETIC DATASET.

metric PPR (%) AAE (beat)

tempo | Soundprism  Scorealign | Soundprism  Scorealign
0% 47.14£22.0 96.6+5.4 0.284£0.39  0.01+0.01
10% 51.6£189  38.7£169 | 0.31+£049  0.184+0.05
20% 443+164  50.5+£11.5 0.224£0.07  0.16£0.06
30% 4154142  51.6£12.5 0.254+0.12  0.16+0.04
40% 279£13.0  482%179 | 0.46+049  0.19£0.07
50% 30.0£15.7  40.7+149 | 0.39+0.25  0.22+0.05

beats of AAE. Results of Scorealign, however, obtains almost
perfect alignment on pieces with no tempo variation. Then
it degrades suddenly to about 50% of AR and 0.18 beats of
AAE. Remember that in the case of 50% tempo variation, the
tempo of the fastest part of the audio performance is 2.5 times
of the slowest part (refer to Table I), while the score tempo is
a constant. This is a very difficult case for online audio-score
alignment.

TABLE IV
AUDIO-SCORE ALIGNMENT RESULTS VERSUS POLYPHONY ON THE BACH
CHORALE DATASET.

metric PPR (%) AAE (beat)
polyphony | Soundprism  Scorealign | Soundprism  Scorealign
2 53.8+13.9 45.1+£9.2 0.17+0.16  0.19+0.04
3 60.6£12.7 45.7+8.5 0.13£0.03  0.191+0.04
4 69.34+9.3 46.6+8.7 0.12+£0.03  0.154+0.05

2) Real Music Dataset: Table IV shows audio-score align-
ment results versus polyphony when measured on real human
performances of Bach chorales. Here, Soundprism performs
better than Scorealign on both PPR and AAE. This may
indicate that the score following stage of Soundprism is more
adapted for real music pieces than pieces composed of random
notes. More interestingly, the average AAE of Soundprism
decreases from 0.17 to 0.12 when polyphony increases. Again,
this suggests the ability of dealing with high polyphony of our
score follower. In addition, the average AAE of Soundprism
is less than a quarter beat for all polyphony. Since the shortest
notes in these Bach chorales are sixteenth notes, the score
follower is able to find correct pitches for most frames. This
explains why the separation results between Soundprism and
Ideally-aligned are very similar in Figure 8.

E. Source Separation Results

1) Synthetic Dataset: Figure 4 shows boxplots of the over-
all separation results of the five separation systems on pieces
of polyphony 2. Each box represents 48 data points, each of
which corresponds to the audio from one instrumental melody
in a piece. The lower and upper lines of each box show 25th
and 75th percentiles of the sample. The line in the middle
of each box is the sample median. The lines extending above
and below each box show the extent of the rest of the samples,
excluding outliers. Outliers are defined as points over 1.5 times
the interquartile range from the sample median and are shown
as Crosses.

For pieces of polyphony 2, if the two sources are of the
same loudness, then the SDR and SIR of each source in
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Fig. 4. Separation results on pieces of polyphony 2 from the synthetic
dataset for Soundprism (1, red), Ideally-aligned (2, green), Gansemanl10 (3,
blue), MPET (4, cyan) and a perfect Oracle (5, purple). Each box represents
48 data points, each of which corresponds to an instrumental melodic line in
a musical piece from the synthetic data set. Higher values are better.

the unseparated mixture should be OdB. It can be seen that
Soundprism improves the median SDR and SIR to about 5.5dB
and 12.9dB respectively. Ideal alignment further improves
SDR and SIR to about 7.4dB and 15.0dB respectively. This
improvement is statistically significant in a nonparametric sign
test with p < 1076, This suggests that the score following
stage of Soundprism has space to improve. Comparing Sound-
prism with GansemanlO, we can see that they get similar
SDR (p = 0.19) and SAR (p = 1) while GansemanlO
gets significant higher SIR (p < 10~7). But remember that
Ganseman10 uses an offline audio-score alignment and needs
to learn a source model from MIDI-synthesized audio of
each source. Without using score information, MPET obtains
significantly worse results than all the three score-informed
source separation systems. This supports the idea of using
score information to guide separation. Finally, Oracle results
are significantly better than all the other systems. Especially
for Ideally-aligned, this gap of performance indicates that the
separation stage of Soundprism has plenty of room to improve.
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Fig. 5. SDR versus polyphony on the synthetic dataset for Soundprism (1,
red), Ideally-aligned (2, green), GansemanlO (3, blue), MPET (4, cyan) and
Oracle (5, purple). Each box of polyphony n represents 24n data points, each
of which corresponds to one instrumental melodic line in a musical piece.

Figure 5 shows SDR comparisons for different polyphony.

SIR and SAR comparisons are omitted as they have the same
trend as SDR. It can be seen that when polyphony increases,
the performance difference between Soundprism and Ideally-
aligned gets smaller. This is to be expected, given that Table
II shows our score following stage performs better for higher
polyphony. Conversely, the difference between Soundprism
and GansemanlO gets larger. This suggests that pre-trained
source models are more beneficial for higher polyphony.
Similarly, the performance gap from MPET to the three score-
informed separation systems gets larger. This suggests that
score information is more helpful for higher polyphony pieces.

The good results obtained by Scorealign helps the sepa-
ration results of GansemanlO, as they use the same audio-
score alignment algorithm. However, as the SDR obtained by
Soundprism and Ganseman10 in Figure 4 and 5 are similar, the
performance difference of their audio-score alignment stages
is not vital to the whole separation systems.
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Fig. 6. SDR versus tempo variation on the synthetic dataset for Soundprism
(1, red), ideally-aligned (2, green) and GansemanlO (3, blue). Each box
represents 80 data points, each of which corresponds to one instrumental
melodic line in a musical piece.

It is also interesting to see how score-informed separation
systems are influenced by the tempo variation of the audio
performance. Figure 6 shows this result. It can be seen that
the median SDR of Soundprism slowly degrades from 2.8dB to
1.9dB as the max tempo deviation increases from 0% to 50%.
A two sample t-test with v = 0.05 shows the mean SDR of
the first 5 cases are not significantly different, while the last
one is significantly worse. This supports the conclusion that
the score following stage of Soundprism slowly degrades as
the tempo variation increases, but not much.

2) Real Music Dataset: Next we compare these separation
systems on a real music dataset, i.e. the Bach chorale dataset.

Figure 7 first shows the overall results on pieces of
polyphony 2. There are four differences from the results of
synthetic dataset in Figure 4. First, the results of Soundprism
and Ideally-aligned are very similar on all measures. This
suggests that the score following stage of Soundprism per-
forms well on these pieces. Second, the difference between
Soundprism/Ideally-aligned and Oracle is not that great. This
indicates that the separation strategy used in Section III-C is
suitable for the instruments in this dataset. Third, Soundprism
obtains a significantly higher SDR and SAR than Ganseman10
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Fig. 7. Separation results on pieces of polyphony 2 from the Bach chorale
dataset for Soundprism (1, red), Ideally-aligned (2, green), Gansemanl10 (3,
blue), MPET (4, cyan) and Oracle (5, purple). Each box represents 120 data
points, each of which corresponds to one instrumental melodic line in a
musical piece.

while a lower SIR. This indicates that Ganseman10 performs
better in removing interference from other sources while
Soundprism introduces less artifacts and leads to less overall
distortion. Finally, the performance gap between MPET and
the 3 score-informed source separation systems is significantly
reduced. This means that the multi-pitch tracking results
are more reliable on real music pieces than random note
pieces. But still, utilizing score information improves source
separation results.
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Fig. 8. SDR versus polyphony on the Bach chorale dataset for Soundprism (1,
red), Ideally-aligned (2, green), Gansemanl0 (3, blue), MPET (4, cyan) and
Oracle (5, purple). Each box of polyphony 2, 3 and 4 represents 2 x 60 = 120,
3 x 40 = 120 and 4 x 10 = 40 data points respectively, each of which
corresponds to one instrumental melodic line in a musical piece.

Figure 8 shows results for different polyphony. We can see
that Soundprism and Ideally-aligned obtain very similar results
for all polyphony. This suggests that the score following stage
performs well enough for the separation task on this dataset.
In addition, Soundprism obtains a significantly higher SDR
than Ganseman10 for all polyphony (p < 10~7). Furthermore,
MPET degrades much faster than the three score-informed sep-
aration systems, which again indicates that score information
is more helpful in the pieces with higher polyphony.

The SDR of polyphony 4 showed in Figure 8 are calculated
from all tracks of all quartets. However, for the same piece of
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Fig. 9. SDR versus instrumental track indices on pieces of polyphony 4 in
the Bach chorale dataset for Soundprism (1, red), Ideally-aligned (2, green),
Gansemanl0 (3, blue), MPET (4, cyan) and Oracle (5, purple). Tracks are
ordered by frequency, i.e., in a quartet Track 1 is soprano and Track 4 is
bass.

a quartet, different instrumental tracks have different SDRs.
A reasonable hypothesis is that high frequency tracks have
lower SDR since they have more harmonics overlapped by
other sources. However, Figure 9 shows opposite results. It
can be seen that Track 1, 2 and 3 have similar SDRs, but
Track 4 has a much lower SDR. This may suggest that the
energy distribution strategy used in Section III-C biases to the
higher-pitched source.

F. Commercially recorded music examples

We test Soundprism and its comparison systems on two
commercial recordings of music pieces from the RWC
database [39]. These pieces were not mixed from individual
tracks, but recorded directly as a whole from an acoustic envi-
ronment. Therefore, we do not have the ground-truth sources
and alignments, hence cannot calculate measures. The sep-
arated sources of these pieces can be downloaded from http:
/Iwww.cs.northwestern.edu/~zdu459/jstsp201 1/examples. This
webpage also contains several examples from the Bach chorale
dataset.

VI. CONCLUSION

In this paper we propose Soundprism, an online system for
score-informed source separation of polyphonic music with
harmonic sources. We decompose the system into two stages:
score following and source separation. For the first stage, we
use a hidden Markov process to model the audio performance.
The state space is defined as a 2-d space of score position
and tempo. The observation model is defined as the multi-
pitch likelihood of each frame, i.e. the likelihood of seeing
the audio frame given the pitches at the aligned score position.
Particle filtering is employed to infer the score position and
tempo of each audio frame in an online fashion. For the
second stage, we first refine the score-informed pitches. Then
sources are separated by time-frequency masking. Overlapping
harmonics are resolved by assigning the mixture energy to
each overlapping source in reverse proportion to the square of
their harmonic numbers.



Experiments on both synthetic audio and real music perfor-
mances show that Soundprism can deal with multi-instrument
music with high polyphony and some degree of tempo varia-
tion. As a key component of Soundprism, the score follower
performs better when the polyphony increases from 2 to 6.
However, the score following results degrade significantly
when the tempo variation of the performance increases.

For future work, we want to incorporate some onset-like
features in the observation model of the score follower, to
improve the alignment accuracy. In addition, a more advanced
method to resolve overlapping harmonics should be used
to improve the source separation results. For example, we
can learn and update a harmonic structure for each source
and use this harmonic structure to guide the separation of
overlapping harmonics. Furthermore, we also want to improve
the robustness of Soundprism, to deal with the situation that
performers occasionally make mistakes and deviate from the
score.
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